
Optimizations for Locality-Aware Structured Peer-to-Peer Overlays

Jeremy Stribling�

Abstract
We present several optimizations aimed at improving the
object location performance of locality-aware structured
peer-to-peer overlays. We present simulation results that
demonstrate the effectiveness of these optimizations in
Tapestry, and discuss their usage of the overall storage re-
sources of the system.

1 Introduction
When locating an object using a structured peer-to-peer
overlay network, finding the nearest replica of that ob-
ject is often crucial. Overlays that are locality aware [12]
such as Tapestry [11] and Pastry [9] can attempt to locate
copies of objects in the local area quickly if they exist, be-
fore directing the query down more expensive wide area
links. However, even if the object is near the source of a
query, it is often the case that one or two hops through the
overlay will be needed before the object is found. Since
a system with global knowledge (for example, [8]) could
have reached this data with a simple direct hop through
IP, the extra overlay hops cause a severe relative blowup
in the location time of the query, compared to what is pos-
sible.

This inefficiency can be measured quantitatively by the
Relative Delay Penalty (RDP) of the query, also known as
stretch. For this paper, we define RDP as the ratio of the
distance a query travels through the overlay network to an
object and the minimal distance to that object (i.e. through
IP). When the data is located outside the local area of
the querying node, the RDP for an overlay like Tapestry
has been shown experimentally to be small, but when the
data is nearby the RDP can be very large [11]. For cer-
tain applications that depend on finding nearby replicas
as quickly as possible for reasonable performance, such
as web caching, this extra latency overhead may be unac-
ceptable.

While previous work has explored the importance of
locality in overlay performance [1, 2, 6, 7, 12], in this pa-
per we focus on various optimizations for the object pub-
lication and location algorithms of locality-aware over-
lays. Overlays that can benefit from these optimiza-
tions must support the Decentralized Object Location and
Routing (DOLR) interface [3], allowing clients to locate
and route to an object knowing only the object’s location-

�Work done while at UC Berkeley. Email: strib@mit.edu

independent ID. The network proximity [2] aspects of the
DOLR routing mechanism provide the locality-awareness
necessary to find the nearest copy of an object. We will
examine ways to make object location in such an overlay
very efficient, given a layer of object pointer indirection
(i.e. the objects stored in the DOLR are pointers to the lo-
cation of the actual data). Specifically, we examine the
tradeoff between object pointer state and local area RDP
improvement in Tapestry, and show that a large reduction
in RDP is possible by adding relatively few additional ob-
ject pointers into the system. After a brief description of
the Tapestry publication and location algorithms in Sec-
tion 2, Section 3 will outline several optimization strate-
gies. We will present a quantitative evaluation of these
optimizations in Section 4, and conclude in Section 5.

2 Basic Tapestry Algorithms
In Tapestry, when a node wishes to advertise the fact that
it has a certain object available, it sends a publish message
into the overlay toward the object’s unique root node. 1 At
each overlay hop, including the root itself, a pointer to
the location of the object is saved. When another node
wants to locate this object, it sends a location message to-
ward the root node of the object. Each node along the
path of this message checks whether it has a pointer to
the object. If so, the location query gets forwarded di-
rectly to the node that published the object; otherwise, the
query continues along the path to the object’s root node,
where a pointer is guaranteed to exist. In the case of mul-
tiple nodes publishing the same object (replication), each
overlay node keeps a list of all pointers it has received
for each object, sorted by the network distance from that
node to the publisher. It will direct queries for that object
to the nearest publisher. Figures 1 and 2 depict this pro-
cess; see [11] for further discussion of these algorithms
and an explanation for how nearby object replicas are
likely to be found before ones that are further away. As
we discussed in Section 1, however, any additional hop
taken when finding a local area object greatly increases
the RDP; since the object is so close, any extra latency
at all has a large relative effect. Next we describe a few
techniques for lowering the RDP in such situations.

1The relationship between an object and its root node is established
deterministically and dynamically as a function of the object’s unique
ID and the IDs of all nodes currently in the network.



