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ABSTRACT
A replay tool aiming to reproduce a program’s execution interposes
itself at an appropriate replay interface between the program and
the environment. During recording, it logs all non-deterministic
side effects passing through the interface from the environment and
feeds them back during replay. The replay interface is critical for
correctness and recording overhead of replay tools.

iTarget is a novel replay tool that uses programming language
techniques to automatically seek a replay interface that both en-
sures correctness and minimizes recording overhead. It performs
static analysis to extract data flows, estimates their recording costs
via dynamic profiling, computes an optimal replay interface that
minimizes the recording overhead, and instruments the program
accordingly for interposition. Experimental results show that iTar-
get can successfully replay complex C programs, including Apache
web server and Berkeley DB, and that it can reduce the log size by
up to two orders of magnitude and slowdown by up to 50%.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—Debug-
ging aids; D.3.4 [Programming Languages]: Processors—De-
buggers; F.3.2 [Logics and Meanings of Programs]: Semantics
of Programming Languages—Program analysis

General Terms
Languages, Performance, Reliability

Keywords
Data flow, graph cut, replay, instrumentation

1. INTRODUCTION
A replay tool aims at reproducing a program’s execution, which

enables cyclic debugging [28] and comprehensive diagnosis tech-
niques, such as intrusion analysis [7, 13], predicate checking [9,
17], program slicing [40], model checking [14, 39], and test gener-
ation [8, 24, 30].
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Re-execution of a program could often deviate from the original
execution due to non-determinism from the environment, such as
time, user input, and network I/O activities. A replay tool there-
fore interposes at an appropriate replay interface between the pro-
gram and the environment, recording in a log all non-determinism
that arises during execution. Traditional choices of replay inter-
faces include virtual machines [7], system calls [33], and higher-
level APIs [10, 11]. For correctness, at the replay interface the tool
must observe all non-determinism during recording, and eliminate
the non-deterministic effects during replay, e.g., by feeding back
recorded values from the log. Furthermore, both interposition and
logging introduce performance overhead to a program’s execution
during recording; it is of practical importance for a replay tool to
minimize such overhead, especially when the program is part of a
deployed production system.

This paper proposes iTarget, a replay tool that makes use of pro-
gramming language techniques to find a correct and low-overhead
replay interface. iTarget achieves a replay of a program’s execution
with respect to a given replay target, i.e., the part of the program
to be replayed, by ensuring that the behavior of the replay target
during replay is identical to that in the original execution. To this
end, iTarget analyzes the source code and instruments the program
during compilation, to produce a single binary executable that is
able to run in either recording or replay mode.

Ensuring correctness while reducing recording overhead is chal-
lenging for a replay tool. Consider the Apache HTTP Server shown
in Figure 1, consisting of a number of plug-in modules that extend
its functionality. The server communicates intensively with the en-
vironment, such as clients, memory-mapped files, and a database
server. The programmer is developing a plug-in module mod_X,
which is loaded into the Apache process at runtime. Unfortunately,
mod_X occasionally crashes at run time. The programmer’s debug-
ging goal is to reproduce the execution of replay target mod_X using
iTarget and inspect suspicious control flows.

The first challenge facing iTarget is that it must interpose at a
complete replay interface that observes all non-determinism. For
example, the replay target mod_X may both issue system calls that
return non-deterministic results, and retrieve the contents of memory-
mapped files by dereferencing pointers. To replay mod_X, iTarget
thus must capture non-determinism that comes from both function
calls and direct memory accesses. An incomplete replay interface
such as one composed of only functions [10, 11, 26, 31, 33] would
result in a failed replay. A complete interposition at an instruction-
level replay interface observes all non-determinism [2], but it often
comes with a prohibitively high interposition overhead, because the
execution of each memory access instruction is inspected.

Another challenge is that iTarget should choose a replay interface
wisely and prefer one with a low recording overhead. For example,
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Figure 1: The Apache HTTP Server process consisting of sev-
eral modules communicates with the environment. The Apache
module mod_X (enclosed by the dash line) is the replay target.

if mod_X’s own logic does not directly involve database communi-
cations, it should be safe to ignore most of the database input data
during recording for replaying mod_X. Naively recording all input
to the whole process [10, 11] would lead to a huge log size and
significant slowdown. However, if mod_X is tightly coupled with
mod_B, i.e., they exchange a large amount of data, it is better to re-
play both modules together rather than mod_X alone, so as to avoid
recording their communications.

iTarget addresses these challenges with the benefit of language-
based techniques for replay. First, iTarget instruments a program at
the granularity of instructions (in the form of an intermediate rep-
resentation used by compilers) for the interposition at the replay
interface. Such a fine granularity is necessary for correctly replay-
ing programs with sources of non-determinism from non-function
interfaces, e.g., memory-mapped files.

In addition, iTarget models a program’s execution as a data flow
graph; data flows across a replay interface are directly correlated
with the amount of data to be recorded. Therefore, the problem of
finding the replay interface with a minimal recording overhead is
reduced to that of finding the minimum cut in the data flow graph.
In doing so iTarget instruments a needed part of the program and
records data accordingly, which brings down the overhead of both
interposition and logging at runtime. The actual interposition is
through compile-time instrumentation at the chosen replay inter-
face as the result of static analysis, thereby avoiding the execution-
time cost of inspecting every instruction execution.

We have implemented iTarget on Windows x86, and applied it
to a wide range of C programs, including Apache HTTP Server,
Berkeley DB, two HTTP clients neon and Wget, and a set of SPEC
CINT2000 (the integer component of SPEC CPU2000) benchmarks.
Experimental results show that iTarget can reduce log sizes by up
to two orders of magnitude and reduce performance overhead by
up to 50% when some logical subset of a program is chosen as a
replay target. Even when the whole program is chosen as the re-
play target, iTarget’s recording performance is still comparable to
that of state-of-the-art replay tools.

The contributions of this paper are twofold: 1) a data flow model
for understanding and optimizing replay tools, and 2) a language-
based replay tool that provides both a high correctness assurance
and a low overhead.

