Detailed Case Analysis of Region Inconsistencies

Zhilei Xu
v-zhixu@microsoft.com

1 Iklftpd sess->user dangling pointer

Type Temporary Inconsistency
Infected Application | Iklftpd

Asin Figure 2, a sess is allocated in sess->sess_pool, and sess->loop_pool is
a sub region of sess->sess_pool. But in Figure 1 we find that sess->user can
temporarily point to a string in sess->loop_pool, which violates consistency.
The inconsistency is temporary because the following init_username related fields
call will correct sess->user to point to a string duplicated in sess->sess_pool.

2 Iklftpd sess->data_conn->data_sock dangling pointer

Type Temporary Inconsistency
Infected Application | Ikiftpd

As we can see in Figure 2, sess->data_conn is allocated in sess->sess_pool.
But Figure 3 shows that sess->data_conn->data_sock may point to some sock
allocated in sess->loop_pool and thus violates consistency.

When the ftp session is in non-PASV mode, ftpdataio_get_port_fd() is
called for each GET, STORE or LIST command. To prevent memory leak, sess->loop_pool
is cleared in each command handling process, thus after this command is pro-
cessed, the sess->data_conn->data_sock becomes dangling pointer. But this
dangling pointer is never dereferenced, because next time lklftpd needs a data
socket, it’ll create a new one. So we classify this inconsistency into temporary

type.

3 diff position->node dangling pointer

Type Global Inconsistency
Infected Application | diff, diff3, diff4

As in Figure 4, position->node in pool points to a tree node that was allocated
in tree->pool by svn_diff__tree_insert_token().

// worker.c:get_username_password(sess)
if (1fd_cmdio_cmd_equals(sess, "USER"))
{

user_ok = handle_user_cmd(sess);

init_username_related_fields(sess);

// cmdhandler.c:handle_user_cmd(sess)
sess—->user = apr_pstrdup(sess->loop_pool, sess->ftp_arg_str);

// worker.c:init_username_related_fields(sess)
sess->user = apr_pstrdup(sess->sess_pool, sess->user);

Figure 1: Code for initializing sess->user. At first sess->user points to a
string in sess->loop_pool, and the consistency has been violated. But at last
the invoking of init_username related_fields() will make sess->user point
to a string in sess->sess_pool, which is OK.

// sess.c:1fd_sess_create(plfd_sess, thd, sock)

// *plfd_sess passes the newly-created session out

sess_pool = apr_thread_pool_get (thd);

rc = apr_pool_create(&loop_pool, sess_pool);

*plfd_sess = sess = apr_pcalloc(sess_pool, sizeof(struct 1fd_sess));
sess->sess_pool = sess_pool;

sess—>loop_pool = loop_pool;

sess->data_conn = apr_pcalloc(sess_pool, sizeof(struct 1fd_data_sess));

Figure 2: Code for creating a session. sess is allocated in the thread-specific
global pool, and this pool is refered by sess->sess_pool. sess->loop_pool
is for allocating per-command data, and it’s a sub region of sess->sess_pool.
sess—>data_conn is allocated in sess->sess_pool.

// connection.c:ftpdataio_get_port_fd(sess, psock)

rc = get_bound_and_connected_ftp_port_sock(sess, &remote_fd);
init_data_sock_params(sess, remote_fd);

// get_bound_and_connected_ftp_port_sock allocate remote_fd in sess->loop_pool
// and init_data_sock_params make sess->data_conn->data_sock point to remote_fd

// connection.c:get_bound_and_connected_ftp_port_sock(sess, psock)

// *psock passes the newly-created sock out

rc = apr_socket_create(&sock, APR_INET, SOCK_STREAM, APR_PROTO_TCP, sess->loop_pool);
*psock = sock;

// *psock is allocated in sess->loop_pool

// connection.c:init_data_sock_params(sess, sock_fd)
sess—->data_conn->data_sock = sock_fd;
// sess->data_conn->data_sock (which is in sess->sess_pool) points to sock_fd

Figure 3: ftpdataio_get _port_fd() causes sess->data_conn->data _sock (in
sess->sess_pool) point to a sock newly-created in sess->loop_pool, which
violates consistency.