4228

4A6D

4361

43FE Location Mapping

Publish Path

4377

437A

(4378)

Phil’s
Books

AA93 (4378)

Phil’s
Books

Tapestry Pointers

4664

4B4F

57ECE791

4228

4A6D

4361

43FE Location Mapping

4377

437A

(4378)

Phil’s
Books

AA93 (4378)

Phil’s
Books

Tapestry Pointers

4664

4B4F

57ECE791

Query Path

Figure 1: Tapestry object publish example. Two copies of an
object (4378) are published to their root node at 4377. Publish
messages are routed to root, depositing a location pointer for the
object at each hop encountered along the way. Only relevant
Tapestry pointers are shown.

Figure 2: Tapestry route to object example. Several nodes send
messages to object 4378 from different points in the network.
The messages route towards the root node of 4378. When they
intersect the publish path, they follow the location pointer to the
nearest copy of the object.

3 Optimizations
In this section, we describe in detail three different op-
timizations that improve local area object location RDP:
publishing to backups, publishing to nearest neighbors,
and publishing to the local surrogate.

3.1 Publishing to Backups
When forming its routing table, a Tapestry node usually
has a choice between several nodes for each entry [5]. It
chooses the closest of these nodes to be the primary neigh-
bor, which is the node that will serve as the next hop for
messages heading through that entry of the table. For pur-
poses of fault tolerance, however, each entry can hold up
to � neighbors; thus, up to � � � nodes not chosen to be
the primary neighbor become backup neighbors in the en-
try, and are sorted within the entry by network distance.
For some entries there may be many nodes from which
to choose, and it is likely that some of the backup neigh-
bors chosen will be in the node’s local area, given that
the overlay is sufficiently dense in the area. These backup
neighbors are also likely to be primary neighbors in the
routing tables of other nodes in the local area.

Our first optimization takes advantage of these proper-
ties during the object publication process to deposit more
object pointers in the local area around the publisher. At
each hop along the publication path, the current node for-
wards the publish message to as many as � backup neigh-
bors, in addition to forwarding it to the primary neighbor.
To bound the state consumed by these additional pointers,
this optimization only occurs along the first � hops of the
publication path, and nodes that receive pointers due to
this optimization do not forward the publish messages.

Since these backup neighbors are probably in the local
area of the publisher, and will serve as primary neighbors
to nearby nodes that may be locating the object, the loca-
tion query paths starting from nodes in the local area are
likely to encounter these additional pointers. Take for ex-

ample the network illustrated in Figures 1 and 2, where
we assume that node 4B4F is a backup neighbor for node
4A6D in node AA93’s routing table. If this optimization
is applied during the publication of object 4378, with a
value of one for both � and �, node 4B4F will receive an
additional pointer for the object. Then, when node 4B4F
begins its query, it will be able to jump directly to the ob-
ject, reducing the RDP for the query to one.

3.2 Publishing to Nearest Neighbors
Our second technique for placing additional object point-
ers in the local area is a form of limited pointer flood-
ing. Rather than restricting the additional pointers to only
backup neighbors as in the previous section, nodes for-
ward publish messages to any nearby neighbor. At each
hop along the path, the algorithm finds the closest � nodes
at the same routing table level as the next hop, and places
additional pointers on those nodes. Again, this is bounded
to the first � hops of the path, and those nodes do not for-
ward the publish message any further.

Note that if � is large enough, this technique effectively
floods the local area with object pointers, so that almost
every nearby node that queries for the object will already
have a pointer to that object, similiar to global knowledge.
This is of course very good from an RDP standpoint, but
could be very costly in terms of storage. This tradeoff is
explored quantitatively in Section 4.

3.3 Publishing to the Local Surrogate
A more complicated optimization is based on the obser-
vation that wide area hops are likely to be many times
longer than local area hops. Thus, if an object is in the
local area, but a query happens to venture into the wide
area before finding a pointer to the object, the effect on
RDP will be disastrous. Figure 3 illustrates such a sce-
nario. To avoid this unfortunate situation, a pointer can be
placed on an object’s local surrogate (the node in the local



Location Mapping

Tapestry Pointers

4228

437A
43FE

(4378)

Phil’s
Books

4664

Berkeley

4377 MIT

Rice

Query Path

Figure 3: Route to object example, with local areas shown. A
possible grouping of nodes from Figure 2 into local areas.

area that would serve as the object’s root, if no nodes out-
side the local area existed) during publication. Then the
local surrogate can be checked before leaving the local
area during an object location query, hopefully avoiding a
costly and possibly unnecessary wide area hop. Note that
this technique occurs naturally in some systems [1, 4, 6].
If applied to the situation in Figure 3, a pointer to object
4378 would be placed on its local surrogate node 4664,
allowing 4664 to find the object directly during its query
without leaving the local area. We do not bound this op-
timization by number of hops, because it is already very
restrained about where it places additional pointers.

