
Flexible, Wide-Area Storage for
Distributed Systems Using Semantic Cues

Jeremy Stribling

Thesis Defense, August 6, 2009

Including material previously published in:
Flexible, Wide-Area Storage for Distributed Systems With WheelFS

Jeremy Stribling, Yair Sovran, Irene Zhang, Xavid Pretzer,
Jinyang Li, M. Frans Kaashoek, and Robert Morris

NSDI, April 2009.

Storing Data All Over the World

PlanetLabPlanetLab

• Apps store data on widely-spread resources
– Testbeds, Grids, data centers, etc.
– Yet there’s no universal storage layer

• WheelFS: a file system for wide-area apps

Wide-Area Applications

Data Center (US)Data Center (Europe) Data Center (Asia)

Site failure makes whole
service unavailable

Many users are far away

Data, not just app logic, needs to be shared across sites

Current Network FSes Don’t
Solve the Problem

NFS
server FileFileFileFileFileFile

Same problems as before:
• Not fault-tolerant
• Far away from some sites

More fundamental concerns:
• Reads and writes flow
through one node
• Tries to act like local FS by
hiding failures with long
timeouts

Apps want to distribute storage across sites, and do not
necessarily want the storage to act like it’s a local FS.

Data Center (US)Data Center (Europe) Data Center (Asia)

Wide-Area Storage Example:
Facebook

Data Center (West Coast) Data Center (East Coast)

700,000 new users/day
After update, user must
go back to same coast

Long latency � updates take a
while to show up on other coast

Storage requirement: control over consistency

Wide-Area Storage Example:
Gmail

Data Center (US) Data Center (Europe)

Primary copy of user
email stored near user

But data is replicated
to survive failures

Storage requirements: control over placement and durability

Wide-Area Storage Example:
CoralCDN

http://lonely-web-server.comNetwork of proxies fetch
pages only once

Data stored by one site… …must be read from others
though the data can be out of date

Storage requirements: distributed serving of popular files and
control over consistency

Apps Handle Wide-Area Differently

• Facebook wants consistency for some data

• Google stores email near consumer
(Customized MySQL/Memcached)

(Gmail’s storage layer)
• CoralCDN prefers low delay to strong

consistency

� Each app builds its own storage layer

(Gmail’s storage layer)

(Coral Sloppy DHT)

Opportunity:
General-Purpose Wide-Area Storage

• Apps need control of wide-area tradeoffs
– Availability vs. consistency
– Fast writes vs. durable writes
– Few writes vs. many reads– Few writes vs. many reads

• Need a common, familiar API: File system
– Easy to program, reuse existing apps

• No existing DFS allows such control

Solution: Semantic Cues

• Small set of app-specified controls
• Correspond to wide-area challenges:

– EventualConsistency: relax consistency
– RepLevel=N: control number of replicas– RepLevel=N: control number of replicas
– Site=site: control data placement

• Allow apps to specify on per-file basis
– /fs/.EventualConsistency/file

Contribution: WheelFS

• Wide-area file system
• Apps embed cues directly in pathnames
• Many apps can reuse existing software
• Multi-platform prototype w/ several apps

• Wide-area file system
• Apps embed cues directly in pathnames
• Many apps can reuse existing software
• Multi-platform prototype w/ several apps• Multi-platform prototype w/ several apps• Multi-platform prototype w/ several apps

File Systems 101

• Basic FS operations:
– Name resolution: hierarchical name � flat id

(i.e., an inumber)
open(“/dir1/file1”, …) � id: 1235

– Data operations: read/write file data

– Namespace operations: add/remove files or dirs

open(“/dir1/file1”, …) � id: 1235

read(1235, …)
write(1235, …)

mkdir(“/dir2”, …)