// token.c:svn_diff__get_tokens(position_list, tree, diff_baton, vtable, datasource, pool)
// pool is the region for allocating position
SVN_ERR(svn_diff__tree_insert_token(&node, tree,
diff_baton, vtable,
hash, token));
position = apr_palloc(pool, sizeof(svn_diff__position_t));
position->next = NULL;
position->node = node;
// position is allocated in pool, and position->node accesses node

// token.c:svn_diff__tree_insert_token(node, tree, diff_baton, vtable, hash, token)
// *node passes the newly-create node out

new_node = apr_palloc(tree->pool, sizeof (*new_node));

*node = *node_ref = new_node;

// node is allocated in tree->pool

Figure 4: Code for creating position and node. position is in pool, node is
in tree->pool, and position accesses node.

// diff.c:svn_diff_diff (diff, diff_baton, vtable, pool)
subpool = svn_pool_create(pool);

treepool = svn_pool_create(pool);

// subpool and treepool are siblings

svn_diff__tree_create(&tree, treepool);
// pool for tree is treepool

SVN_ERR(svn_diff__get_tokens(&position_list[0],
tree,
diff_baton, vtable,
svn_diff_datasource_original,
subpool));
// pool for position is subpool
SVN_ERR(svn_diff__get_tokens(&position_list[1],
tree,
diff_baton, vtable,
svn_diff_datasource_modified,
subpool));

svn_pool_destroy(subpool) ;

// token.c:svn_diff__tree_create(tree, pool)
xtree = apr_pcalloc(pool, sizeof (**tree));
(*tree)->pool = pool;

// tree->pool is the treepool in svn_diff_diff ()

Figure 5: Main code of diff, and creation of tree. Region for holding position
is subpool, and for holding node is treepool, where subpool and treepool

are sibling regions.

But in Figure 5 we see that position is in subpool and node is in treepool,
and these are two sibling regions. In fact treepool lives shorter than subpool.
So after treepool is destroyed, position->node becomes dangling pointer.

The problem does not lead to crash because position->node is not used as
a pointer after treepool is destroyed. In fact it is used (in svn_diff_l1cs()),
but not as an integer type instead of pointer type, so it’s not dereferenced.
The programmer seemed to make use of position->node in this way to save

memory space, but it’s error-prone anyway.

// log.c:run_log(adm_access, rerun, diff3_cmd, pool)

struct log_runner *loggy = apr_pcalloc(pool, sizeof (*loggy));

parser = svn_xml_make_parser(loggy, start_handler, NULL, NULL, pool);
loggy->parser = parser;

svn_xml_free_parser (parser) ;

// xzml.c:svn_xml_make_parser(baton, start_handler, end_handler, data_handler, pool)
/* #i## we probably don’t want this pool; or at least we should pass it
to the callbacks and clear it periodically. */
subpool = svn_pool_create(pool);
svn_parser = apr_pcalloc(subpool, sizeof (*svn_parser));

Figure 6: loggy is in pool while loggy->parser points to a xml parser created
from subpool, a sub region of pool.

4 svn loggy->parser dangling pointer

Type Permanent Inconsistency
Infected Application | svn

As we can see in Figure 6, the loggy in pool access a parser in subpool,
which is a subregion of pool. loggy lives longer than parser, so after svn_xml_free_parser()
has been called, loggy->parser becomes dangling pointer.

The code authors do realize of this problem, and they’ve mentioned it in the
comment (see the "###” lines).

5 svn opt->x value dangling pointer

Type Temporary then Global Inconsistency
Infected Application | svn

make_string from option() and expand_option_value() are two mutually-
recursive functions, and make_string from option() is the function provided
for end-user, with expand_option_value() as its helper function.

As we can see in Figure 7, the last parameter to these two functions, named
x_pool, is usually obtained from the end-user (such as svn_config get()) as
NULL, and the upmost call to make_string from_option() set it to tmp_pool,
a newly-created temporary sub region of cfg->x_pool. Then the tmp_pool is
passed down as the x_pool parameter to every call of expand_option_value()
and make_string from option(). Thus opt->x_value first access a string in
tmp_pool (a subregion of cfg->x_pool, then finally access a string in cfg->x_pool.