An obvious issue with this scheme is deciding when
the next hop will take the query out of the local area. One
simple heuristic is to classify the next hop as a wide area
hop if the latency of that link is more than � times the la-
tency of the last link traveled (where � is a given threshold
value). A more sophisticated technique could use learning
strategies to adjust � automatically and dynamically based
on the current characteristics of the network.

4 Results
To demonstrate the effectiveness of the optimizations we
enumerated in Section 3, and to examine the tradeoff be-
tween storage overhead and local area RDP, we ran sev-
eral tests in simulation. Here we describe our experimen-
tal setup, and follow that with a presentation and analysis
of the results from our experiments.

4.1 Experimental Setup
We implemented these optimizations in the current Berke-
ley version of Tapestry, which is written in Java. In or-
der to perform large-scale and repeatable experiments,
we used the simulator first described in [7] to provide an
event-driven network layer that simulates network delays,
based on a GT-ITM transit stub model [10]. The transit
stub graph we used for these experiments consists of 1092
nodes, with approximately 30 nodes per stub domain. Out
of these physical nodes, 1090 participate in the Tapestry
network to demonstrate the effect of the optimizations on
dense networks. The Tapestry nodes use 40-digit IDs of

 0

 1

 2

 3

 4

 5

 6

 7

 0  50  100  150  200  250  300

M
ed

ia
n 

R
D

P

Client to object round-trip (ping) time (10 ms buckets)

Unoptimized
Opt(1 back, 1 hop) [+1]

Opt(2 back, 2 hops) [+4]
Opt(3 back, 3 hops) [+9]

RDP = 1

Figure 4: The effect of publishing to backups on median RDP.
Shows the median RDP for object location using � backups
and � hops with analytical cost (additional pointers per object)
shown in brackets.

base 4, and the number of nodes per routing table entry
(�) is 4. In the graphs we present, the network distance
between nodes has been linearly scaled to reflect real net-
work distances more accurately.

In these experiments, each Tapestry node publishes 25
objects with random IDs. Each node then locates 100 ob-
jects, chosen randomly from the set of all published ob-
jects, and calculates the RDP for each query.

4.2 Median RDP Improvements
Figure 4 shows how different values of � in the publishing
to backups optimization (see Section 3.1) affect median
object location RDP. The graph shows that, as expected,
the optimization is most effective when the query source
is relatively close to the object, lowering the median RDP
by as much as one point in some places. Note that as the
objects get farther away, the optimized lines converge to
the unoptimized line. In this case, the decrease in RDP is
limited by the number of backups in each route entry.

The publishing to nearest neighbors algorithm (see Sec-
tion 3.2), by contrast, is limited by the number of neigh-
bors on a certain level of the routing table, and thus a
much larger improvement is possible. Figure 5 shows that
for very nearby objects, the median RDP can be lowered
to its minimum value, if one is willing to allow a large
storage overhead per object.

Figure 6 illustrates the relationship between the RDP
and object distance when publishing to the local surrogate
(see Section 3.3) for various values of �. By adjusting �,
we can subtly affect the object location performance in
the local area, which bodes well for more sophisticated
algorithms that adjust � automatically.

4.3 90�� percentile RDP Improvements
Reducing the variance of the RDP is important for en-
suring that the majority of queries complete efficiently.



