
Simplifying Wide-Area Application
Development with WheelFS

Jeremy Stribling

In collaboration with Jinyang Li,
Frans Kaashoek, Robert Morris

MIT CSAIL & New York University

2

Resources Spread over Wide-Area Net

PlanetLab
Google datacenters

China grid

3

Grid Computations Share Data

Nodes in a distributed computation share:
– Program binaries

– Initial input data
– Processed output from one node as

intermediary input to another node

4

So Do Users and Distributed Apps

• Apps aggregate disk/computing at
hundreds of nodes

• Example apps
– Content distribution networks (CDNs)
– Backends for web services

– Distributed digital research library

All applications need distributed storage

5

State of the Art in Wide-Area Storage

• Existing wide-area file systems are inadequate
– Designed only to store files for users
– E.g., No hundreds of nodes can write files to the same dir
– E.g., Strong consistency at the cost of availability

• Each app builds its own storage!
– Distributed Hash Tables (DHTs)
– ftp, scp, wget, etc.

6

Current Solutions

Usual drawbacks:
– All data flows through one node
– File systems are too transparent

• Mask failures
• Incur long delays

Node NodeNode

NodeNode Node

Testbed/Grid

Central
File Server

Copy
foo File

foo

7

If We Had a Good Wide-Area FS?

Wide-area FS

• FS makes building apps simpler

CDN

write(“/a/foo”)

CDN

write(“/a/bar”)

File
bar

File
foo

read(“/a/foo”)

8

Why Is It Hard?

• Apps care a lot about performance
• WAN is often the bottleneck

– High latency, low bandwidth
– Transient failures

• How to give app control without sacrificing
ease of programmability?

9

Our Contribution: WheelFS

• Suitable for wide-area apps
• Gives app control through cues over:

– Consistency vs. availability tradeoffs
– Data placement

– Timing, reliability, etc.

• Prototype implementation

10

Talk Outline

• Challenges & our approach
• Basic design
• Application control
• Running a Grid computation over WheelFS

11

What Does a File System Buy You?

• Re-use existing software
• Simplify the construction of new applications

– A hierarchical namespace
– A familiar interface

– Language-independent usage

12

Why Is It Hard To Build a FS on WAN?

• High latency, low bandwidth
– 100s ms instead of 1s ms latency
– 10s Mbps instead of 1000s Mbps bandwidth

• Transient failures are common
– 32 outages over 64 hours across 132 paths [Andersen’01]

13

What If Grid Uses AFS over WAN?

GRID node
(AFS client)

a.dat

Potentially unnecessary
data transfer

a.dat

Blocks forever
under failure despite

available cached copy

GRID node
(AFS client)

GRID node
(AFS client) AFS server

14

Design Challenges

• High latency
– Store data close to where it is needed

• Low wide-area bandwidth
– Avoid wide-area communication if possible

• Transient failures are common
– Cannot block all access during partial failures

Only applications have the needed information!

15

WheelFS Gives Apps Control

Application controlTotal network
transparency

Goal

�XCan apps control
data placement?

�XCan apps control how
to handle failures?

WheelFSAFS,NFS,
GFS

16

WheelFS: Main Ideas

• Apps control
– Apps embed semantic cues to inform FS

about failure handling, data placement ...

• Good default policy
– Write locally, strict consistency

17

Talk Outline

• Challenges & our approach
• Basic design
• Application control
• Running a Grid computation over WheelFS

18

File Systems 101

• Basic FS operations:
– Name resolution: hierarchical name � flat id

– Data operations: read/write file data

– Namespace operations: add/remove files or dirs

open(“/wfs/a/foo”, …) � id: 1235

read(1235, …)
write(1235, …)

mkdir(“/wfs/b”, …)

19

File Systems 101

a: 246
b: 357

id: 0

id: 135

file2: 468
file3: 579

file1: 135

id: 357id: 246

20

Distribute a FS across nodes

a: 246
b: 357

file2: 468
file3: 579

file1: 135

id: 0

id: 357

id: 135

id: 246

Node
Node

Node

Node

NodeMust locate
files/dirs using ids

Must automatically configure
node membership

Must keep files versioned
to distinguish new and old

21

Basic Design of WheelFS

Node
653

Node
076

Node
150 Node

554

Node
402

Node
257

id
135

135

135135

id
135
v2

id
135
v3

135
v2

135
v2

135
v3

135
v3

Consistency Servers

076 150
257 402
554 653

22

Default Behavior:
Write Locally, Strict Consistency

• Write locally: Store newly created files at the
writing node
–Writes are fast
–Transfer data lazily for reads when necessary

