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Abstract
Region-based memory management is a popular scheme in systems
software for better organization and performance. In the scheme, a
developer constructs a hierarchy of regions of different lifetimes
and allocates objects in regions. When the developer deletes a
region, the runtime will recursively delete all its subregions and
simultaneously reclaim objects in the regions. The developer must
construct aconsistentplacement of objects in regions; otherwise, if
a region that contains pointers to other regions is not always deleted
beforepointees, an inconsistency will surface and cause dangling
pointers, which may lead to either crashes or leaks.

This paper presents a static analysis toolRegionWiz that can
find such lifetime inconsistencies in large C programs usingre-
gions. The tool is based on an analysis framework that general-
izes the relations and constraints over regions and objectsas condi-
tional correlations. This framework allows a succinct formalization
of consistency rules for region lifetimes, preserving memory safety
and avoiding dangling pointers.RegionWiz uses these consistency
rules to implement an efficient static analysis to compute the con-
ditional correlation and reason about region lifetime consistency;
the analysis is based on a context-sensitive, field-sensitive pointer
analysis with heap cloning.

Experiments with applyingRegionWiz to six real-world soft-
ware packages (including the RC compiler, Apache web server,
and Subversion version control system) with two different region-
based memory management interfaces show thatRegionWiz can
reason about region lifetime consistency in large C programs. The
experiments also show thatRegionWiz can find several previously
unknown inconsistency bugs in these packages.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification—Reliability; D.3.4 [Pro-
gramming Languages]: Processors—Memory management; F.3.2
[Logics and Meanings of Programs]: Semantics of Programming
Languages—Program analysis

General Terms Experimentation, Reliability, Verification

Keywords region, conditional correlation, program analysis, error
detection, memory management
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1. Introduction
Region-based memory management [21, 38, 6] is an alternative
scheme to explicit allocation and deallocation (e.g.,malloc and
free) and automatic garbage collection [7, 41]. In this scheme, a
developer constructs a hierarchy of regions (a.k.a. pools)of differ-
ent lifetimes and allocates objects in regions. Region lifetimes are
nested; when the developer deletes a region, the memory manage-
ment runtime will delete the region and its subregions recursively,
deallocating all the contained objects.

Regions expose a simpler interface than explicit allocation
and deallocation to organize complex data structures, since pro-
grammers can delete sets of objects instead of only individual
objects. It also preserves the safety of intra-region pointers and
reduces the risk of leaks and double frees. On the other hand,com-
pared to garbage collection, it still enables fine-grained control of
the lifetimes of objects via regions, which is usually required in
performance-critical systems software such as operating systems
and servers. Furthermore, because the memory allocators ofdif-
ferent regions are usually independent of each other, developers
can separate related objects into the same region to expressdata
locality, avoid lock contention, and batch allocation and deallo-
cation. Hence, programs using regions can often achieve better
performance [16, 17].

In practice, regions are popular in software that operates in
stages, such as compilers and network applications. A staged ap-
plication generally has an inherent hierarchical structure; region-
based memory management can match up with the structure via a
region hierarchy for better organization and performance.For ex-
ample, a web server maintains a group of TCP connections, and
a TCP connection contains a series of HTTP requests. Thus, an
HTTP request is a “child” of a TCP connection, i.e., the request
has a shorter lifetime. A developer can assign a region to thecon-
nection and a subregion to the request, then allocate resources used
throughout the connection from the parent region and those used
during processing the request only from the subregion. The devel-
oper can delete either the subregion (if the request has beenpro-
cessed), or the parent region (if the connection is closed) so that
the runtime can further delete the subregions of the requests and
reclaim all memory easily.

Figure 1 lists the pseudo code snippet of the web server example
above, with two region primitives: 1)rnew creates a subregion
of the given parent region, and 2)ralloc allocates a object in the
given region. First, line 1 allocates a connection objectconn in
regionr usingralloc. Later, line 3 creates a subregionsubr using
rnew, takingr as its parent region. Then line 5 allocates a request
objectreq in subr, and line 6 assigns fieldreq.connection with
a pointer toconn. We omit further details of the hierarchy (e.g., the
parent region and other subregions ofr) for simplicity.

The connection-request example involves three relations:



1 conn = ralloc(r);

2 ...

3 subr = rnew(r);

4 ...

5 req = ralloc(subr);

6 req.connection = conn;
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Figure 1. The connection-request example.

• thesubregionrelation over regions, specified by calls tornew,
e.g.,subr andr at line 3;

• the ownershiprelation over regions and objects, specified by
calls toralloc, e.g.,r andconn at line 1,subr andreq at line 5;

• theaccessrelation over objects, implied by field assignments of
inter-object pointers, e.g.,req andconn at line 6.

The access relation requires thatreq should be reclaimedbefore
conn to avoid the pointerreq.connection being dangling. Thus,
combined with the ownership relation, a safety requirementis that
the regionsubr that ownsreq should have a shorter lifetime than
the regionr that ownsconn. Meanwhile, the developer specifies
the subregion relation thatsubr is a subregion ofr, which is
consistent with the safety requirement. Otherwise, ifsubr is not
alwaysdeleted beforer, e.g.,subr is not a subregion ofr or even
it is the parent ofr, the pointerreq.connection may be dangling.

Therefore, the three relations arecorrelatedand they must be
consistent; the specified subregion relation and the access relation
implied by inter-object pointers constrain each other via the own-
ership map over regions and objects. We refer such correlation as
conditional correlation, and develop a formalization of the consis-
tency problem in Section 3.

Dangling pointers caused by the inconsistencies can harm the
correctness and robustness of software using regions. Intuitively,
further use of the dangling pointers would lead to crashes. Fur-
thermore, even a dangling pointer is never used and the program
does not crash, it may cause leaks as well. Consider the example
in Figure 1 again. The developer might not codesubr as a subre-
gion of r, e.g.,subr might be a subregion of the root region that
lives forever, or evenr inappropriately takessubr as its parent
region. In such cases, the objectreq that resides insubr unnec-
essarilyconsumes memory even afterconn is reclaimed, and the
developer cannot use this memory any more. More seriously, such
objects of longer-than-necessary lifetime may lead to unpredictable
memory consumption [5] especially if a function that contains such
buggy code resides in recursions or loops. Of course, there are no
real “leaks” in region-based memory management as defined inthe
malloc-free scheme, because the runtime will delete all regions
eventually. In this paper, we use the term “leaks” to refer tosuch
longer-than-necessary lifetime cases.

Unfortunately, it is difficult for developers to track such con-
sistency interprocedurally in large code base. For example, as in
Figure 1, the code at line 5 and 6 may be in a functionfoo given
a objectconn and a regionsub as parameters. Consequently,foo

assumes that the caller must be careful about both allocating conn

from an appropriate region and creatingsubr with a consistent par-
ent region. However, the parameters forfoo may be passed deep
along call paths, and the program points of allocatingconn and
creatingsubr may be far way fromfoo. Thus, caller code may
be unaware of the implicit constraint, or it may assume thatfoo

will keep a duplicated copy of the object referred by a parameter,
which could be true especially when the object is a string. Inei-
ther case, the code is prone to inconsistencies that may result in
dangling pointers.

Developers may discover inconsistencies that lead to crashes
after they surface at runtime. It is harder to find such bugs in
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Figure 2. Four different subregion relations betweenr1 andr2.

multi-threaded programs with regions, because the deletion order
of regions may vary due to scheduling and the bugs may not appear
in each run. Several dynamic approaches have been proposed to
preserve memory safety with regions at runtime [16, 17], butthey
cannot find inconsistencies that are on less-executed code paths and
that are sensitive to runtime environments such as scheduling, nor
can they solve the leaks caused by inconsistencies.