 0

 1

 2

 3

 4

 5

 6

 7

 0  50  100  150  200  250  300

M
ed

ia
n 

R
D

P

Client to object round-trip (ping) time (10 ms buckets)

Unoptimized
Opt(1 near, 1 hop) [+1]

Opt(1 near, 3 hops) [+3]
Opt(5 near, 2 hops) [+10]
Opt(8 near, 3 hops) [+24]

RDP = 1

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0  20  40  60  80  100  120  140

M
ed

ia
n 

R
D

P

Client to object round-trip (ping) time (10 ms buckets)

Unoptimized
threshold = 2
threshold = 5

threshold = 10

Figure 5: The effect of publishing to nearest neighbors on me-
dian RDP. Shows the median RDP for object location using �

neighbors and � hops with analytical cost (additional pointers
per object) shown in brackets.

Figure 6: The effect of publishing to the local surrogate on
median RDP. Shows the median RDP for object location using
threshold �. Note the scale of this graph differs to show greater
detail.

 0

 5

 10

 15

 20

 0  50  100  150  200  250  300

90
th

 p
er

ce
nt

ile
 R

D
P

Client to object round-trip (ping) time (10 ms buckets)

Unoptimized
Opt(1 back, 1 hop) [+1]

Opt(2 back, 2 hops) [+4]
Opt(3 back, 3 hops) [+9]

RDP = 1

Figure 7: The effect of publishing to backups on 90�� percentile
RDP.

High variance indicates client/server pairs that will con-
sistently see non-ideal performance and tends to limit the
advantages that clients gain through careful object place-
ment. We measure this variance with the 90�� percentile
of the RDP; if 90% of queries perform efficiently, we can
be confident that our optimizations are aiding the major-
ity of client/server pairs. Figures 7, 8 and 9 illustrate the
improvement in 90�� percentile RDP, demonstrating the
effectiveness of our optimizations at reducing variance.

In particular, notice that the local surrogate optimiza-
tion gives a rather large savings in 90�� percentile RDP
(Figure 9) when compared to its median improvement
(Figure 6). 2 In some places it does better than the other
optimizations, and at much lower cost (see Section 4.4).
For each optimization, in fact, we observe a substantial
savings in 90�� percentile RDP (almost nineteen points in

2Note that the scales of these two graphs differ.

 0

 5

 10

 15

 20

 0  50  100  150  200  250  300

90
th

 p
er

ce
nt

ile
 R

D
P

Client to object round-trip (ping) time (10 ms buckets)

Unoptimized
Opt(1 near, 1 hop) [+1]

Opt(1 near, 3 hops) [+3]
Opt(5 near, 2 hops) [+10]
Opt(8 near, 3 hops) [+24]

RDP = 1

Figure 8: The effect of publishing to nearest neighbors on 90��

percentile RDP.

Figure 8), clearly showing that the optimizations improve
nearly all inefficient cases of local area object location.

4.4 Cost

Of course these improvements in local area RDP come at
the cost of increased storage overhead; there will be many
more pointers per object in the system with optimizations
than without. Table 1 compares the calculated cost of an
optimization (the maximum number of additional point-
ers per object possible) to the observed cost (the average
number of additional pointers per object stored during the
experiment), for various optimization parameters. Note
that the observed cost is always less than the analytical
cost (sometimes substantially less). This is because many
times a routing table entry or level is not entirely full, and
thus it is not possible (or necessary) to publish the full
number of additional pointers.



 0

 5

 10

 15

 20

 0  50  100  150  200

90
th

 p
er

ce
nt

ile
 R

D
P

Client to object round-trip (ping) time (10 ms buckets)

Unoptimized
threshold = 2
threshold = 5

threshold = 10
RDP = 1

Figure 9: The effect of publishing to the local surrogate on 90��

percentile RDP.

� � Analytical cost Observed cost
1 1 1 .83
2 2 4 3.11
3 3 9 6.18

a) Publishing to backups
� � Analytical cost Observed cost
1 1 1 .99
1 3 3 2.75
5 2 10 9.12
8 3 24 16.77

b) Publishing to nearest neighbors
� Observed cost
2 .38
5 .24
10 .11

c) Publishing to the local surrogate

Table 1: Cost of optimizations. A summary of the observed
cost of an optimization versus the analytical (maximum) cost.
Costs are given in average additional pointers per object in the
network. Observed costs tend to be much lower than analytical
costs due to unfilled routing table entries and levels.

