Examining The Tradeoffs Of Structured Overlays In A Dynamic Non-transitive Network

Steve Gerding Jeremy Stribling {sgerding, strib}@csail.mit.edu

Motivation

- P2P overlays are a hot topic in networking research
- However, overlay performance research is still young
- Relatively unexplored areas:
 - Comparing several overlays in a fair setting, with a unified metric
 - Examining their behavior under real, pathological conditions
 - Determining how parameter tuning affects performance
- Important for system designers and wide area deployment

Our Goal

- Compare the performance of several structured P2P overlays under real world network conditions
- Explore the effects of parameter tuning for individual overlays

Accomplished by:

- Gathering and analyzing data about real world network conditions
- Using this data to compare the overlays in simulation
- Analyzing the simulation results and drawing conclusions

Presentation Overview

- Related work
- Real world dataset: PlanetLab
- Overlays in brief: Chord, Tapestry, Kademlia, Kelips
- Experimental methodology
- Results
- Discussion
- Future work

Related Work

- Gummadi et. al.: Effect of routing geometry on resilience, proximity The impact of DHT routing geometry on resilience and proximity, SIGCOMM 2003
- Rhea et. al.: App-level bmarks to encourage quality implementations

Structured peer-to-peer overlays need application-driven benchmarks, IPTPS 2003

- Liben-Nowell et. al.: Chord stabilization traffic, with churn Analysis of the evolution of peer-to-peer systems, PODC 2002
- Xu: Routing state vs. network diameter: log(n) asymptotically optimal

On the fundamental tradeoffs between routing table size and network diameter, Infocom 2003

Countless structured and unstructured P2P overlays

The PlanetLab Dataset

- Topology data obtained from the PlanetLab federated testbed
- Extracted from PlanetLab All-Pairs-Pings data (http://pdos.lcs.mit.edu/~strib/pl_app)
- Why is this interesting?
 - Global-scale testbed
 - Non-transitive links
 - Time-varying latency data
 - Real-world rates of churn (node failure and recovery)

The PlanetLab Dataset

Observed properties of the PlanetLab testbed:

Size of datasets

Fully-connected: 159

Non-transitive: 248

• Non-transitivity
9.9% of combinations are

non-transitive

Mean round trip time

Fully-connected: 117.39 ms

Non-transitive: 118.46 ms

Churn rate

MTTF: 321.1 hours

MTTR: 2.7 hours

(Blind submission, SIGMETRICS 2004)

Chord Tapestry Kademlia Kelips

[sgerding, strib | 2003-12-05]

[8 / 24]

Chord

Tapestry

Kademlia

Kelips

Properties of Chord (Stoica et. al., SIGCOMM 2001):

- Ring/Skiplist geometry
- Separates correctness (successors) and performance (finger table)
- log(n) state, log(n) hops

Parameters Explored:

# successors	4 – 32
Finger base	2 – 128
Finger stabilization	2 – 32 min
Succlist stabilization	1 – 32 min
Recursive routing	Yes / No

Chord

Tapestry

Kademlia

Kelips

Properties of Tapestry (Zhao et. al., UC Berkeley TR 2001):

- Tree-like geometry
- Rtg. table used for both correctness and performance
- Recursive routing
- log(n) state, log(n) hops

Parameters Explored:

ID Base	2 - 128
Stabilization	2 – 32 min
Backups per entry	1 – 4
Backups used in lookups	1 – 4

Chord

Tapestry

Kademlia

Kelips

Properties of Kademlia (Maymounkov & Mazières, IPTPS 2002):

- XOR routing metric
- Lookups refresh routing state
- Iterative routing
- log(n) state, log(n) hops

Parameters Explored:

k (bucket size)	8 – 32
α (parallel lookups)	1 – 5
Stabilization timer	2 – 32 min
Refresh rate	2 – 32 min

Chord Tapestry

Kademlia

Kelips

Properties of Kelips (Gupta et. al., IPTPS 2003):

- Nodes hashed into n^{1/2} groups
- Keep contacts in each other group
- Use p2p gossip state maintenance
- **O**(**n**½) state, **2** hops

(Some of the) Parameters Explored:

Gossip interval	.125 – 24 min
Contacts per group	2-8
New item gossip count	0 - 4
Routing entry timeout	5 – 40 min

Experimental Methodology

- p2psim, a discrete event simulator (http://pdos.lcs.mit.edu/p2psim)
 - Simulates network delay

- Nodes generate lookups for random keys every 116 seconds
 - As observed by Saroiu et. al. for Kazaa traffic An analysis of content delivery systems, OSDI 2002
- Observed tradeoff between bandwidth and latency
 - Background maintenance traffic
 - Timeouts incurred during lookups

Baseline Results - Chord (Recursive)

Baseline Results - Tapestry

Baseline Results - Kademlia

Baseline Results - Kelips

Baseline Results - All

[sgerding, strib | 2003-12-05] [18 / 24]

Churn Results - All

Non-transitive Results - All

Non-transitive + Churn Results - All

Discussion

- Performance of a particular protocol can vary widely
 - Careful tuning of parameters greatly improves performance
- Low rate of churn on PlanetLab has little effect on most protocols
 - Optimal configuration:
 - Large number of neighbors (base)
 - Low maintenance traffic (stabilization)
- Non-transitivity has a greater effect
 - Recursive routing a big win
 - Strictness of Chord hinders its performance

Future Work

- By next Friday
 - Analysis of overlays in the presence of variable-latency links
 - Data for Kademlia in churn scenario
- Future research topics
 - More overlays (Koorde, one-hop, etc.)
 - Effects of link failures
 - Effects of asymmetric links
 - Scaling simulation up to thousands of nodes
 - Adaptive, self-tuning parameters

Summary

- Our goal: Explore the effects of real world conditions and parameter tuning on the performance of structured overlays
- Real world data was collected from the PlanetLab testbed
- Illustrated tradeoffs within and between four overlay protocols
- Non-transitivity has a large effect on performance
- Recommendations for system designers:
 - Choose an appropriate overlay for target environment
 - Carefully tune parameters for that overlay

Why Non-transitivity Breaks Chord