The rest of the paper is organized as follows. Section 2 presents
a replay model. Section 3 describes how iTarget computes a replay
interface via static analysis. Section 4 describes iTarget’s runtime
for recording and replay. Section 5 discusses the choice of a replay
target in practice. We evaluate iTarget in Section 6, survey related
work in Section 7, and then conclude in Section 8.

2. MODEL
The foundation of iTarget hinges on our replay model, which

provides a general framework for understanding replay correctness,
as well as the associated recording overhead. The model naturally

// execution
1 cnt1 <- 0
2 a1 <- random()
3 cnt2 <- cnt1 + a1
4 print cnt2
5 a2 <- random()
6 cnt3 <- cnt2 + a2
7 print cnt3

f() {   
cnt = 0;
g(&cnt); printf("%d\n", cnt);
g(&cnt); printf("%d\n", cnt);

}
g(int *p) {
a = random(); *p += a;

}

Figure 2: A code snippet and its execution.
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Figure 3: Execution flow graph. Ovals represent operation
nodes and rectangles represent value nodes. Of all opera-
tion nodes, double ovals are target operations for replay, while
shadow ovals are non-deterministic operations.

explains different strategies of existing replay tools and paves the
way for iTarget’s language-based replay approach. Both the replay
model and different replay strategies with respect to the model are
the subject of this section.

2.1 Execution Flow Graph
We first assume single-threaded executions; multi-threading is-

sues will be discussed in Section 2.3.
We use the code listed in Figure 2 as a running example, where

function f calls function g twice to increase a counter by a random
number. Each variable in the execution is attached with a subscript
indicating its version, which is bumped every time the variable is
assigned a value, such as cnt1,2,3 and a1,2. The seven instructions
in the execution sequence are labeled as Inst1−7.

We model an execution of a program as an execution flow graph
that captures data flow, as illustrated in Figure 3. An execution
flow graph is a bipartite graph, consisting of operation nodes (rep-
resented by ovals) and value nodes (represented by rectangles). An
operation node corresponds to an execution of an instruction, while
the adjacent value nodes serve as its input and output data. Each
operation node may have several input and output value nodes, con-
nected by read and write edges, respectively. For example, Inst3
reads from both cnt1 and a1, and writes to cnt2. A value node is
identified by a variable with its version number; the node may have
multiple read edges, but only one write edge, for which the version
number is bumped. Each edge is weighted by the volume of data
that flow through it (omitted in Figure 3).

An execution flow graph covers the code either written by the
programmer or adopted from supporting libraries. The programmer
can choose part of code of her interest as the replay target; a replay
target corresponds to a subset of operation nodes, referred to as
target nodes (represented by double ovals), in an execution flow
graph. For example, to replay function f in Figure 3, Inst1,4,7 are
set as target nodes. The goal of replay is to reproduce an identical
run of these target nodes, defined as follows.
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DEFINITION 1. A replay with respect to a replay target is a run
that reproduces a subgraph containing all target nodes of the exe-
cution flow graph, as well as their input and output value nodes.

The programmer can also choose a subset of value nodes as the
replay target. Since an execution flow graph is bipartite, it is equiv-
alent to choose their adjacent operation nodes as the replay target.
We assume that the replay target is a subset of operation nodes in
the following discussion.

A naive way to reproduce a subgraph is to record executions of
all target nodes with their input and output values, but this will
likely introduce a significant and unnecessary overhead. One way
to cope with this is to take advantage of deterministic operation
nodes, which can be re-executed with the same input values to gen-
erate the same output. For example, assignments (e.g., Inst1) and
numerical computations (e.g., Inst3) are deterministic. In contrast,
non-deterministic operation nodes correspond to the execution of
instructions that generate random numbers or receive input from
the network. These instructions cannot be re-executed during re-
play, because each run may produce a different output, even with
the same input values. In Figure 3, non-deterministic operation
nodes are represented by shadow ovals (e.g., Inst2,5).

Since a non-deterministic node cannot be re-executed, to ensure
correctness a replay tool can record either the output of that non-
deterministic operation node, or the input of any deterministic op-
eration node that is affected by the output of that non-deterministic
operation node, and feed the recorded values back during replay.

To replay target nodes correctly, a replay tool must ensure that
target nodes are not affected by non-deterministic nodes, as man-
ifested as a path from a non-deterministic operation node to any
of the target nodes. A replay tool can introduce a cut through that
path, like Cuts 1 and 2 given in Figure 3. Such a cut is called a
replay interface, defined as follows.

DEFINITION 2. Given an execution flow graph, any graph cut
that partitions non-deterministic operation nodes from target nodes
gives a valid replay interface.

A replay interface partitions operation nodes in an execution flow
graph into two sets. The set containing target nodes is called the
replay space, and the other set containing non-deterministic oper-
ation nodes is called the non-replay space. During replay, only
operation nodes in replay space will be re-executed.

A replay tool should log the data that flow from non-replay space
to replay space, i.e., through the cut-set edges of the replay inter-
face, because the data are non-deterministic. Recall that each edge
is weighted with the cost of the corresponding read/write opera-
tion. To reduce recording overhead, an optimal interface can be
computed as the minimum cut [4], defined as follows.

DEFINITION 3. Given an execution flow graph, the minimum
log size required to record the execution for replay is the maxi-
mum flow of the graph passing from the non-deterministic opera-
tion nodes to the target nodes; the minimum cut gives the corre-
sponding replay interface.

2.2 Cut Strategies
One simple strategy for finding a replay interface is to cut non-

determinism eagerly whenever any surfaces during execution by
recording the output values of that instruction. Take Figure 3 as
an example. Given non-deterministic operation random, Cut 1 pre-
vents the return values of Inst2,5 from flowing into the rest of the
execution. A replay tool that adopts this strategy will record the
values that flow through the edges (Inst2, a1) and (Inst5, a2); in
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Figure 4: Condensed execution flow graph. The cut corre-
sponds to Cut 2 in Figure 3.

this case, Inst2,5 are in non-replay space while the rest of the nodes
are in replay space.