In this paper, we focus on static analysis techniques and present
a prototype toolRegionWiz that searches exhaustively for region
lifetime inconsistencies in source code. To the best of our knowl-
edge, it is the first tool to address the problem in large C programs
using regions. Specifically, the main contributions of thispaper are:
1) a unified framework of conditional correlation that may beof
independent interest; 2) a formalization of the region lifetime con-
sistency problem as an instantiation; 3) an implementationthat em-
ploys a context-sensitive, field-sensitive pointer analysis with heap
cloning and that performs a conditional correlation analysis for the
region lifetime consistency problem in large C programs; and, 4)
the evaluation with six real-world software packages of tworegion-
based memory management interfaces.

The rest of the paper is organized as follows. Section 2 givesan
overview of the analysis methodology. Section 3 defines the con-
cept of conditional correlation. Section 4 formalizes region lifetime
consistency based on conditional correlation and describes a static
analysis algorithm. Section 5 presents our implementationdetails.
Section 6 reports our experimental results. We survey related work
in Section 7 and conclude in Section 8.

2. Overview
In this section we present an overview of howRegionWiz reasons
about region lifetime consistency.

For two regionsr1, r2, we writer1 < r2 if r1 is a subregion
of r2, andr1 = r2 if r1, r2 refers to the same region. Further, we
write r1 ≤ r2 if r1 is a direct or indirect subregion ofr2, while
r1 � r2 otherwise. The partial order≤ is the reflexive transitive
closure of the subregion relation< over regions.

Consider a simple case thato2 in regionr2 holds a pointer too1

in regionr1. There are four possible subregion relations between
r1 andr2 in caller code, as illustrated in Figure 2.

(a) r1, r2 refer to the same region, i.e.,r1 = r2, soo1, o2 share the
same lifetime, and the intra-region pointer is always safe.

(b) r2 is a subregion ofr1, i.e., r2 < r1, so o2 will be deleted
beforeo1, and the inter-region pointer is always safe.

(c) There is no subregion relation betweenr1 andr2, i.e.,r1 � r2

andr2 � r1, so the inter-region pointer may be dangling ifr1

is deleted first.

(d) r1 is a subregion ofr2, i.e.,r1 < r2, soo1 will be deleted first,
and the inter-region pointer will become dangling.

As in Figure 2,r2 ≤ r1 holds in (a) and (b), where the pointers
from o2 to o1 are always safe. Meanwhile, the pointers fromo2 to
o1 may be dangling in (c) and (d), wherer2 � r1 andr1 may be
deleted beforer2. To sum up, we have the following rules for two
objectso1, o2 in regionsr1, r2, respectively.
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1 o1 = ralloc(r1);

2 if P r = r0;

3 if Q r = r1;

4 r2 = rnew(r);

5 o2 = ralloc(r2);

6 o2.f = o1;

Figure 3. An aliasing example.

Proposition 2.1. If o2 may accesso1, r2 ≤ r1 musthold.

Proposition 2.2. If r2 ≤ r1 holds, any pointer fromo2 that may
accesso1 is alwayssafe.

With Proposition 2.1 one can reason about consistency starting
from objects. The relations of ownership and access combineto im-
ply thatr2 ≤ r1 must hold. However, the must-subregion require-
ment may be hard to prove in the presence of aliasing. Consider a
degradation case thato1, too, holds a pointer too2, i.e.,o1, o2 can
access each other. To preserve memory safety,o1 ando2 under this
circumstance must reside in the same region. In other words,it suf-
fices to show that the two variablesr1 andr2 must always refer to
the same region. This approach requires a must-alias analysis [2],
which is generally difficult to perform [33].

Nevertheless, we cannot just show thatr2 ≤ r1 may hold
and conclude that region lifetime is consistent; the compromise is
unsound and may lead to missing of inconsistencies. Consider the
code in Figure 3, wherer2 may be a subregion ofr1 if condition
Q evaluates true. However, the region lifetime in Figure 3 is not
consistent becauser2 ≤ r1 does not always hold;r2 can be a
subregion ofr0 whenP evaluates true andQ evaluates false. In
this case there is no subregion partial order betweenr2 andr1, so
that the pointero2.f may be dangling.

RegionWiz takes the other approach to reason about consis-
tency by using Proposition 2.2. As stated, ifr2 ≤ r1 holds, we
can conclude that any pointer fromo2 to o1 is always safe. Thus, it
suffices to show that for any two regionsx, y that have no subregion
partial orderx � y, each object inx must not access any object in
y. By verifying the non-access property against region pairsthat
have no subregion partial order, we can prove that region lifetime
is consistent.

Take Figure 3 as example again. Note that we have just dis-
cussed thatr2 ≤ r1 does not always hold. So the most conserva-
tive estimation of region pairs that have no subregion partial order
is the set{ri � rj |i 6= j; i, j = 0, 1, 2}. To verify them, we can
find that forr2 � r1, o2 in r2 may accesso1 in r1, which violates
Proposition 2.2 and is a potential inconsistency.

To sum up, our toolRegionWiz reasons about region lifetime
consistency in the following steps:

1. start with region pairs that have no subregion partial order,

2. map regions to objects they own via the ownership relation, and

3. verify the non-access property against sets of objects.

In the example above, the chosen of region pairs that have no
subregion partial order may be too conservative: ifr2 may be a
subregion of more than one region due to aliasing, we have to
verify its objects against those in all its ancestors for a sound
approximation, which may yield a large mount of false warnings.
We will discuss improvements in Section 4.3.

3. Conditional Correlation
The region lifetime consistency problem correlates the twosets,
i.e., regions and objects, and involves three relations of subregion,
ownership, and access. We generalize the correlation between two
sets of objects as follows.

Definition 3.1 (Conditional Correlation). LetA, B be two sets with
binary relationsf : A × A, g : B × B, and mapϕ : A → B. We
define aconditional correlation〈f, ϕ, g〉 overA, B as

(x, y) ∈ f =⇒ (ϕ(x), ϕ(y)) ∈ g (3.1)

If 〈f, ϕ, g〉 holds for(x, y), it means that(ϕ(x), ϕ(y)) ∈ g can
be proven under the assumption(x, y) ∈ f . In other words,ϕ is a
relation-preservingmap fromA to B with respect tof andg.

Definition 3.2 (Consistent Conditional Correlation). A condi-
tional correlation〈f, ϕ, g〉 is consistentover A, B if it holds for
all (x, y) ∈ A × A.

Note that〈f, ϕ, g〉 always holds for(x, y) ∈ (A × A)\f , so
it suffices to show that (3.1) holds for(x, y) ∈ f to prove the
consistency of the conditional correlation.

We briefly describe the region lifetime consistency problemas
an example of conditional correlation. Consider a set of regions
R with the subregion relation, and a set of objectsO where each
object may access some other objects.

• A = R is the set of regions;

• B = 2O is the powerset of objects;

• f is all region pairs(r1, r2) overA × A thatr1 � r2 holds;

• ϕ maps a region to a set of objects that it owns;

• g is all object set pairs(s1, s2) overB × B that each object in
s1 cannot access any object ins2;

By definition, we can see that the ownership relationϕ is a relation-
preserving map with respect tof andg, and〈f, ϕ, g〉 is a condi-
tional correlation for reasoning about region lifetime consistency.