In the case of publishing to the local surrogate, the
cost depends entirely on the network characteristics, and
thus precomputing an analytical cost is not possible. Al-
though this optimization gives slighter gains in RDP than
the other two, it is more intelligent about where it places
the additional object pointers, using storage resources
very efficiently. Our future work for this optimization in-
cludes experimenting with more sophisticated techniques
for identifying wide area links, hopefully achieving an
even lower RDP for the same efficient resource usage.

5 Conclusion
We have discussed three different optimizations for
locality-aware structured peer-to-peer overlays, and
shown their effectiveness at reducing the RDP of locat-
ing nearby objects. We found that by spending storage

to house additional object pointers in the system, local
area RDP can be greatly improved; furthermore, if the op-
timization technique is conservative and judicious about
where it places the additional pointers, a very small stor-
age overhead can result in a respectable savings in RDP.
Although in this paper we have focused on the implemen-
tation and effects of these techniques in Tapestry, we be-
lieve they can be applied to other DOLRs as well, such
as Pastry (given a pointer indirection layer). From the re-
sults of this paper, we contend that further research into
this subject would be useful to applications that depend
on locality-aware overlays for their performance, and our
future work will focus on testing the impact of these opti-
mizations on actual applications, as well as on evaluating
the cost to the DOLR of maintaining the extra pointers.

Acknowledgments
We thank John Kubiatowicz, Kris Hildrum, and Ben Zhao
for their help in developing these optimizations, and the
reviewers for their insightful comments.

References
[1] ABRAHAM, I., MALKHI, D., AND DOBZINSKI, O. LAND: Lo-

cality aware networks for distributed hash tables. Tech. Rep. TR
2003-75, Leibnitz Center, The Hebrew University, June 2003.

[2] CASTRO, M., DRUSCHEL, P., HU, Y. C., AND ROWSTRON, A.
Exploiting network proximity in peer-to-peer overlay networks.
Tech. Rep. MSR-TR-2002-82, Microsoft Research, 2002.

[3] DABEK, F., ZHAO, B., DRUSCHEL, P., KUBIATOWICZ, J., AND

STOICA, I. Towards a common API for structured P2P overlays.
In Proc. of IPTPS (February 2003).

[4] FREEDMAN, M. J., AND MAZIERES, D. Sloppy hashing and self-
organizing clusters. In Proc. of IPTPS (February 2003).

[5] GUMMADI, K., GUMMADI, R., GRIBBLE, S., RATNASAMY, S.,
SHENKER, S., AND STOICA, I. The impact of DHT routing ge-
ometry on resilience and proximity. In Proceedings of SIGCOMM
(August 2003), ACM.

[6] HARVEY, N. J., JONES, M. B., SAROIU, S., THEIMER, M., AND

WOLMAN, A. Skipnet: A scalable overlay network with practical
locality properties. In Proceedings of USITS (March 2003).

[7] RHEA, S., AND KUBIATOWICZ, J. Probabilistic location and rout-
ing. In Proc. of INFOCOM (June 2002), IEEE.

[8] RODRIGUES, R., LISKOV, B., AND SHRIRA, L. The design of a
robust peer-to-peer system. In Proc. of SIGOPS European Work-
shop (September 2002).

[9] ROWSTRON, A., AND DRUSCHEL, P. Pastry: Scalable, dis-
tributed object location and routing for large scale peer-to-peer
systems. In Proc. of IFIP/ACM Middleware (November 2001).

[10] ZEGURA, E., CALVERT, K., AND BHATTACHARJEE, S. How to
model an internetwork. In Proc. of INFOCOM (1996).

[11] ZHAO, B. Y., HUANG, L., STRIBLING, J., RHEA, S. C.,
JOSEPH, A. D., AND KUBIATOWICZ, J. D. Tapestry: A global-
scale overlay for rapid service deployment. IEEE Journal on Se-
lected Areas in Communications (November 2003). Special Issue
on Service Overlay Networks, to appear.

[12] ZHAO, B. Y., JOSEPH, A. D., AND KUBIATOWICZ, J. Locality-
aware mechanisms for large-scale networks. In Proc. of Interna-
tional Workshop on Future Directions of Distributed Systems (June
2002).