Function-level cut. We can impose an additional cut constraint
that instructions of the same function will be either re-executed or
skipped entirely, i.e., a function as a whole belongs to either replay
space or non-replay space. A function-level cut provides a natural
debugging unit for the programmer and avoids switching back and
forth between replay and non-replay spaces within a function. We
believe that such a function-level cut offers better debugging expe-
rience in practice, even though it may lead to a slightly larger log.
iTarget computes a function-level cut.

For a function-level cut, iTarget condenses instructions in an ex-
ecution of a function into a single operation node. As shown in
Figure 4, g1 (including Inst2,3) and g2 (including Inst5,6) are
two calls to function g, which returns a non-deterministic value.
The cut in Figure 4 corresponds to Cut 2 in Figure 3. Note that
this cut also employs the eager strategy, which tries to cut non-
determinism by recording the output whenever an execution of a
function involves non-deterministic operation nodes. A replay tool
that adopts the strategy will record the values that flow through the
edges (g1, cnt2) and (g2, cnt3); in this case, g1,2 and a1,2 are in
non-replay space while the rest of the nodes are in replay space.

Neither of the two “eager” cuts shown in Figure 3 and 4 is op-
timal, because some of the returned non-deterministic values may
never be used by their callers and thus can be stripped during record-
ing; previous replay tools [2, 10, 11, 26, 31, 33] generally use sim-
ilar eager strategies. Another simple cut strategy is to wrap pre-
cisely around the replay targets in replay space [24], leaving the
rest in non-replay space, which is usually not optimal either (see
Section 6.3). iTarget employs a lazy, globally-optimized strategy
based on the minimum cut, which can result in smaller recording
overhead (see Section 3 for details).

2.3 Multithreading
Thread interleaving introduces another source of non-determinism

that may change from recording to replay. For example, suppose
threads t1 and t2 writes to the same memory address in order in
the original run. A replay tool must enforce the same write order
during replay; otherwise, the value at the memory address may be
different and the replay run may diverge from the original one.

To reproduce the same run, a replay tool should generally record
information of the original run in two kinds of logs: a data flow log
as defined in our model, and a synchronization log with regard to
thread interleaving. We discuss recording strategies for producing
the synchronization log as follows.

The first strategy is to record the complete information about how
thread scheduling occurs in the original run. The tool can either 1)
serialize the execution so that only one thread is allowed to run in
the replay space, or 2) track the causal dependence between concur-
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rent threads enforced by synchronization primitives (e.g., locks).
The two methods are standard techniques used by many runtime
debugging tools [10, 11, 22]. Note that causal dependence track-
ing may be used along with a race detector [32, 36] that eliminates
unprotected memory accesses beforehand.

The second strategy, on the other extreme, is to record nothing in
the synchronization log, assuming a deterministic multithreading
model [5, 23]. In this case the thread scheduler behaves determin-
istically, so that the scheduling order in the replay run will be the
same as that in the original run. The replay tool can then use the
data flow log alone to reproduce the replay run.

iTarget supports both recording strategies for multithreaded pro-
grams. Note that the strategy for producing the synchronization log
is orthogonal to the data flow log.

3. REPLAY INTERFACE COMPUTATION
Although the minimum cut in an execution flow graph precisely

defines the replay interface with the minimum log, as described
in Section 2, the cut is only optimal with respect to that specific run,
and is known only after the run. iTarget instead estimates a general
replay interface that approximates the optimal one beforehand and
statically. This section describes how iTarget constructs a data flow
graph via static analysis and finds a cut as the replay interface.

3.1 Static Flow Graph
To approximate execution flow graphs statically, iTarget com-

putes a static flow graph of a program via program analysis to es-
timate the execution flow graphs of all runs. For example, because
version information of both value nodes and operation nodes may
be only available during run-time rather than during compile-time,
cnt1,2,3 in the execution flow graph (Figure 3) may be projected
to a single value node cnt in a static flow graph; similarly, g1 and
g2 in Figure 4 may be projected into a single operation node g.
The weight of each edge is given via runtime profiling under typi-
cal workloads (see Section 3.3). The minimum cut of the resulting
static flow graph is computed as the recommended replay interface,
which is expected to approximate the optimal ones in typical runs.

A static flow graph can be regarded as an approximation of the
corresponding execution flow graphs, where operation nodes are
functions and value nodes are variables. The approximation should
be sound: a cut in the static flow graph should correspond to a cut
in the execution flow graph.

iTarget performs static analysis to construct a static flow graph
from source code, as follows.

First, iTarget scans the whole program and adds an operation
node for each function and a value node for each variable (in the
SSA form [29]).

Secondly, iTarget interprets each instruction as a series of reads
and writes. For example, y = x + 1 can be interpreted as read x
and write y. Every time iTarget discovers a function f reading
from variable x, it adds an edge from x to f ; similarly, it adds an
edge from f to y if function f writes to variable y.

Finally, iTarget performs pointer analysis and determines vari-
able pairs that may alias, i.e., they may represent the same memory
address, and merges such pairs into single value nodes. Specifi-
cally, iTarget uses a classical Andersen-style pointer analysis [1].
The analysis is flow- and context-insensitive, which means that it
does not consider the order of statements (though it uses the SSA
form to partially do so) nor different calling contexts in a program.
In this way, the analysis is both efficient and correct for multi-
threaded programs.

As a result, a static flow graph that iTarget constructs can be con-
sidered as a projection from an execution flow graph: invocations

of the same functions are merged into single operation nodes, and
variables that may alias are merged into single value nodes. Thus,
the approximation is sound, as a cut in a static flow graph is easily
translated to one in a corresponding execution flow graph. We omit
the proof detail for brevity.

3.2 Missing Functions
The analysis for constructing a static flow graph requires the

source code of all functions. For functions without source code,
such as low-level system and libc calls, iTarget speculates their side
effects as follows.