Now we consider how to perform a conditional correlation
analysis statically. Intuitively, as for a sound approximation, if we
prove a conditional correlation〈F, Φ, G〉 is consistent, whereF
is a superset off , Φ is a superset ofϕ, and G is a subset of
g, we can conclude that〈f, ϕ, g〉 is also consistent. Hence, to
perform a conditional correlation analysis, we can estimate an over-
approximation off, ϕ, and an under-approximation ofg. More
generally, we define an abstraction relation� over conditional
correlations.

Definition 3.3 (Conditional Correlation Analysis). Given two con-
ditional correlations〈f, ϕ, g〉 overA, B and〈F, Φ, G〉 overA′, B′,
let α : A → A′, β : B → B′ be two maps. We define〈f, ϕ, g〉 �
〈F, Φ, G〉 if the following conditions are satisfied.

∀(x, y) ∈ A × A : (x, y) ∈ f =⇒ (α(x), α(y)) ∈ F (3.2)

∀x ∈ A, s ∈ B : ϕ(x) = s =⇒ Φ(α(x)) = β(s) (3.3)

∀(s, t) ∈ B × B : (s, t) /∈ g =⇒ (β(s), β(t)) /∈ G (3.4)

By definition, given two conditional correlations〈f, ϕ, g〉 and
〈F, Φ, G〉 such that〈f, ϕ, g〉 � 〈F, Φ, G〉, it is easy to show that
〈f, ϕ, g〉 holds if 〈F, Φ, G〉 holds.

In general, to find an appropriate〈F, Φ, G〉 for a specific condi-
tional correlation〈f, ϕ, g〉 overA, B usually depends on the topolo-
gies or the shapes [18] of the two sets, e.g., are they trees, directed
acyclic graphs, or cyclic graphs? In the region lifetime consistency
problem, we notice that the regions shape a tree while objects form
a graph. We will further discuss analysis techniques exploiting the
property in Section 4.

4. Region Lifetime Consistency
In this section, we formalize the region lifetime consistency prob-
lem based on conditional correlation and discuss static analysis al-
gorithms to reason about the consistency.



4.1 Language

To develop the formalization, we describe a weakly-typed toy lan-
guage. LetR be the set of regions andH be the set of normal objects
allocated in regions. We use the term “object” to refer to either null,
a regionr ∈ R, or a normal objecth ∈ H. Each normal object may
have several fieldsf ∈ F to access other objects. The language has
the following statements.

s ::= x = null | x = rnew y | x = ralloc y | x = y | x = y.f |

x.f = y | s1 ; s2 | if ∼ s1 elses2 | while ∼ s

A variable may be initialized tonull . A new subregion can be
created usingrnew, given a parameter as the parent region. A new
normal object may be allocated in a given region usingralloc. If the
parameter given inrnew or ralloc is null , it means the root region,
denoted asΛ. In addition, the language has standard assignment,
load, store, composition, branching, and looping statements. We
consider the subregion relation enforces the region deletion order,
so we do not model region deletion in the language.

Let O = R ∪ H be the union of regions and normal objects,
so thato ∈ O is a non-null object.O⊥ = O ∪ {⊥} represents all
objects includingnull . We define the concrete contexts and effects
as follows.

ρ ::= V → O⊥ (environment)

δ ::= H × F → O⊥ (heap)

π ::= R × R (subregion)

φ ::= R × O (ownership)

σ ::= O × O (access)

The environmentρ maps a variable to an object. The heapδ tracks
the set of objects that each normal object can access via its fields. In
addition, three effects record necessary information for reasoning
about consistency as follows.

• r < r′ in π records thatr is a subregion ofr′.

• r ⊲ o in φ records that regionr owns objecto.

• o ։ o′ in σ records that objecto can access objecto′.

Sincenull can be used to refer to the root regionΛ in rnew and
ralloc, we defineργ : V → R in addition toρ for convenience.
Note thatργ is undefined for a normal object.

ργ(x) =

(

r if ρ(x) = r

Λ if ρ(x) = ⊥

Figure 4 shows the big-step operational semantics of the lan-
guage. A judgments, ρ, δ ⇓ ρ′, δ′, π0, φ0, σ0 means that after each
statements the environmentρ and the heapδ change toρ′ andδ′,
respectively, and the statements generates new tuplesπ0, φ0, σ0 in
relationsπ, φ, σ, respectively. We explain each judgment in detail.

• (4.1) Variablex is initialized asnull .

• (4.2) A new regionr is created as a subregion of the parent
r′ referred byy, and is assigned tox. A new subregion tuple
r < r′ is generated inπ.

• (4.3) A new normal objecth is allocated in regionr referred
by y, and is assigned tox. A new ownership tupler ⊲ h is
generated inφ.

• (4.4) Variablex is assigned with the object thaty refers to.

• (4.5) Variablex is assigned with the object that normal object
h can access via fieldf , whereh is referred byy.

• (4.6) Fieldf of normal objecth is assigned with the object
that y refers to, whereh is referred byx. A new access tuple
h ։ ρ(y) is generated inσ if y refers to a non-null object.

x = null , ρ, δ ⇓ ρ[x 7→ ⊥], δ, ∅, ∅, ∅ (4.1)

ργ(y) = r′ r fresh π0 = {r < r′}

x = rnew y, ρ, δ ⇓ ρ[x 7→ r], δ, π0, ∅, ∅
(4.2)

ργ(y) = r h fresh φ0 = {r ⊲ h}

x = ralloc y, ρ, δ ⇓ ρ[x 7→ h], δ[h.fi 7→ ⊥], ∅, φ0, ∅
(4.3)

x = y, ρ, δ ⇓ ρ[x 7→ ρ(y)], δ, ∅, ∅, ∅ (4.4)

ρ(y) = h

x = y.f, ρ, δ ⇓ ρ[x 7→ δ(h.f)], δ, ∅, ∅, ∅
(4.5)

ρ(x) = h σ0 = if ρ(y) = ⊥ then∅ else{h ։ ρ(y)}

x.f = y, ρ, δ ⇓ ρ, δ[h.f 7→ ρ(y)], ∅, ∅, σ0

(4.6)

s1, ρ, δ ⇓ ρ′, δ′, π1, φ1, σ1 s2, ρ
′, δ′ ⇓ ρ′′, δ′′, π2, φ2, σ2

s1 ; s2, ρ, δ ⇓ ρ′′, δ′′, π1 ∪ π2, φ1 ∪ φ2, σ1 ∪ σ2

(4.7)

s1, ρ, δ ⇓ ρ′, δ′, π, φ, σ

if ∼ s1 elses2, ρ, δ ⇓ ρ′, δ′, π, φ, σ
(4.8)

s2, ρ, δ ⇓ ρ′, δ′, π, φ, σ

if ∼ s1 elses2, ρ, δ ⇓ ρ′, δ′, π, φ, σ
(4.9)

while ∼ s, ρ, δ ⇓ ρ, δ, ∅, ∅, ∅ (4.10)

s, ρ, δ ⇓ ρ′, δ′, π1, φ1, σ1 while ∼ s, ρ′, δ′ ⇓ ρ′′, δ′′, π2, φ2, σ2

while ∼ s, ρ, δ ⇓ ρ′′, δ′′, π1 ∪ π2, φ1 ∪ φ2, σ1 ∪ σ2

(4.11)

Figure 4. Operational semantics.

• (4.7) π, φ, and σ are union of the tuples generated by two
composition statements.

• (4.8) (4.9)π, φ, andσ is the tuples generated by a branching
statement.