File Systems 101

“/dir1/”: 246
“/dir2/”: 357

id: 0

“file2”: 468
id: 246 id: 357

Directories map
names to IDs

/dir1/file1

/dir2/file2

/dir2/file3

/

id: 135

“file2”: 468
“file3”: 579

“file1”: 135

File system uses IDs
to find location of file

on local hard disk

dir1/ dir2/

file1 file2 file3

id: 468 id: 579

Distributing a FS across nodes

“/dir1/”: 246
“/dir2/”: 357

id: 0

Must locate

Files and directories
are spread across nodes

“file2”: 468
“file3”: 579

“file1”: 135

id: 246

id: 135

id: 357

Must locate
files/dirs using IDs

and list of other nodes

Data stored in WheelFS

WheelFS Design Overview

Distributed Application

WheelFS

FUSE
WheelFS

configurationWheelFS client nodes
WheelFS

client
software

Service
(Paxos + RSM)

Files and directories are
spread across storage nodes

WheelFS client nodes

WheelFS storage nodes

WheelFS Default Operation

• Files have a primary and two replicas
– A file’s primary is the closest storage node

• Clients can cache files
– Lease-based invalidation protocol– Lease-based invalidation protocol

• Strict close-to-open consistency
– All operations serialized through the primary

WheelFS Design: Creation

“/dir1/”: 246
“/dir2/”: 357

id: 0
Create the

directory entry
By default, a node is the
primary for data it creates

id: 562

“/dir1/”: 246
“/dir2/”: 357

“/file”: 562

Directories map names
to flat file IDs

WheelFS Design: Open

id: 0

Partitions ID space
among nodes
consistently

Configuration
Service

“/dir1/”: 246
“/dir2/”: 357

“/file”: 562
id: 562

0-200 �18.4.2.1

id: 562

Read
“/file”
Read
562

0-200 �18.4,2,1
201-400�16.7.1.8
401-600�19.4.8.9

0-200 �18.4,2,1
201-400�16.7.1.8
401-600�19.4.8.9

0-200 �18.4,2,1
201-400�16.7.1.8
401-600�19.4.8.9

0-200 �18.4,2,1
201-400�16.7.1.8
401-600�19.4.8.9

0-200 �18.4,2,1
201-400�16.7.1.8
401-600�19.4.8.9

0-200 �18.4.2.1
201-400�16.7.1.8
401-600�19.4.8.9

Enforcing Close-to-Open Consistency

v2

By default, failing to reach the
primary blocks the operation to

offer close-to-open consistency
in the face of partitions

v2

v2

Read
562

Eventually, the configuration
service decides to promote a

backup to be primary

Write
file

(backup)

(backup)

Wide-Area Challenges

• Transient failures are common
– Availability vs. consistency

• High latency
– Fast writes vs. durable writes

• Low wide-area bandwidth
– Few writes vs. many reads

Only applications can make these tradeoffs

Semantic Cues Gives Apps Control

• Apps want to control consistency, data
placement ...

• How? Embed cues in path names

� Flexible and minimal interface change

/wfs/cache/a/b/.cue/foo/wfs/cache/a/b/.EventualConsistency/foo/wfs/cache/a/b/foo

Semantic Cue Details
• Cues can apply to directory subtrees

Cues apply recursively over
an entire subtree of files

/wfs/cache/.EventualConsistency/a/b/foo

• Multiple cues can be in effect at once

• Assume developer applies cues sensibly

/wfs/cache/.EventualConsistency/.RepLevel=2/a/b/foo

Both cues apply to
the entire subtree

A Few WheelFS Cues

Name Purpose

RepLevel=
(permanent)

How many replicas of this file should be
maintained

HotSpot
(transient)

This file will be read simultaneously by
many nodes, so use p2p caching

Large reads

Durability

Site=
(permanent)

Hint for which group of nodes
should store a file

Hint about data
placement

Cues designed to match wide-area challenges

(transient) many nodes, so use p2p caching

Eventual-
Consistency
(trans/perm)