By default, iTarget conservatively considers functions without
source code as non-deterministic, i.e., they are placed in non-replay
space. Consequently, these functions are not re-executed during re-
play, so iTarget must record their side effects. iTarget assumes that
such functions will modify memory addresses reachable from their
parameters. For example, for function recv(fd , buf , len,flags),
iTarget assumes that recv may modify memory reachable from
buf . As a result, iTarget would cut at all the read edges that flow
from variables affected by buf to the replay space.

The default approach also works smoothly with non-deterministic
functions involving global variables. For example, the global vari-
able errno is defined internally in libc and may be modified by a
libc function without source code (considered as non-deterministic);
When errno is read by the program, iTarget will place the corre-
sponding value node of errno in non-replay space. Thus, the re-
play interface may cut through the read edges of the value node.
iTarget can then log its value during recording and feed the value
back during replay.

A downside of the default approach is that, if a program calls
recv once to fill buf and then reads the content ten times, iTarget
would have to record ten copies of buf . To reduce recording over-
head further, iTarget reuses R2’s annotations [11] on 445 Windows
API functions to complete a static flow graph. For example, R2 an-
notates function recv with buf that will be modified and with the
size of the buffer. iTarget exploits the knowledge to fix the static
flow graph with a write edge from recv to buf ; it may then choose
to cut at the write edge and record only one copy of buf .

In addition, iTarget annotates dozens of popular libc functions as
deterministic, including math functions (e.g., abs, sqrt), memory
and string operations (e.g., memcpy, strcat), since they do not
interact with the environment. iTarget can place them in replay
space to avoid recording their side effects if possible.

It is worth noting that iTarget uses function annotations option-
ally, for reducing recording overhead rather than for correctness.
iTarget does not require any annotations for higher-level functions.
These annotations are also shared across different applications and
do not require programmer involvement.

3.3 Minimum Cut
iTarget weights each edge in the static flow graph with the vol-

ume of data that pass through it. Unlike edges in a dynamic ex-
ecution flow graph, the weight of each edge in a static flow graph
depends on the number of invocations of the corresponding instruc-
tions. iTarget estimates the weight via runtime profiling. Given a
replay target in a weighted static flow graph, iTarget computes the
minimum cut using Dinic’s algorithm [6]. It runs in O(|V |2|E|)
time, where |V | and |E| are the numbers of vertices and edges in
the static flow graph, respectively.

Profiling can be done in a variety of ways; for example, by using
an instruction-level simulator or through sampling. Currently, iTar-
get simply builds a profiling version of a program, where memory
access instructions are all instrumented to count a total size of data
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transfers with each of them. We run this version multiple times on a
sample input. For functions that are never invoked during profiling,
iTarget assigns a minimal weight to their corresponding edges.

Generally, the recording overhead may depend on the extent to
which the profiling run reflects the execution path of the actual
recording run. Different types of workload in profiling and record-
ing runs may drive the runs to different execution paths and hence
negatively affect the recording performance. However, in our ex-
perience, the resulting cut tends not to be sensitive to the profiling
workload scale (see Section 6.4). Thus, the programmer can profile
the program with smaller workload scale without incurring much
extra recording overhead.

4. RECORD-REPLAY RUNTIME
After computing a desirable replay interface, as described in Sec-

tion 3, iTarget instruments the target program accordingly during
compilation to insert calls that are linked to its runtime for record-
ing and replay. This section describes iTarget’s runtime mecha-
nisms that ensure control and data flow, memory footprints, and
thread interleaving do not change from recording to replay.

4.1 Calls, Reads and Writes
When computing a replay interface, iTarget partitions functions

(operation nodes) and variables (value nodes) in a static flow graph
into replay and non-replay spaces. Since functions in non-replay
space will not be executed during replay, iTarget must record all
side effects from non-replay space.

First, iTarget records function calls from non-replay space to re-
play space. Consider a function f in non-replay space that calls
function g in replay space. During replay, f will not be executed,
and is not able to call g, which should be executed; the iTarget
runtime does so instead. Specifically, for each call site in a func-
tion placed in non-replay space, iTarget resolves the callee to see
whether it must belong to non-replay space: if yes, iTarget does
not record anything; otherwise iTarget logs the call event during
recording, and issues the call during replay when the callee does
belong to replay space.

Furthermore, iTarget instruments necessary instructions to record
data that flow from non-replay space to replay space. Specifically,
iTarget instruments 1) instructions placed in replay space that read
from variables in non-replay space, and 2) instructions placed in
non-replay space that write to variables in replay space.

We refer the two kinds of instructions to be instrumented above
as “read” and “write”, respectively. Other instructions remain un-
changed so that they can run at native speed.

When executing a “read” instruction in the original run, the run-
time records the values being read in the log. When executing the
same instruction during replay, the runtime simply feeds back the
values from the log, rather than letting it read from memory.

It is more complex to record and replay a “write” instruction.
Since the instruction is never executed during replay, the runtime
has to instead issue the write to memory. In addition to the values
to be written, the runtime needs to know where and when to do so.

To determine where to issue the writes, the runtime records the
memory addresses that the instruction is writing to, along with the
values, so that it can write the values back to the recorded memory
addresses during replay.

To determine when to issue the writes, the runtime further orders
writes with calls. Consider a function f in non-replay space, which
writes to variable x, makes a call to function g that is in replay
space, and then writes to variable y. The runtime records the three
events of writing x, calling g, and writing y in the original run; it
then issues the three events in the same order during replay.

4.2 Memory Management
To ensure correctness, addresses of variables in replay space

should not change from recording to replay. This is non-trivial be-
cause functions in the non-replay space may allocate memory (e.g.,
by calling malloc) and will not be executed during replay; iTarget
needs to ensure that memory addresses returned by subsequent calls
to malloc in replay space are the same as those during recording.