• (4.10) The loop is not executed.

• (4.11)π, φ, andσ are union of the tuples generated during the
execution of the loop.

Example 4.1. Consider the code in Figure 3. Assuming that
ρ(r0) = γ0, ρ(r1) = γ1, P, Q both evaluate true: line 1, ac-
cording to (4.3), allocates a normal objecth1, assignsρ(o1) = h1,
and generatesγ1 ⊲ h1 in φ; line 2, according to (4.4), (4.8), and
our assumption, assignsρ(r) = γ0; line 3, similar to line 2, assigns
ρ(r) = γ1; line 4, according to (4.2), creates a new subregionγ2,
assignsρ(r2) = γ2, and generatesγ2 < γ1 in π; line 5, similar to
line 1, allocatesh2, assignsρ(o2) = h2, and generatesγ2 ⊲ h2 in
φ; line 6, according to (4.6), assignsδ(h2.f) = h1 and generates
h2 ։ h1 in σ.

4.2 Problem Formulation

Now we formulate the region lifetime consistency problem for the
language. Let the partial orderπ+ be the reflexive transitive closure
of the subregion relationπ. In addition, we extend the ownership
relationφ to the reflexive closureφ= to capture the inconsistency
that a normal object inr1 can access regionr2 if r1 � r2. To prove
consistency, it suffices to show that for any regionsx, y that have
no partial orderx � y, i.e., (x, y) /∈ π+, each object inφ=(x)
must not access any object inφ=(y). In the words, the following
set must be empty.
˘

(o1, o2)|(o1, o2) ∈ σ : o1 ∈ φ=(x)∧o2 ∈ φ=(y)∧(x, y) /∈ π+
¯

(4.12)



To simplify (4.12), extend the access relationσ to σ∗ over the
powerset of objects as follows.

σ∗ =
˘

(s1, s2)|s1, s2 ∈ 2O ∧ ∃o1 ∈ s1, o2 ∈ s2 : (o1, o2) ∈ σ
¯

Applying σ∗ to (4.12), it suffices to prove the following propo-
sition holds for consistency.

∀(x, y) /∈ π+ : (φ=(x), φ=(y)) /∈ σ∗

Let π+, σ∗ denote the complement ofπ+, σ∗, respectively. We
rewrite the above proposition as follows.

∀(x, y) ∈ π+ : (φ=(x), φ=(y)) ∈ σ∗ (4.13)

(3.1) and (4.13) combine to show that the region lifetime con-
sistency problem is an instantiation of conditional correlation.

Definition 4.1 (Region Lifetime Consistency). 〈π+, φ=, σ∗〉 is a
conditional correlation overR and2O.

Example4.2. Continue with Figure 3. Example 4.1 already shows
that it generates the tuples in the three relationsπ : {γ2 < γ1},
φ : {γ1 ⊲ h1, γ2 ⊲ h2}, andσ : {h2 ։ h1}. So there are five
region pairs inπ+: γ0 � γ1, γ0 � γ2, γ1 � γ0, γ1 � γ2, and
γ2 � γ0. Further,φ= maps them to corresponding object pow-
erset pairs:

`

{γ0}, {γ1, h1}
´

,
`

{γ0}, {γ2, h2}
´

,
`

{γ1, h1}, {γ0}
´

,
`

{γ1, h1}, {γ2, h2}
´

, and
`

{γ2, h2}, {γ0}
´

, respectively. It is easy
to show that all the pairs are inσ∗ in the case that bothP, Q evalu-
ate true, so the region lifetime here is consistent.

4.3 Static Analysis

Consider a static analysis algorithm that computes abstract effects
Π, Φ, andΣ for π, φ, andσ, respectively, such that〈π+, φ=, σ∗〉 �
〈Π+, Φ=, Σ∗〉 holds. As we have discussed in Section 3, a sound
algorithm should estimate an over-approximation ofπ+, φ=, and
an under-approximation ofσ∗, that is, an under-approximation of
π, and an over-approximation ofφ, σ.

We briefly describe a standard Anderson-style analysis [3].In
addition to the three abstract effectsΠ, Φ, andΣ, the algorithm
estimates two abstract contexts: abstract environmentΓ and ab-
stract heap∆. Using abstract locations instead of fresh objects, it is
straightforward to compute abstract contexts and effects in initial-
ization, region creation, normal object allocation, assignment, load,
store, and composition statements for the toy language in parallel
with the semantics. For branching statements, the algorithm joins
the abstract contexts and effects on both paths by union of abstract
contexts and effects. For looping statements, it iterates until reach-
ing a fixed point. We omit the details for brevity. Intuitively, the
algorithm estimatesΠ, Φ, andΣ as an over-approximation ofπ, φ,
andσ, respectively, either flow-sensitive or flow-insensitive.

Example4.3. Consider Figure 3 again. Similar to Example 4.1,
assuming thatΓ(r0) = {γ0}, Γ(r1) = {γ1}: line 1 generates
(o1, h1) in Γ andγ1 ⊲ h1 in Φ; line 2 generates(r, γ0) in Γ; line 3
generates(r, γ1) in Γ, so nowΓ(r) = {γ0, γ1}; line 4 generates
(r2, γ2) in Γ andγ2 < γ0, γ2 < γ1 in Π; line 5 generates(o2, h2)
in Γ andγ2 ⊲ h2 in Φ; line 6 generates(h2.f, h1) in ∆ andh2 ։

h1 in Σ. Here γ0, γ1, h1, h2 are abstract locations; the abstract
effects areΠ : {γ2 < γ0, γ2 < γ1}, Φ : {γ1 ⊲ h1, γ2 ⊲ h2},
andΣ : {h2 ։ h1}.

Note thatΠ is an over-approximation ofπ. However, we need
an under-approximation. As we have discussed in Section 2, using
such imprecise subregion edges can be unsound and will miss
region pairs that should be verified inΠ+, e.g.,γ2 < γ1.

Generally, the subregion relationπ should form a tree, where
each region (except for the root regionΛ) has one and only one
parent. A static analysis algorithm may conservatively estimate

o1

o2

r1

r2

r0

1 if ~ p = rnew(…);

else p = rnew(…);

2 q = rnew(p);

3 o1 = ralloc(p);

4 o2 = ralloc(q);

5 o2.f = o1;

o1

o2

r0

r2

r1

q

p
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Figure 5. An intra-region pointer example.

regionr to be a subregion of several regionsr1, r2, . . . , rn, rather
than a unique parent in semantics. In such cases, regions form a
join-semilattice, where the root regionΛ is the top. We consider
the parent region ofr as the join of all its possible parent regions
Wn

i=1
ri, and replace them with the tupler <

Wn

i=1
ri in Π.

Example4.4. Continue with Example 4.3. Assume that the parent
of either γ0 or γ1 is the root regionΛ. The algorithm finally
generatesΠ : {γi < Λ|i = 0, 1, 2}, so that there are six region
pairs inΠ+ to be verified, as discussed in Section 2.

The algorithm can be flow-insensitive, thus we adopt more pre-
cise pointer analysis techniques [22] while preserving scalability.
We should distinguish effects (e.g., the subregion, ownership, and
access relations) in individual contexts (e.g., call paths), so we
need context-sensitivity [14]. Furthermore, we should precisely
track what each field of an object refers to, so we also use field-
sensitivity. In addition, we should be able to distinguish different
instances of objects that are created at the same call site but on dif-
ferent call paths, thus heap cloning or specialization is critical for
precision [36].RegionWiz implements a flow-insensitive, context-
sensitive, field-sensitive analysis with heap cloning.