Control whether reads
must see fresh data, and whether writes

must be serialized
Consistency

Eventual Consistency: Reads

• Read latest version of the file you can find quickly
• In a given time limit (.MaxTime=)

v2

v2

v2

Read
file

(cached)
(backup)

(backup)

Write
file

Eventual Consistency: Writes

• Write to primary or any backup of the file

v2v3

Reconciling divergent replicas:

Directories Files
• Merge replicas into single • Choose one of the recent

(backup)

v2

Write
file

v3v3

Create new version at backup

Background process
will merge divergent replicas

(No application involvement)

• Merge replicas into single
directory by taking union of
entries
� Tradeoff: May lose some
unlinks

• Choose one of the recent
replicas to win

�Tradeoff: May lose some
writes

HotSpot: Client-to-Client Reads

C

Read
file

Get list of nodes
with cached copies

(cached)Fetch chunks from
other nodes in parallel

B

A

(cached)
(cached)

Node A
Node B
Node A
Node B

Chunk
Chunk

Node A
Node B
Node C

Add to list of nodes
with cached copies

Use Vivaldi network coordinates to find nearby copies

Example Use of Cues:
Cooperative Web Cache (CWC)

Apache
Caching

Proxy

Apache
Caching

Proxy

Apache
Caching

Proxy

Apache
Caching

Proxy If $url exists in cache dir
read $url from WheelFS

Blocks under failure with
default strong consistency

read $url from WheelFS
else

get page from web server
store page in WheelFS

One line change in Apache config file: /wfs/cache/$URL

.EventualConsistency

Example Use of Cues: CWC
• Apache proxy handles potentially stale files well

– The freshness of cached web pages can be
determined from saved HTTP headers

Cache dir: /wfs/cache/ /.HotSpot/.MaxTime=200

Read a cached file
even when the
corresponding

primary cannot be
contacted

Write the file data to
any backup
when the

corresponding
primary cannot be

contacted

Tells WheelFS to
read data from

the nearest client
cache it can find

Reads only
block for 200
ms; after that,

fall back to
origin web

server

WheelFS Implementation

• Runs on Linux, MacOS, and FreeBSD
• User-level file system using FUSE
• 25K lines of C++
• Unix ACL support• Unix ACL support
• Vivaldi network coordinates

Applications Evaluation

App Cues used
Lines of

code/configuration
written or changed

Cooperative
Web Cache

.EventualConsistency, .MaxTime,
.HotSpot

1

All-Pairs-Pings
.EventualConsistency, .MaxTime,

.HotSpot, .WholeFile
13

.HotSpot, .WholeFile

Distributed Mail
.EventualConsistency, .Site,

.RepLevel, .RepSites,
.KeepTogether

4

File distribution .WholeFile, .HotSpot N/A

Distributed
make

.EventualConsistency (for objects),
.Strict (for source), .MaxTime

10

Performance Questions

1. Does WheelFS distribute app storage load

WheelFS is a wide-area file system that:
• spreads the data load across many nodes
• aims to support many wide-area apps
• give apps control over wide-area tradeoffs using cues

1. Does WheelFS distribute app storage load
more effectively than a single-server DFS?

2. Can WheelFS apps achieve performance
comparable to apps w/ specialized storage?

3. Do semantic cues improve application
performance?

Storage Load Distribution Evaluation

• Up to 250 PlanetLab nodes

. . .
NFS WheelFS

Hypothesis: WheelFS clients will
experience faster reads than NFS clients,

• Each client reads 10 files at random

N clients1 non-
PlanetLab

NFS server
at MIT 10•N 1 MB

files

N WheelFS
nodes10 1 MB

files each

experience faster reads than NFS clients,
as the number of clients grows.