For values allocated on the heap, iTarget uses a separate mem-
ory pool for the execution in replay space. Any call to malloc in
replay space will be redirected to that pool. Since the execution in
replay space remains the same from recording to replay, so are the
memory addresses allocated in the pool.

For values allocated on the stack, iTarget could run functions in
replay and non-replay spaces on two separate stacks, like Jockey [31]
and R2 [11]; the runtime would switch the stacks when crossing the
two spaces, which introduces additional overhead.

iTarget employs a more lightweight approach. It uses only one
stack, and ensures deterministic stack addresses by guaranteeing
the value of the stack pointer (ESP on x86) does not change from
recording to replay when the program enters a function in replay
space. To do so, the iTarget runtime records current ESP value
before a call from non-replay space to replay space in the original
run. During replay, the runtime sets ESP to the recorded value
before issuing the call, and restores ESP and the stack after that. If
current ESP is lower than the recorded one, iTarget also backs up
the data in the overlapped range to avoid overwriting.

4.3 Thread Management
As we have discussed in Section 2.3, iTarget supports several

multithreading strategies. iTarget runs in the mode of causal de-
pendence tracking by default, so the resulting log contains both
data flow and synchronization information. For asynchronous sig-
nals, iTarget uses the standard technique [10, 11, 22] to delay the
delivery until safe points.

5. CHOOSING REPLAY TARGETS
iTarget allows programmers to choose appropriate replay tar-

gets and therefore enables target replay. This added flexibility can
translate into significant savings in recording overhead compared
to whole-program replay. This section discusses several possible
ways for choosing replay targets, as well as the resulting replay
interfaces.

5.1 Modular Programs
Applications that emphasize a modular design come with a nat-

ural boundary for choosing replay targets. For example, Apache
HTTP Server is designed and implemented as a main backbone plus
a set of plug-in modules, as shown in Figure 1. The programmer
developing a plug-in module neither has to debug the backbone,
which is generally stable, nor other modules, which are largely ir-
relevant. She can simply choose all the source code of her own
module as the replay target for recording and replay.

A second example, Berkeley DB, also uses a modular design
for building a replicated database. On each node running Berke-
ley DB, there is a replication manager that coordinates with other
nodes, as well as a traditional storage component that manages on-
disk data. When debugging the replication protocol, a programmer
can choose the code of the replication manager as the replay tar-
get, ignoring the mature and irrelevant storage component that may
involve massive I/O communications.

Section 6.2 provides case studies for the two applications. The
replay interface computed by iTarget often approximates the bound-
ary between modules. The insight is that a modular design implies
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that each module mostly uses internal data structures; the rest of
the program may not be involved much. A programmer can choose
the module of her interest as a replay target; iTarget’s minimum
cut can exploit the structure manifested in design and computes a
replay interface that results in smaller overhead.

5.2 Monolithic Programs
For a monolithic program that does not have a clear component

boundary, such as certain algorithm implementations, a program-
mer can simply choose the entire program as the replay target,
which falls back to a whole-program replay. Even in this case,
if the program does not directly manipulate all of its input, iTarget
will record only the necessary data and skip the payload.

Note that a programmer can still choose a subset of functions
as replay target. The risk is that the replay target may be tightly
coupled with the rest of the program, exchanging a large amount of
data. It could possibly lead to even higher recording overhead to
choose the replay interface naively. Fortunately, iTarget can avoid
such an anomaly through computing the minimum cut as the replay
interface. It is expected that in the worst case iTarget will resort to
that of whole-program replay. Section 6.3 uses SPEC CINT2000
benchmarks to illustrate such cases.

5.3 Crash Points
In practice, when a running program crashes at some program

point, a programmer may choose code pieces related to that crash
point as the replay target. This can be done by simple heuristics,
e.g., picking up all functions in the same source file, or by auto-
matic tools, e.g., program slicing [12, 37, 40] or related function
investigation [18, 25]. The topic is beyond the scope of this paper.

6. EVALUATION
We have implemented iTarget for C programs on Windows x86.

The analysis and instrumentation components are implemented as
plug-ins within the Phoenix compiler framework [20].

We have applied iTarget to a variety of benchmarks, including
Apache HTTP Server 2.2.4 with service modules, Berkeley DB
4.7.25 with the fault-tolerant replication service, the neon HTTP
client 0.28.3, the Wget website crawler 1.11.4, and six programs
from SPEC CINT2000. The code sizes of the benchmarks also
span a wide range from small (SPEC CINT2000: 5∼10 KLOC),
medium (neon & Wget: 10∼50 KLOC), to very large (Apache
& Berkeley DB: 100+ KLOC). Their variety and complexity ex-
tensively exercise both the static interface analysis and the record-
replay runtime of iTarget, leading to a thorough evaluation.

We checked the correctness of replay run by making sure it suc-
cessfully consumes all the logs generated during recording run. We
also manually spot-checked some of the executions through attach-
ing debugger into both recording and replay runs, and comparing
their internal states in replay space.

The rest of the section answers the following questions. 1) How
effective is target replay in reducing recording overhead? 2) How
well does iTarget perform when the replay target is the whole pro-
gram? 3) Is the effectiveness of iTarget sensitive to the data used
in the profiling run? 4) What is the computation cost for finding an
efficient replay interface?

6.1 Methodology
We categorize the benchmarks into two sets according to pro-

gram modularity. One set includes Apache and Berkeley DB, both
of which contain natural module boundaries. We apply both target
and whole-program replay to them for evaluating the effectiveness
of target replay. To reflect the fact that a programmer typically

works on individual modules, we replay a single module each time
during target replay experiments.

The other set consists of network clients and SPEC CINT2000
programs. These programs are implemented in a monolithic way
with no natural module boundary. We evaluate the performance
of iTarget in the worst case by applying whole-program replay on
these benchmarks. We also evaluate the sensitivity of iTarget’s ef-
fectiveness on profiling runs with different workload scales and
present a quantitative computation cost of iTarget.