However, the algorithm comes at a price. Consider the example
in Figure 5. Line 1 creates eitherr0 or r1; line 2 creates a subregion
r2, taking the region thatp refers to as its parent. Whenp refers to
either ri, i = 0, 1, o1 is in ri and r2 is also a subregion ofri.
Sinceo2 is in r2, the region lifetime is always consistent. Our flow-
insensitive algorithm will conservatively yield an imprecise result
as shown in Figure 5(a) and report a false warning, because itfails
to capture the fact that the parent ofr2 and the owner ofo1 are
always the same region.

A possible approach is to introduce an indirect level. Refine
the relations of subregionπ and ownershipφ as π′ : R × V
andφ′ : V × O, respectively, whereV is the set of variables. A
new static analysis algorithm that computes def-use information
for each variable can yield a more precise result, as shown inFig-
ure 5(b). The new subregion tuple isr2 ≤′ p, while the new own-
ership tuples arep ⊲

′ o1, q ⊲
′ o2. In this case it suffices to verify

against (region) variable pairsv1, v2 if there exists regionr that
variablev2 may refer to such thatr �′ v1. A practical implemen-
tation can adopt techniques such as IPSSA [29], an unsound but
effective approach. We defer it to future work.

5. Implementation
Our prototype toolRegionWiz currently supports two region-based
memory management interfaces used in real-world C programs:
RC regions [17] and Apache Portable Runtime (APR) pools [23].
We use the interface of APR pools as an example, which is widely
adopted by various software packages such as Apache web server
and Subversion version control system. Figure 6 lists part of the
interface.

Similar tornew, apr pool create creates a new subregion of
a given parent region (or the root if given null); the subregion can
be retrieved by dereferencing the first parameternewp, a pointer
to pointer. A functionapr palloc, similar to ralloc, allocates a



/* region creation (rnew) */
apr_status_t
apr_pool_create(apr_pool_t **newp, apr_pool_t *parent);
/* object allocation (ralloc) */
void * apr_palloc(apr_pool_t *p, apr_size_t size);
void * apr_pcalloc(apr_pool_t *p, apr_size_t size);
/* region deletion */
void apr_pool_clear(apr_pool_t *p);
void apr_pool_destroy(apr_pool_t *p);
/* cleanup registration */
typedef apr_status_t (*cleanup_t)(void *data);
void apr_pool_cleanup_register(apr_pool_t *p,

const void *data, cleanup_t plain_cleanup, ...);

Figure 6. Part of APR pools interface.

specified size of memory in a given region;apr pcalloc further
fills the newly allocated memory with zero.

A region can be cleared usingapr pool clear or deleted us-
ing apr pool destroy; the runtime will operate on all its de-
scendants. Moreover, APR enables to register cleanup functions on
regions viaapr pool cleanup register. For example, the de-
veloper opens a file descriptor usingopen and registers a cleanup
function that callsclose to delete the file descriptor on a region.
When the region is cleared or deleted, the runtime will trigger the
cleanup function to close the file descriptor, so that it can avoid re-
source leaks. In this way, APR manages systems resources such as
file descriptors usingopen-close similarly to memory in regions.
Interested readers may refer to APR documentation for detailed in-
formation.

Now we describe the implementation details ofRegionWiz.
It consists of four phases: 1) call graph construction, 2) con-
text cloning, 3) conditional correlation computation, and4) post
processing. It mostly follows the standard steps in cloning-based
context-sensitive pointer analysis [40], with additionalsupports for
heap cloning [36].

5.1 Call Graph Construction

The first phase constructs an initial context-insensitive call graph
in a standard way as a basis for further computation. We builta
back-end plug-in for thePhoenix compiler framework [31], and
transparently inserted the plug-in into the compiler phaselist to
extract instructions of the intermediate representation (IR) for pro-
grams. Each instruction consists of destination operands,opcode,
and source operands.

// time_t t = time(0);
1 t142 = CALL &_time, 0
2 _t = ASSIGN t142

// struct tm * (*mytime)(const time_t *timer);
// mytime = localtime;

3 _mytime = ASSIGN &_localtime
// int week = mytime(&t)->tm_wday;

4 t143 = CALL _mytime, &_t
5 t144 = ADD t143, 24
6 _week = ASSIGN [t144]*

In the example above, line 1 is a direct CALL instruction to func-
tion time; line 3 assigns a function pointer to variablemytime;
line 4 indirectly invokes the function pointer and assignst143 with
the resulting structuretm; to access its fieldtm.tm wday, line 5
adds the pointer with offset 24, which is machine-dependent; line 6
deferences the value.

The algorithm for call graph construction is expressed as Dat-
alog rules and solved using thebddbddb deductive database [24]
over such IR instructions. LetI be the set of IR instructions and
F be the set of functions. The resulting call graph is in the form

call : I × F , the set of call edges;call(i, f) means that the target
of instructioni (that should be a CALL instruction) is functionf .
RegionWiz computescall from direct, indirect, and implicit calls.

The target function of a direct call can be simply extracted from
the first source operand of the CALL instruction, such as line1 that
callstime in the example above.

An indirect call requires to resolve the first source operandof
a CALL instruction to determine what functions the variablemay
refer to. To do so,RegionWiz estimates the setvF : V × F for
each variable, whereV is the set of variables. For an initialization
instruction such as line 3 in the example above, it is straightfor-
ward to add(mytime, localtime) into setvF . RegionWiz fur-
ther propagates function pointer values along variable assignments
intraprocedually and call-return instructions (e.g., parameters and
return values) interprocedurally, and iterates to add (variable, func-
tion) pairs into setvF until it converges.

An implicit call such as system callback requires expert knowl-
edge. For example, if there is a call instructioni to function
apr thread create with the entry functionfoo as its parame-
ter, the system will create a thread that invokesfoo at runtime.
Thus, in addition to the direct call(i, apr thread create), Re-
gionWiz also adds the implicit call(i, foo) into setcall for a more
complete call graph. Current implementation supports suchthread
creation functions provided by Windows API, libc, and APR.

Moreover,RegionWiz identifies the main entry for a program
(usually themain function in C) and performs a reachability analy-
sis to prune the instructions in those functions that are never called
directly or indirectly from the main entry.

5.2 Context Cloning

RegionWiz transforms the context-insensitive call graphcall to a
context-sensitive call graphcc : C × I × C × F via cloning;
cc(c0, i, c1, f) is a call edge that instructioni in contextc0 calls
functionf in contextc1. The transformation first reduces strongly
connected components incall into single nodes, finds a topolog-
ical order, and then numbers individual call paths as calling con-
texts, following the standard algorithm [40]. Each contextnumber
for a function represents a unique call path that reaches thefunction
from the main entry. Since the number of contexts is exponential,
RegionWiz stores the relationcc using a finite domain implemen-
tation inBuDDy [28], a binary decision diagram (BDD) package.

Now we have a context-sensitive call graphcc, where each call
to functionf in contextc is identified as a unique pair(c, f). Thus,
for each call to region creation functions (e.g.,apr pool create)
or object allocation functions (e.g.,apr palloc), (c, f) can repre-
sent a region or object instance. Our subsequent computation uses
such pairs to identify regions and objects.