WheelFS Spreads Load More Evenly
than NFS on PlanetLab

15

20

25

Median

1MB read

PlanetLab
vs.

dedicated MIT server

Working set of files
exceeds NFS server’s

buffer cache
0

5

10

0 50 100 150 200 250 300

1MB read

latency

(seconds)

Number of concurrent clients

WheelFS

NFS

File Distribution Evaluation

• 15 nodes at 5 wide-area sites on Emulab
• All nodes download 50 MB at the same time
• Direct transfer time for one node is 73 secs
• Use .HotSpot cue

Hypothesis: WheelFS will achieve
performance comparable to BitTorrent’s, • Use .HotSpot cue

• Compare against BitTorrent

performance comparable to BitTorrent’s,
which uses a specialized data layer.

WheelFS HotSpot Cue Gets Files
Faster than BitTorrent

0.6

0.7

0.8

0.9

1

Fraction
of clients

WheelFS median download
time is 33% better
than BitTorrent’s

0

0.1

0.2

0.3

0.4

0.5

0 100 200 300

of clients
finished with

time

Time (seconds)

WheelFS

BitTorrent

Both do far better than
median direct transfer time

of 892 seconds

CWC Evaluation

• 40 PlanetLab nodes as Web proxies
• 40 PlanetLab nodes as clients
• Web server

– 400 Kbps link
Hypothesis: WheelFS will achieve

performance comparable to CoralCDN’s, – 400 Kbps link
– 100 unique 41 KB pages

• Each client downloads random pages
– (Same workload as in CoralCDN paper)

• CoralCDN vs. WheelFS + Apache

performance comparable to CoralCDN’s,
which uses a specialized data layer.

WheelFS Achieves Same Rate As CoralCDN

100

1000

Total

reqs/sec

served WheelFS

CoralCDN ramps up
more quickly due to
special optimizations

1

10

0 200 400 600 800 1000

served

(log)

Time (seconds)

WheelFS

CoralCDN

. . . but WheelFS soon
achieves similar

performance

Total reqs/unique page: > 32,000
Origin reqs/unique page: 1.5 (CoralCDN) 2.6 (WheelFS)

CWC Failure Evaluation

• 15 proxies at 5 wide-area sites on Emulab
• 1 client per site
• Each minute, one site offline for 30 secs

– Data primaries at site unavailable
Hypothesis: WheelFS using eventual

consistency will achieve better – Data primaries at site unavailable

• Eventual vs. strict consistency

consistency will achieve better
performance during failures than
WheelFS with strict consistency.

EC Improves Performance
Under Failures

100

1000

Total

reqs/sec

EventualConsistency
allows nodes to use

cached version when
primary is unavailable

1

10

200 300 400 500 600 700

reqs/sec

served

(log)

Time (seconds)

WheelFS - Eventual

WheelFS - Strict

WheelFS Status

• Source available online
http://pdos.csail.mit.edu/wheelfs

• Public PlanetLab deployment
– PlanetLab users can mount shared storage– PlanetLab users can mount shared storage
– Usable by apps or for binary/configuration

distribution

Related File Systems

• Single-server FS: NFS, AFS, SFS
• Cluster FS: Farsite, GFS, xFS, Ceph
• Wide-area FS: Shark, CFS, JetFile
• Grid: LegionFS, GridFTP, IBP, Rooter• Grid: LegionFS, GridFTP, IBP, Rooter

• WheelFS gives applications control over
wide-area tradeoffs

Storage Systems with
Configurable Consistency

• PNUTS [VLDB ‘08]
– Yahoo!’s distributed, wide-area database

• PADS [NSDI ‘09]• PADS [NSDI ‘09]
– Flexible toolkit for creating new storage layers

• WheelFS offers broad range of controls in
the context of a single file system

Conclusion

• Storage must let apps control data behavior
• Small set of semantic cues to allow control

– Placement, Durability, Large reads and
ConsistencyConsistency

• WheelFS:
– Wide-area file system with semantic cues
– Allows quick prototyping of distributed apps

http://pdos.csail.mit.edu/wheelfs