We additionally run two other recent replay tools, iDNA [2] and
R2 [11], on all benchmarks for comparison. iDNA is built on top
of an instruction-level simulator and inspects each instruction for
recording and replay, while R2 interposes at function level and re-
quires developers to manually annotate the replay interface to de-
cide what should be recorded. In our experiments, iDNA imposes
more than five times slowdown and generates significantly larger
logs than iTarget and R2 for all benchmarks. It even fails to ter-
minate when recording mcf and vpr after producing 50 GB logs.
Therefore we omit its data on the detailed discussion of each bench-
mark, and only compare the overhead of iTarget (log size and slow-
down) with those imposed by R2.

Our experiments on two server applications, Apache and Berke-
ley DB, were conducted on machines with 2.0 GHz Intel Xeon 8-
way CPU and 32 GB memory. Other experiments were conducted
on machines with 2.0 GHz Intel Xeon dual-core CPU and 4 GB
memory. All of these machines are connected with 1 Gb Ethernet,
running Windows Server 2003. In all experiments, iTarget shares
the same disk with the application.

6.2 Performance on Modular Programs
We use Apache HTTP Server and Berkeley DB to evaluate the

performance advantage of target replay on modular programs. We
further investigate how iTarget computes an appropriate replay in-
terface to isolate the target module with only slight recording over-
head. Our experiments include replaying both whole programs and
individual modules. Table 1 lists the modules used for target replay.

Note that R2 cannot replay individual modules of these pro-
grams, so we only present data of whole-program replay. In fact,
although R2 supports the replay of part of a program, it requires the
programmer to annotate the side effects of the functions that com-
pose the replay interface. However, its annotation language only
supports to specify plain buffers [11], rather than side effects that
involve complex pointer usages, which pervade Apache and Berke-
ley DB functions. Besides, it would be tedious and error-prone to
manually annotate hundreds of functions.
Apache HTTP Server. Apache comes with a flexible modular
framework. The core part libhttpd invokes responsible mod-
ules to handle HTTP requests. We include three commonly-used
modules in our experiment, namely mod_alias, mod_dir, and
mod_deflate, listed in Table 1. Specifically, mod_alias maps re-
quest URLs to filesystem paths; mod_dir provides “trailing slash”
redirection for serving directory index files; and mod_deflate,
acting as an output filter, compresses files before sending them to
clients.

In the experiment, Apache HTTP Server runs with all these three
modules; we use iTarget to replay each of them individually. Since
each module contains a single source file, to replay a module we
choose all functions in the corresponding file as the replay target.

We set up the built-in Apache benchmarking tool ab, which starts
clients that repetitively fetch files from a server via HTTP requests.
We put an HTML file index.html sized 256 KB on the server
and start eight clients to grab the compressed version of the file
via an aliasing name of the directory. Thus for each request, all
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Replay Target Replay Target Sources Description
Apache mod_alias mod_alias.c Mapping URLs and file paths

mod_dir mod_dir.c Serving directory index files
mod_deflate mod_deflate.c Compressing HTTP output

Berkeley DB repmgr All 12 files in the “repmgr” directory Replication service

Table 1: Modules used for target replay.
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Figure 5: Recording performance of different replay targets in
Apache.

three modules are executed. iTarget uses 40 requests for profiling
in order to assign costs to edges in the static flow graph; clients
send 4,000 requests in the experiment.

Figure 5(a) shows log sizes generated for answering client re-
quests when iTarget is replaying each module and the whole Apache
program respectively, where the baseline is the total size of data that
Apache reads from disk and network. The log sizes remain small as
iTarget tries to replay only an individual module. iTarget consumes
less than 10 MB log when replaying mod_alias and mod_dir.
Replaying the more complex module mod_deflate takes 29 MB,
which is still substantially smaller than the baseline. This shows
that iTarget manages to avoid logging the entire file and network
I/O, and only record the necessary data for replaying a single mod-
ule. For example, to correctly replay module mod_deflate, iTar-
get only needs to record the metadata exchanges and skips the en-
tire file content, which is manipulated in the underlying third-party
library zlib. On the contrary, the log sizes of both whole-program
replay and R2 are close to the baseline (1 GB).

Figure 5(b) shows the throughput during recording for each re-
play target. The throughput decreases as the log size increases.
Replaying a single module using iTarget inflicts only less than 1%
performance slowdown. However, a whole-program replay incurs
8% slowdown, though the performance is still comparable to R2.
Berkeley DB. In the experiment on Berkeley DB, we start two
nodes to form a replication group. One node is elected as the mas-
ter, and randomly inserts 5,000 key-value pairs (sized 2 KB each)
to the replicated database. We use iTarget to replay one node.
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Figure 6: Log size and throughput of recording Berkeley DB.

We choose to replay the repmgr module that implements a dis-
tributed replication protocol. It is known to have subtle bugs and
hard to debug [39]. We specify all functions in 12 source files of
this module as the replay target.

Figure 6(a) shows the log sizes of iTarget and R2 with different
interfaces. It also shows the baseline log size as the size of all input
data from disk and network. Note that the baseline volume to be
recorded is much larger than the application’s input data, because
when each node receives log records from the master, it may scan
its own database log file to find the corresponding records belong-
ing to the same transaction, which incurs substantial file reads.

The result shows that the log size of iTarget for replaying the
repmgr module is only about 1/3 of that of iTarget for whole-
program replay and that of R2. This is because repmgr does not
directly touch all the data read from the database log file. iTarget
only needs to record values returned by lower file I/O and local
database modules, thereby substantially reducing the log size.

Both the log sizes of iTarget for whole-program replay and R2
are larger than the baseline. This is due to the cost of tracking the
causal order of synchronization events in the synchronization log.
It turns out that Berkeley DB heavily uses the interlocked opera-
tions, leading to the excessive cost.