In addition, variablev is identified as(c, v), so that we can
compute points-to set for each variable in individual contexts, such
as vR(c, v, rc, rf) for variablev in context c that may refer to
region instance(rc, rf). The propagation for computing the set
works as follows. For intraprocedural statements such as assign-
mentv2 = v1, add(c, v2, rc, rf) into vR if (c, v1, rc, rf) is in
vR. Interprocedurally, for CALL instructioni, (c1, i, c2, f) in cc,
assumingv1 is thek-th variable of instructioni in caller code and
v2 is the k-th parameter of the target functionf in callee code,
add (c2, v2, rc, rf) into vR if (c1, v1, rc, rf) is in vR; in addi-
tion, assumingv3 is assigned with the return value of instructioni
andv4 is the source operand of a RETURN instruction inf , add
(c1, v3, rc, rf) into vR if (c2, v4, rc, rf) is in vR. The computa-
tion iterates until it converges.

5.3 Conditional Correlation Computation

This phase is the core part of our analysis to compute the condi-
tional correlation over regions and objects.



5.3.1 Effect Computation

The computation for the effects iterates as described in Section 5.2
for a whole program. It is usually the most time-consuming part.

For calls to region creation functions (e.g.,apr pool create)
we estimatevR, the set of regions that each variable may point to,
and the subregion relation over regions.

• vR : C × V × C × F is the points-to relation for regions;
vR(c, v, rc, rf) means that variablev in contextc may point to
region(rc, rf).

• subregion : C × F × C × F is the subregion relation
over regions;subregion(rc0, rf0, rc1, rf1) means that region
(rc0, rf0) may be a subregion of(rc1, rf1).

For calls to object allocation functions (e.g.,apr palloc) we
similarly estimatevH , the set of objects that each variable may
point to, and the ownership relation between regions and objects.

• vH : C × V × C × F is the points-to relation for objects;
vH(c, v, hc, hf) means that variablev in contextc may point
to object(hc, hf).

• ownership : C × F × C × F is the ownership relation be-
tween regions and objects;ownership(rc, rf, hc, hf) means
that region(rc, rf) may own object(hc, hf).

We further compute the setheap on each store statementx->f
= y that x can accessy via field f . Since C is a weakly-typed
language, we use offset values instead of symbolic names forfields.

• heap : C × F × N × C × F is the set for heap over objects;
heap(c0, f0, n, c1, f1) means that object(c0, f0) contains a
pointer at the offsetn that can access object(c1, f1).

We do not compute a separate access relation;heap is sufficient.

5.3.2 Inconsistency Computation

We filter candidate region pairs that have no subregion partial order,
and verify the non-access property against each pair.

• regionPair : C×F ×C×F is the set of region pairs that may
have no subregion partial order;regionPair(rc0, rf0, rc1, rf1)
means that(rc0, rf0) � (rc1, rf1).

• objectPair : C×F ×N ×C×F is the resulting inconsistent
object pairs;objectPair(c0, f0, n, c1, f1) means that object
(c0, f0) contains a possible dangling pointer at field offsetn
to object(c1, f1).

The computation ofregionPair is based on the conservative way
to estimate parent regions described in Section 4.3. It is straight-
forward to compute the resultobjectPair based onregionPair,
ownership, andheap according to (4.12) and (4.13).

5.4 Post Processing

As a static analysis tool may generate a large amount of warnings,
it is necessary to process the reported warnings and aid developers
to locate and inspect the suspicious code.

First, since the resultobjectPair is over context-sensitive ob-
ject pairs, the size is usually quite large because the object pairs
can be inconsistent in many similar contexts. We condense context-
sensitive object pairs to context-insensitive instruction pairs (I-
pairs) for further inspection.

Besides, we rank reported warnings.RegionWiz does not com-
pute def-use information, as we have discussed in Section 4.3, so it
may report warnings on intra-region pointers that should bealways
safe. To filter them our current implementation applies one rank-
ing heuristic: for an inconsistent object pair, if their owner regions
never have the subregion relation, we rank them high in the result.

KLOC exe brief description
rcc 37 1 RC compiler
apache 2.2.6 42 9 web server and utilities
freeswitch 1.0b1 109 1 telephony platform shell
jxta-c 2.5.2 114 1 P2P framework shell
lklftpd 5 1 FTP server
subversion 1.4.5 240 9 version control system

Figure 7. Benchmarks. The “exe” column lists the number of
executables in each packages. The rcc package uses RC regions.
Other software packages are based on APR, where the code sizeof
APR (∼ 200 KLOC) does not count.

high-ranked (cause) inconsistency (cause)
rcc 1 (1) 1 (1)
apache 1 (1) 0 (0)
lklftpd 2 (2) 2 (2)
subversion 21 (6) 9 (4)
total 25 (10) 12 (7)

Figure 8. Numbers of high-ranked warnings and inconsistencies,
as well as their unique causes.

5.5 Limitations

RegionWiz supports pointers to pointers, since they are typ-
ical in C functions for retrieving newly created objects, e.g.,
apr pool create. It also handles unsafe typecasts including casts
between integers and pointers, and uses low-level offset integers
rather than symbolic field names for structures and unions. It is
unsound for more complex pointer operations such as arithmetic.

RegionWiz tracks thread creations as implicit calls, but it may
still miss some call edges due to other implicit callbacks from
the operating systems or underlying libraries. It tracks function
pointers but may still fail to resolve some call sites due to complex
pointer operations or dynamic loading of shared libraries.The
currentPhoenix version does not emit all information generated
by the front-end, soRegionWiz may miss some indirect call edges.
These limitations will result in an incomplete call graph.

Besides, our post processing is unsound. Developers may focus
on high-ranked warnings and miss lower-ranked inconsistencies.

6. Experiments
We have applied our prototype toolRegionWiz to six software
packages, as listed in Figure 7. Among them rcc uses RC regions,
while others use APR pools. All packages in the experiments were
the latest stable releases (if possible), so we did not expect there
would be many inconsistencies. Development versions are more
likely to have serious inconsistencies; interested readers can search
their repository logs for fixes.

RegionWiz reported 230 warnings of instruction pairs for in-
consistent objects and ranked 25 of them high (10 unique causes).
We examined them and found 12 inconsistencies (7 unique causes),
as shown in Figure 8.

6.1 Case Study

Figure 9 illustrates an inconsistency case between a hash table
and an iterator in Subversion. The hash table should have a longer
lifetime than the iterator. On the contrary, in Figure 9(a) the hash
table resides in subregionsubpool; in Figure 9(b) the iterator
hi is allocated in the parentpool, which is inconsistent. Though
the inconsistency does not lead to crash, the longer-than-necessary
lifetime is a potential memory leak.



/* libsvn_subr/xml.c:svn_xml_make_open_tag_v */
apr_pool_t *subpool = svn_pool_create(pool);
apr_hash_t *ht = svn_xml_ap_to_hash(ap, subpool);
svn_xml_make_open_tag_hash(str, pool, ..., ht);
svn_pool_destroy(subpool);

(a) A hash tableht is allocated insubpool.

/* libsvn_subr/xml.c:svn_xml_make_open_tag_hash */
for (hi = apr_hash_first(pool, ht); hi; ...)

(b) Retrieve an iteratorhi for the hash tableht.

/* apr/tables/apr_hash.c: apr_hash_first */
if (pool)

hi = apr_palloc(pool, sizeof(*hi));
else

hi = &ht->iterator;
hi->ht = ht;

(c) If the given regionpool is not null, a new iteratorhi is allocated
in pool; otherwise,hi uses a field ofht intrusively. The iterator
can access the hash table viahi->ht.

Figure 9. An inconsistency between a hash table and its iterator.
The iteratorhi allocated in parentpool holds a possible dangling
pointerhi->ht to the hash tableht allocated insubpool.