• Strict consistency: data behaves as in a local FS
– Once new data is written and the file is closed, the next
open will see the new data

23

Write Locally

Node
653 Node

076

Node
150

Node
554

Node
402

Node
257

Create
foo/bar

1. Choose an ID
2. Create dir entry
3. Write local file

550

Dir
209
(foo)

File
550
(bar) bar = 550

Read
foo/bar

24

Strict Consistency

• All writes go to the same node
• All reads do too

Node
653 Node

076

Node
150

Node
554

Node
402

Node
257

Write
File 135

File
135

Write
File 135

File
135
v2

File 135?

25

Talk Outline

• Challenges & our approach
• Basic design
• Application control
• Running a Grid computation over WheelFS

26

WheelFS Gives Apps Control with Cues

• Apps want to control consistency, data placement ...
• How? Embed cues in path names

– Flexible and minimal interface change

Coarse-grained:
Cues apply recursively over
an entire subtree of files

/wfs/cache/.cue/a/b/ /wfs/cache/a/b/.cue/foo

Fine-grained:
Cues can apply to a single file

27

Eventual Consistency: Reads

File 135?

Node
653 Node

076

Node
150

Node
554

Node
402

Node
257

File
135

Cached
135

• Read any version of the file you can find

• In a given time limit

28

Eventual Consistency: Writes

• Write to any replica of the file

Node
653 Node

076

Node
150

Node
554

Node
402

Node
257

Write
File 135

File
135

135

Write
File 135

File
135
v2

135
v2

29

Handle Read Hotspots

Node
653 Node

076

Node
150

Node
554

Node
402

Node
257

Read
file 135

File
135

Cached
135 Cached

135

076
653

Chunk

Chunk

Cached
135

1. Contact node
2. Receive list
3. Get chunks

076
653

076
554
653

Chunk

Read
file 135

File
135

30

WheelFS Cues

Control whether reads
must see fresh data, and whether writes

must be serialized

Eventual-
Consistency

PurposeName

Specify time limit for operationsMaxTime=

Hint which node or group of nodes a file
should be stored

Site=, Node=

Control
consistency

Hint about data
placement

Other types of cues: Durability, system information, etc.

This file will be read simultaneously by
many nodes, so use p2p caching

HotSpotLarge reads

31

Example Use of Cues:
Content Distribution Networks

• CDNs prefer availability over consistency

wfs
node

wfs
node wfs

node

wfs
node

Apache
Caching
Proxy

Apache
Caching
Proxy

Apache
Caching
Proxy

Apache
Caching
Proxy If $url exists in cache dir

read $url from WheelFS
else

get page from web server
store page in WheelFS

One line change in Apache config file:
/wfs/cache/$URL

blocks under failure with
default strong consistency

32

Example Use of Cues: CDN

• Apache proxy handles potentially stale files well
– The freshness of cached web pages can be

determined from saved HTTP headers

Cache dir: /wfs/cache/ .EventualConsistency

Tells WheelFS to read
a cached file even when

the corresponding file server
cannot be contacted

Tells WheelFS to write
the file data anywhere even
when the corresponding file
server cannot be contacted

/.HotSpot

Tells WheelFS to read
data from the nearest
client cache it can find

33

Example Use of Cues:
BLAST Grid Computation

• DNA alignment tool run on Grids
• Copy separate DB portions and queries to

many nodes
• Run separate computations
• Later fetch and combine results
• Read binary using .HotSpot
• Write output using .EventualConsistency

34

Talk Outline

• Challenges & our approach
• Basic design
• Application control
• Running a Grid computation over WheelFS

35

Experiment Setup

• Up to 16 nodes run WheelFS on Emulab
– 100Mbps access links

– 12ms delay
– 3 GHz CPUs

• “nr” protein database (673 MB), 16 partitions
• 19 queries sent to all nodes

36

BLAST Achieves Near-Ideal
Speedup on WheelFS

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16

BLAST on WheelFS
Ideal speedup

Number of nodes

S
p

ee
d

u
p

37

Related Work

• Cluster FS: Farsite, GFS, xFS, Ceph
• Wide-area FS: JetFile, CFS, Shark
• Grid: LegionFS, GridFTP, IBP
• POSIX I/O High Performance Computing

Extensions

38

Conclusion

• A WAN FS simplifies app construction
• FS must let app control data placement &

consistency
• WheelFS exposes such control via cues

Building apps
is easy with WheelFS