Figure 6(b) shows Berkeley DB’s throughput during recording
with iTarget for different replay targets and with R2. iTarget and
R2 incur 53% and 58% slowdown in whole-program replay, re-
spectively. This is mostly due to the cost of tracking interlock op-
erations. However, when using target replay on the repmgr com-
ponent, iTarget incurs only 37% slowdown, thus achieving 35%
and 50% throughput improvements compared to the previous two
whole-program replay cases, respectively.

The above experiments demonstrate that iTarget can automati-
cally identify a correct replay interface that separates a single mod-
ule from the surrounding environment. For modular programs like
Apache HTTP Server and Berkeley DB, iTarget enables significant
performance improvements through target replay of modules.

6.3 Performance on Monolithic Programs
We evaluate iTarget’s recording performance of whole-program

replay on monolithic programs. For monolithic programs that do
not directly manipulate input data, e.g., an HTTP client that parses

7



 

10.6 

433.0 
404.0

0

100

200

300

400

500

600

Lo
g 

Si
ze

 (
K

B
)

(a) Log size for neon
 

309.6

8206.5 8000.0

0

2000

4000

6000

8000

10000

Lo
g 

Si
ze

 (
K

B
)

(b) Log size for Wget

Figure 7: Log size for recording neon and Wget.

the HTTP header and ignores the content of the HTTP body, iTarget
is able to exploit this to reduce recording overhead; we use two
HTTP clients, neon and Wget, to illustrate this case. For monolithic
programs that implement certain algorithms and perform intensive
computations, their executions depend heavily on every piece of
input data and replay tools need to record all input; we use six
SPEC CINT2000 programs to illustrate that iTarget’s performance
is still comparable to existing replay tools in this case.

The programmer can specify a subset of functions as the replay
target for a monolithic program. Even if the replay target may ex-
change a large amount of data with the rest of the program, iTar-
get can automatically detect the issue and avoid recording the data
by finding a lower-cost replay interface elsewhere. It guarantees
that the resulting performance is no worse than that of the whole-
program replay. We use crafty, one of the SPEC CINT2000 pro-
grams, to illustrate the case.
Network clients. We use HTTP clients neon and Wget as bench-
marks to evaluate iTarget’s performance. For HTTP clients, the
most essential part is to handle the HTTP protocol, which is only
related to the header of input data. In all our experiments for neon
and Wget, the slowdown caused by replay tools is negligible. This
is because the performance bottleneck is mainly the network or the
server side. We therefore present only the log sizes here.

The neon client skips the payload in HTTP responses. We set up
an HTTP server and run neon on another machine to request files
repetitively; the average size of those files is 400 KB. Figure 7(a)
shows the log sizes for neon. The size of the data downloaded from
the network is the baseline for replay. iTarget successfully avoids
recording the payload data, reducing logs to around 2.5% of the
original. iTarget records only the HTTP headers that neon inspects,
while R2 records the entire HTML files.

Wget is a web crawler that crawls a web site and converts its
pages for offline browsing. We set up a mini web site and make
Wget crawl its pages. Each HTML file is 400 KB and the total size
of the crawled HTML files is 4 MB. Figure 7(b) shows the log sizes
for Wget. Unlike neon, Wget parses each downloaded file to find
new hyperlinks. The baseline log size is twice of HTML files size
due to extra disk I/O during parsing. iTarget still shows its advan-
tage, because Wget touches the payload only via libc functions such
as stricmp. iTarget then only records their return values to avoid
recording the whole file data. It reduces the logs to only 309.6 KB.

The above experiments show that, with the help of the language-
based model, iTarget can identify the payload in an input file and
skip it. Thus, for the applications that do not directly manipulate
all of their inputs, such as neon and Wget, iTarget outperforms pre-
vious tools even with whole-program replay.
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Figure 8: Recording cost of whole-program replay for SPEC
CINT2000 programs.

SPEC CINT2000. We evaluate the performance on six SPEC
CINT2000 applications using standard test suites. Although many
of them are actually deterministic given the same input, they are
good for evaluating the worst cases of iTarget, where neither target
replay nor skipping payload is possible. We use iTarget to replay
the whole program of each benchmark and compare the slowdown
and the log size of iTarget with R2.

Figure 8(a) shows the log sizes, normalized to input data size
(shown under each label). It is not surprising that iTarget requires
to record as much data as the input file. vpr and twolf read files
multiple times, thereby causing the large log sizes of iTarget and
R2. The input data size of crafty is less than 500 bytes, and the
log of both iTarget and R2 is dominated by auxiliary tags and events
(e.g., calls). This explains the large log size ratio of crafty.

Figure 8(b) shows the slowdown, normalized to the native ex-
ecution time (shown under each label). We can see that iTarget
has similar performance to R2 and native in all SPEC CINT2000
benchmarks. iTarget and R2 may run faster than native execution
sometimes, because they redirect malloc and free in replay space
to a separate memory pool with full-fledged memory management
functionality, which has slightly different performance from the
libc counterpart (see Section 4.2).

The result shows that, for CPU-intensive benchmarks, both the
log size and slowdown of iTarget to replay whole programs are
comparable to those of R2.
Target replay in crafty. In SPEC CINT2000 programs, functions
have heavy data dependencies. Only replaying a single function
can even result in a worse overhead than whole-program replay,
if done naively. iTarget will automatically choose an appropriate
replay interface, while a naive cut mentioned in Section 2.2 may
generate a huge log, especially when the replay target repeatedly
reads data from other parts of the program, as seen in some algo-
rithm implementations.

We use crafty as a test case, where we choose SearchRoot, a
function that implements the alpha-beta search, as the replay target.
iTarget detects the heavy dependencies between this function and
the rest part of crafty; the resulting replay interface leads to a log
similar to that of a whole-program replay in size (both 159 KB). In
contrast, a naive cut strategy produces a huge log (17 GB).
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# of Req. Size per Req. (KB) Log Size (MB)
Apache None None 1042.61
(mod_deflate) 40 256 28.80

4,000 25 29.15
4,000 256 28.80

Berkeley DB None None 1,765.27
(repmgr) 50 2 530.07

5,000 0.2 643.96
5,000 2 531.42

Table 2: The log size of Apache and Berkeley DB under differ-
ent profiling settings.