Note that the code in Figure 9(a) allocates the hash table in
a subregion and deletes the subregion before exit; the developers
should have intended to free all temporary memory, but the inten-
tion fails due tohi that inconsistently resides inpool. The devel-
opers might argue that using a separate subregion could be more
likely to be thread safe (see Section 6.4 for further discussion), but
hi is allocated in the parentpool, which contradicts the argument.
To fix the bug, the call tosvn xml make open tag hash in Fig-
ure 9(a) can passsubpool instead ofpool. Alternatively, the call
to apr hash first in Figure 9(b) can pass null instead ofpool
as the first parameter; in Figure 9(c) iteratorhi will share the same
region as the hash table.

Another type of inconsistency relates to strings. The warning
generated for rcc is such a case that an object holds a pointerto
a string while their owner regions have no subregion partialorder.
We omit the code for brevity since it involves about 10 functions.
The inconsistency does not lead to crash because the two owner
regions are never deleted. However, the object should not expect
client code never deletes the region that owns the string; a better
way could be to duplicate the string in the object’s owner region.

Temporary inconsistencies that violate the consistency seman-
tics within a scope of code are “benign”. Figure 10 illustrates an
example. Objectlock is allocated inpool, andlock->set may
be assigned with a temporary hash table allocated insubpool via
a call toapr hash make. Our tool reported a warning for the case
since it violates the semantics defined in Section 3, though later
lock->set is reassigned withassociated->set beforesubpool
is deleted.

A more precise analysis with path sensitivity may help to elim-
inate the temporary inconsistency. Particularly, the analysis may
have to prove that objectlock is alwaysallocated in a parent re-
gion pool in either branch ofwrite lock, thatlock->set is set
to a hash table allocated in a subregionsubpool under the condi-
tion P that bothlevels to lock!=0 andassociated hold, that
lock->set is reassigned withassociated->set under the condi-
tion Q thatassociated holds (independent oflevels to lock),
and thatP impliesQ.

Generally, temporary inconsistencies make code that involves
complicated branch conditions more error-prone. Developers have
to carefully handle assignments of objects of different lifetimes
in various code branches. Nevertheless, a better way to organize

/* libsvn_wc/lock.c:do_open */
svn_wc_adm_access_t *lock;
apr_pool_t *subpool = svn_pool_create(pool);
if (write_lock)

lock = adm_access_alloc(..., pool);
else

lock = adm_access_alloc(..., pool);
if (levels_to_lock != 0) {

if (associated)
lock->set = apr_hash_make(subpool);

if (associated) { ...
lock->set = associated->set;

}
}
if (associated)

lock->set = associated->set;
svn_pool_destroy(subpool);

Figure 10. A (slightly simplified) temporary inconsistency ex-
ample. Objectlock is allocated inpool (in either branch of
write lock). Its field lock->set is temporarily assigned with a
hash table, which is allocated insubpool; the field is later reas-
signed withassociated->set.

code could be updating object fields only when necessary to avoid
temporary inconsistencies and reduce the risk of crashes and leaks.

In our experience, region lifetime inconsistency usually in-
volves several functions and deep call paths, thus it requires a
precise interprocedural analysis as we have employed.

6.2 False Warnings

Since our analysis is mostly flow-insensitive, we expected there
would be corresponding false warnings. We looked 205 lower-
ranked warnings. Most of them are false; we found 1 temporaryin-
consistency there. So our simple heuristic described in Section 5.4
effectively pruned most false warnings. However, to eliminate the
false warnings (3 unique causes) in high-ranked ones we found that
all of them require extra effort in addition to flow sensitivity.

Here is an example.

1 /* libsvn_subr/error.c:make_error_internal */
2 if (child)
3 pool = child->pool;
4 else
5 if (apr_pool_create(&pool, NULL))
6 abort();
7 new_error = apr_pcalloc(pool, ...);
8 new_error->child = child;

At first glance, line 5 creates a separate regionpool and line 7
allocates objectnew error in the region; at line 8 the object seems
to hold a possible dangling pointer tochild. In fact, pool is a
separate new region only ifchild is null; in this case pointer
new error->child is assigned with null. Otherwisepool refers
to child->pool at line 3; becausenew error shares the same
region withchild, pointernew error->child is intra-region and
always safe. In either case, the region lifetime is consistent.

To eliminate such false warnings, we may apply heuristics sim-
ilar to lock-unlock pairs computation in RacerX [15] for race de-
tection, or employ a path-sensitive analysis [12, 43] to track branch
conditions. We leave it as future work.

6.3 Quantitative Results

Figure 11 shows our experimental results in detail. For eachexe-
cutable, we measure the analysis time, the total numbers of regions
R and normal objectsH, and the sizes of the three relations sub-
region, ownership, and heap (access). We also count the numbers
of region pairs that have been verified (R-pairs) and suspicious ob-



time R H sub. own. heap R-pair O-pair I-pair high
rcc 19m21s 10 2536 9 1577 746940 70 1 1 1
ab 49s 11 111 10 53 24 92 0 0 0
htdbm 51s 3 15 2 12 10 4 0 0 0
rotatelogs 51s 3 21 2 17 21 4 0 0 0
httxt2dbm 56s 4 80 3 27 45 8 0 0 0
htcacheclean 1m21s 13 242 12 162 230 120 0 0 0
htdigest 1m27s 3 293 2 264 315 4 0 0 0
htpasswd 1m50s 3 406 2 338 343 4 0 0 0
flood 2m06s 6 324 5 62 97 24 0 0 0
httpd 34m04s 19 4546 18 2341 2273 319 410 9 1
freeswitch 14m55s 20 3174 46 3065 2499 360 456 4 0
jxta-c 58m24s 17 5007 16 27 10 256 0 0 0
lklftpd 2m34s 7 622 6 622 565 34 6 2 2
diff 16m29s 427 1941 680 64833 4274 181477 260 13 1
diff3 19m30s 424 1865 535 25135 2766 178930 189 13 1
diff4 21m24s 425 1877 538 25147 2781 179767 190 13 1
svndumpfilter 44m46s 6517 28378 6870 2069908 29153 42458253 4072 15 2
svnadmin 53m20s 7274 31620 8326 3881275 39133 52896514 7741 23 2
svnlook 1h00m57s 8194 35638 8760 4846261 37928 67125232 5289 23 2
svnsync 1h21m43s 8123 36589 10863 5003865 62491 65965730 7896 24 3
svnserve 15h09m41s 47480 195255 93771 158244795 314511 2254148642 43874 57 3
svn 25h59m53s 53754 238521 542402 897921834 2806719872889375908 134798 31 6

Figure 11. Experimental results. All experiments were conducted on a server with Intel Xeon 2.0 GHz and 32 GB of RAM. The “time”
column lists the analysis time for each executable. “R”, “ H” are the numbers of regions and normal objects, respectively (Section 5.2). “sub.”,
“own.”, and “heap” are the sizes of thesubregion, ownership, andheap relations, respectively (Section 5.3.1). “R-pair” is the number
of region pairs to be verified and “O-pair” is the number of reported inconsistent object pairs (Section 5.3.2). “I-pair” is the number of
context-insensitive instruction pairs ofO-pairs and “high” is the number of high-rankedI-pairs (Section 5.4).

ject pairs that have been detected (O-pairs). The context-insensitive
instruction pairs (I-pairs) and high-ranked pairs are useful for fur-
ther inspection. The time for call graph construction does not count
since they are relatively small compared to the analysis time.