But as we can see in Figure 8, opt resides in cfg->pool, which is a parent
region of cfg->x_pool. So opt->x_value accesing a string from tmp_pool (sub-
sub region of cfg->pool) and cfg->x_pool (sub region of cfg->pool) both

// config.c:svn_config_get(cfg, valuep, section, option, default_value)
make_string from_option(valuep, cfg, sec, opt, NULL);

// config.c:make_string_from_option(valuep, cfg, section, opt, x_pool)

// *valuep passes the created (and manipulated) string out

if (lopt->expanded)

{
apr_pool_t *tmp_pool = (x_pool ? x_pool : svn_pool_create(cfg->x_pool));
expand_option_value(cfg, section, opt->value, &opt->x_value, tmp_pool);

// calling expand_option_value make opt->x_value point to a string in tmp_pool

opt->expanded = TRUE;
if (!x_pool)
{
if (opt->x_value)
opt->x_value = apr_pstrmemdup(cfg->x_pool, opt->x_value,
strlen(opt->x_value));
// the string in tmp_pool is duplicated in cfg->x_pool
// then opt->x_value points to a string in cfg->x_pool
svn_pool_destroy(tmp_pool) ;
}
}
if (opt->x_value)
*valuep = opt->x_value;
else
*valuep = opt->value;

// config.c:expand_option_value(cfg, section, opt_value, opt_x_valuep, x_pool)
// opt_x_valuep passes the manipulated string out
make_string from_option(&cstring, cfg, section, x_opt, x_pool);
len = name_start - FMT_START_LEN - copy_from;
if (buf == NULL)
{
buf = svn_stringbuf_ncreate(copy_from, len, x_pool);
cfg->x_values = TRUE;
}
else
svn_stringbuf_appendbytes(buf, copy_from, len);
// string is allocated and appended in the x_pool, which is exactly the tmp_pool
if (buf != NULL)
{
svn_stringbuf_appendcstr(buf, copy_from);
*opt_x_valuep = buf->data;
// the string in buf (which is in x_pool) is passed out

}

Figure 7: A complex process of option string manipulation. opt->x_value
points to a string in tmp_pool, a sub region of cfg->x_pool, then to a string in
cfg->x_pool 6

// config.c:svn_config_set(cfg, section, option, value)
opt = apr_palloc(cfg->pool, sizeof (*xopt));

opt->x_value = NULL;

// opt is allocated in cfg->pool

// config.c:svn_config read(cfgp, file, must_exist, pool)
// *cfgp passes the newly-created cfg out

svn_config_t *cfg = apr_palloc(pool, sizeof(xcfg));
cfg->pool = pool;

cfg->x_pool = svn_pool_create(pool);

// cfg->x_pool is a subregion of cfg->pool

Figure 8: opt is allocated in cfg->pool, and cfg->x_pool is a subregion of
cfg->pool

violates consistency, and the formal one is temporary, while the latter global.
Note that svn doesn’t delete cfg->pool or cfg->x_pool at all, so we consider
them both global region.

6 svn hash iterator hi->ht dangling pointer and
memory leak

Type Permanent Inconsistency
Infected Application | svn

As we can see in Figure 9, the iterator hi is created in pool, but it can access
ht, which is created in subpool, a subregion of pool. subpool is deleted before
pool, then hi->ht becomes dangling pointer.

This usage of hash table and its iterator is controversial: Anyway, an iterator
is useful only if its associating hash table is valid. If the hi is used after ht is
destroyed, the dangling pointer may cause a crash; if it is not used, then the
memory space it occupies cannot be reclaimed as the user does to ht, thus leads
to a potential memory leak. This usage is even dangerous because the end-user
may think that all the memory occupied by things related to a hash table is
destroyed with the deallocation of the hash table itself, thus put the iterator
allocation/using in some unbounded loop (even an infinite event serving loop),
that will finally consume all the memory. A better usage of iterator is to put it
in a subregion of the region that holds hash table.

// xml.c:svn_xml_make_open_tag_v(str, pool, style, tagname, ap)
apr_pool_t *subpool = svn_pool_create(pool);
apr_hash_t *ht = svn_xml_ap_to_hash(ap, subpool);

// ht is created in subpool

svn_xml_make_open_tag_hash(str, pool, style, tagname, ht);
svn_pool_destroy (subpool) ;

// xml.c:svn_xml_make_open_tag_hash(str, pool, style, tagname, attributes)
for (hi = apr_hash_first(pool, attributes); hi; hi = apr_hash_next(hi))

// hi is created in pool

// apr_hash.c:apr_hash_first(pool, ht)

if (p)

hi = apr_palloc(p, sizeof(*hi));
else

hi = &ht->iterator;
hi->ht = ht;

// hi accesses ht

Figure 9: hi is created in pool, while hi->ht points to ht, which is allocated
in subpool.