Prog. KLOC Op. Val. Edges Cut Time (s)
mcf 2 57 6,796 10,446 0
gzip 8 156 20,160 17,722 1
vpr 17 311 54,274 75,476 1
neon 19 481 38,960 163,750 2
twolf 20 219 103,824 719,707 3
crafty 21 153 78,630 80,548 2
wget 41 623 85,946 457,953 15
vortex 67 982 204,342 545,863 2
apache 141 2,362 350,906 34,349,476 202
bdb 172 2,048 746,970 82,292,406 300

Table 3: Statistics of computation cost of replay interfaces.
“Op.”, “Val.”, and “Edges” list the numbers of operation nodes,
value nodes, and edges in static flow graphs, respectively; “Cut
Time” lists the time for computing the minimum cut; “bdb” is
short for Berkeley DB.

The experiments show that iTarget is capable of intelligently
skipping the unused payload within input during whole-program
replay of monolithic programs, therefore reducing log sizes sig-
nificantly. In the worst case, where programs depend on all in-
put data and the replay target is tightly coupled with the rest of
the program, target replay in iTarget will automatically fall back to
whole-program replay. Even in those cases, the overhead of iTarget
remains comparable to that of existing tools.

6.4 Profiling Workload and Computation Cost
Profiling workload. We evaluate how different profiling workload
scales could affect the resulting replay interfaces. Table 2 shows
the log sizes for replaying the module mod_deflate in Apache
HTTP Server and the module repmgr in Berkeley DB under differ-
ent profiling workload scales. “None” represents the recording log
size without any profiling run. In this case, we simply assign the
same weight to each edge in static flow graph.

The result shows that the profiling run is important for reducing
overhead of iTarget. Without profiling, the log sizes of Apache and
Berkeley DB are 35 times and twice larger, respectively. However,
iTarget is not sensitive to different workload scales of a profiling
run. In Apache and Berkeley DB, the resulting log sizes do not
change much when using different input file sizes or different num-
bers of requests for profiling.
Computation cost. Table 3 shows the statistics of computation
cost of replay interfaces. For each program, we report the num-
bers of operation nodes, value nodes, and edges in the static flow
graph, as well as the time it takes to compute the minimum cut. The
pointer analysis can finish within seconds for all the benchmarks so
we omit the time.

In general, iTarget is efficient to find a near-optimal replay in-
terface for a target function set. If a programmer chooses different
targets or modifies the code, iTarget can reconstruct the graph and
recompute the replay interface within minutes.

6.5 Summary
In terms of performance, iTarget enjoys two advantages: impos-

ing small instrumentation overhead and reducing logging I/O that
competes with application I/O. This makes iTarget more lightweight
when applied to both CPU- and I/O-intensive applications. It also
shows that, even in the worst case of whole-program replay, with
the minimum cut strategy, iTarget still achieves comparable perfor-
mance to state-of-the-art replay tools.

The accuracy of profiling is critical for iTarget, but iTarget does
not strictly require the same input during profiling and recording.
The user does not always need to re-profile the graph if she just in-
creases the testing workload (e.g., in terms of file sizes or numbers
of requests) in recording phase.

7. RELATED WORK
Process-level replay. Library-based replay tools like Jockey [31],
liblog [10], RecPlay [26], and Flashback [33] adopt a fixed replay
interface at library functions and tend to record and replay an entire
program. R2 [11] is more related to iTarget since it also employs
language-based techniques and is able to replay only a part of a
program. R2 asks programmers to select a set of functions as a
replay interface to isolate replay targets, and annotate their side ef-
fects with a set of keywords. However, it is tedious and error-prone
for programmers to select manually a complete interface that iso-
lates all non-determinism. Furthermore, the expressiveness of R2
keywords is limited; it is difficult to annotate functions that access
memory other than plain buffers. iTarget automatically computes
an efficient replay interface from source code via program analysis
to minimize recording overhead. It interposes itself at the instruc-
tion level and requires no programmer annotations.

iDNA [2] also takes an instruction-level replay interface. It uses
an instruction-level simulator to track each instruction and to record
necessary data for replay, such as register states after certain special
non-deterministic instructions and memory values that are read by
instructions during execution. To avoid recording all memory val-
ues read, iDNA maintains a shadow memory internally to cache
previous values. Despite the optimization, iDNA still incurs signif-
icant performance slowdown due to expensive instruction tracking.
iTarget needs to track only memory access instructions at the com-
puted replay interface and hence incurs remarkably less overhead.

There are a number of replay tools focusing on applications us-
ing various programming language runtimes, such as Java [16, 24,
34], MPI [27], and Standard ML [35]. While current iTarget imple-
mentation works with the C language, its language-based technique
and data flow model are general enough and can be easily applied
to other programming languages.
Whole-system replay. Hardware based [21, 38] and virtual ma-
chine based [7, 15] replay tools aim to replay a whole system, in-
cluding both target applications and the underlying operating sys-
tem. Because these tools intercept a system at a low-level inter-
face, such as at the processor level, it is easy for them to observe
all the non-determinism from the environment. Special hardware
or virtual-machine environment is required for those tools to work.
Language-based security. Swift [3] provides a secure program-
ming language to construct secure web applications and partitions a
control flow graph to split programs into a client and a server; iTar-
get partitions a program into replay and non-replay spaces through
a cut on data flow graph to ensure determinism for replay target.
FlowCheck [19] is a tool quantitatively estimating leak of secure
data by dynamically tracking information flows; iTarget estimates
its flow graph statically.
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8. CONCLUSION
The beauty of iTarget lies in its simple and general model that

defines the notion of correct replay precisely. The model leads to
our insight that the problem of finding an optimal replay interface
can be reduced to that of finding the minimum cut in a data flow
graph. With this model, iTarget employs programming language
techniques to achieve both correctness and low recording overhead
when replaying complex, real-world programs.
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