As reported [24], BDD variable order can greatly affect effi-
ciency ofbddbddb. We randomly tried a few orders and picked
a not-so-bad one. 18 out of 22 experiments can finish within an
hour. However, as calling contexts grow, the numbers of objects
(R and H) increase fast and lead to a large amount of relations
and region pairs to be verified. The most time-consuming exper-
iment, svn, takes more than one day to finish, which at first we
thought could not produce a result. Notably, it yields more than 2
billions R-pairs and thus complicates the computation. The result
suggests that reducing calling contexts is an important factor to im-
prove scalability. WhileRegionWiz uses call paths as contexts, we
are investigating other precise context-sensitivity for Cprograms
that yields a smaller number of contexts.

6.4 Discussion

It is arguable that few inconsistencies imply good code practice.
Our tool reported few to none inconsistencies for Apache that
manages regions in an elaborate way [23], while there were dozens
of warnings for Subversion. As an example, let’s compare XML
parser creation API implementations provided by the two packages.
Both implementations return a newly created parser object,based
on the popular Expat library (in ExpatXML ParserCreate creates
a new instance andXML ParserFree frees it, similar toopen-
close for file descriptors).

As shown in Figure 12(a),apr xml parser create in Apache
allocates the parser object from the givenpool, creates an Expat
instance, and registers a cleanup functioncleanup parser (code
not list here). If client code deletespool, the runtime will trigger
the cleanup function that invokesXML ParserFree to free the
Expat instance.

APU_DECLARE(apr_xml_parser *)
apr_xml_parser_create(apr_pool_t *pool) {

apr_xml_parser *parser = apr_pcalloc(pool, ...);
parser->xp = XML_ParserCreate(NULL); ...
apr_pool_cleanup_register(pool, parser,

cleanup_parser, ...); ...
return parser;

}

(a)apr xml parser create in Apache.

svn_xml_parser_t *
svn_xml_make_parser(..., apr_pool_t *pool) {

svn_xml_parser_t *svn_parser;
apr_pool_t *subpool;
XML_Parser parser = XML_ParserCreate(NULL); ...
/* ### we probably don’t want this pool;

or at least we should pass it
### to the callbacks and clear it periodically. */

subpool = svn_pool_create(pool);
svn_parser = apr_pcalloc(subpool, ...); ...
return svn_parser;

}

(b) svn xml make parser in Subversion.

Figure 12. Two XML parser creation API implementations.

On the other hand, Figure 12(b) shows the Subversion counter-
part svn xml make parser. It does not register any callback for
XML ParserFree, so to deletepool in client code will lead to
leaks (though they provide a separate parser deletion API).More
importantly, it createssubpool of the givenpool, and allocates
the parser object insubpool rather than inpool as Apache code
does. The region usage is debatable. Interestingly, as shown in Fig-
ure 12(b), the developers themselves put a comment that concerns
the issue in the code.



First, as we have discussed in Section 1, one advantage of re-
gions is that developers can gather relevant objects in the same re-
gion and batch allocation and deallocation for better performance.
However, becausesvn xml make parser allocates the object in a
separate subregion, the memory allocator of which is independent,
client code loses fine-grained control and cannot take the perfor-
mance advantage.

Moreover, since the memory allocator of the subregion is inde-
pendent, one may argue that the usage provides better threadsafety
and concurrency, as some developers responded; the parser can use
subpool independent ofpool that might be shared with another
thread without locks. However, it isnot the XML parser API’s
responsibility to take care of the multi-threading issue; the parser
does not create any thread. It is the client code that should manage
threads and regions because only the client code has the knowledge
to determine whetherpool is shared among threads and which re-
gion the parser object should reside.

Because the parser insvn xml make parser is created in
subpool, any object that is created inpool and that can access
the parser involves an inconsistency, such as objectloggy in the
following code.

/* libsvn_wc/log.c:run_log */
struct log_runner *loggy = apr_pcalloc(pool, ...);
parser = svn_xml_make_parser(..., pool);
...
loggy->parser = parser;

RegionWiz reports a warning for every such use.

7. Related Work
Regions have long been an underlying abstraction for memory
management [5], such as in ML [38, 1], real-time Java [8, 10, 11],
and C [25]. The abstraction is also useful for detecting memory er-
rors [20, 13]. Some C dialects support regions via language exten-
sions. Cyclone [19] enables developers to add region annotations in
a restricted discipline to source code. It infers regions and performs
type checking to statically detect dangling pointers. C@ [16] and
RC [17] support more flexible region usages. They maintain refer-
ence counts for regions at runtime; a region will not be deleted if it
is still referenced by inter-region pointers from outside.While use-
ful, dynamic techniques for safe regions do not fix bugs generally;
objects still reside inconsistently in regions, and resources in the re-
gions cannot be reclaimed.RegionWiz can find these bugs before
deployment and usually provide a higher coverage.

Correlations that capture consistency constraints between two
sets of objects pervade in software systems. MUVI [30] infers
multi-variables that should be updated consistently, e.g., a buffer
and its length, and detects violations in source code. Another no-
table example is the correlation between locks and memory loca-
tions for race detection, which is an inspiration of our work. Rac-
erX [15] employs heuristics to detect races and dead locks inmil-
lions lines of systems code. LOCKSMITH [37] infers the correlation
for C programs and formalizes the problem as a constraint resolu-
tion. Chord [33, 34] further introduces a disjoint reachability anal-
ysis for Java; proving race-free is formalized as a conditional must
not aliasing problem based on analyzing the heap. Ownershiptypes
for real-time Java [8, 11], based on the concept of encapsulation,
can also be used to prove conditional correlation for regionlifetime
consistency, though not necessary [34]. Besides, they infer own-
ership between objects; our ownership relation is between regions
and objects, which is more natural for region interfaces such as RC
regions and APR pools.

RegionWiz adopts a cloning-based context-sensitive pointer
analysis [40] with heap cloning [36] to distinguish different call
paths to region creation and object allocation sites. Most previous

cloning-based work [40, 4, 39] did not clone the heap; they consider
these sites in a context-insensitive way. We feel that heap cloning
is necessary for our analysis, but the numbers of contexts using
call paths are too large in some cases. The Chord race detector [33]
uses object sensitivity [32] for a smaller number of contexts in Java
programs. We are investigating more appropriate context sensitiv-
ity for C programs. In addition to the cloning-based approach, we
may also adopt other context-sensitive pointer analysis with heap
cloning [35, 26].

Besides, our analysis algorithm is mostly solved bybddb-
ddb [24], the BDD-based deductive database. Since BDD is often
a key component to achieve scalability in context-sensitive analy-
sis [27, 40, 44], we are interested in a parallel BDD implementation
that can help to build more efficient analysis tools.

To achieve a lower false-positive rate, we may employ more
precise path-sensitive analysis techniques, such as IPSSA[29] and
SAT-based approaches [42, 9].

8. Conclusion
Region-based memory management is widely used in systems soft-
ware, but it is prone to lifetime consistency that can cause dangling
pointers. We formalize the problem based on the concept of condi-
tional correlation, which may be of independent interest. We have
built a prototype toolRegionWiz to detect such inconsistencies in
source code and applied it to real-world applications. It isuseful to
find inconsistency bugs in practice.

We would like to further investigate more precise and scalable
analysis techniques for computing conditional correlation. Besides,
we are working on extensions to support analysis of open programs
such as libraries. Our future work also includes to study other
conditional correlations, such as locks and memory locations.
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