
Examining the Tradeoffs of Structured Overlays in a Dynamic
Non-Transitive Network

Steven Gerding, Jeremy Stribling
{sgerding, strib}@csail.mit.edu

Abstract
Although structured peer-to-peer overlays are an increas-
ingly popular area of research, ranges of performance
both within a single overlay and between multiple over-
lays have yet to be fully examined. In particular, the ef-
fects of adverse conditions found in real-world networks
on overlay performance have not been adequately quanti-
fied. In this paper, we present and analyze data extracted
from the PlanetLab network, focusing mainly on the pres-
ence of churn and non-transitivity, and use this data to
drive simulations of several structured peer-to-peer over-
lays.

The protocols we use in our simulations are Chord,
Tapestry, Kademlia, and Kelips. For each overlay, we
simulate a range of different parameter settings, attempt
to illustrate the tradeoffs inherent in parameter choices,
and draw comparisons between the different protocols.
We explore the performance of these overlays on a sim-
ulated PlanetLab topology, with and without the patho-
logical conditions mentioned above. Our results indicate
that non-transitivity can have a large effect on the perfor-
mance of some overlays, while the amount of churn seen
on PlanetLab tends to have a less significant impact.

1 Introduction
The performance of structured peer-to-peer overlays un-
der real-world network conditions is a relatively unex-
plored area of research. Even fewer studies exist that
compare the relative performance of several different
peer-to-peer algorithms and examine their various perfor-
mance tradeoffs. While recent research has focused on
the performance of different peer-to-peer geometries on
specific metrics (i.e. static resilience and local conver-
gence) [6], or on examining high-level comparisons be-
tween the institution-specific implementations of a few
overlays [17], there are several aspects of peer-to-peer
performance that have not been addressed by this work.

For example, most peer-to-peer systems can expect a
high degree of churn in its membership; that is, the rate
at which nodes join and leave the network is likely to be
high [7, 18]. In order for an overlay to remain connected
under such conditions, each node must periodically probe
for the liveness of its neighbors. The rate at which each
node probes its neighbors incurs a cost in terms of band-

width, proportional to the amount of state kept by the
node. As bandwidth is often the limiting resource to an
overlay, it is important to understand the tradeoffs over-
lays can make to minimize this maintenance bandwidth,
while still achieving reasonable performance.

Another issue is how different peer-to-peer algorithms
react to pathological conditions that arise in real-world
networks. The impacts of conditions such as time-varying
latencies, link failures, and non-transitive links on over-
lays is poorly understood at best, although we observe that
these are all characteristics of a real-world distributed sys-
tem testbed, PlanetLab [1, 16]. We believe that analyzing
the ability of peer-to-peer algorithms to cope with such
conditions, and understanding the tradeoffs of this ability
on performance, will enable more robust overlay designs
in the future.

In this paper, we explore and compare the impact of
churn and other pathological network conditions on sev-
eral different structured peer-to-peer overlay networks:
Chord [19], Tapestry [21], Kademlia [15], and Kelips [9].
These overlays vary in their geometries and in the amount
of state maintained, leading to differences in perfor-
mance/efficiency tradeoffs. Furthermore, each algorithm
has many different parameters that can be finely-tuned to
improve performance and efficiency. We analyze the ef-
fect of this knob-turning for each overlay and explore the
parameter space to find the best performance envelope for
different network and churn conditions. We also compare
the different overlays to each other, and discuss the trade-
offs a system designer can make when choosing, config-
uring, or designing an overlay. We quantify this perfor-
mance/efficiency tradeoff by comparing bandwidth con-
sumed per node (in bytes per second) to the average la-
tency of a lookup (in milliseconds); this allows us to cor-
rectly account for background maintenance traffic as well
as timeouts incurred during lookups due to stale routing
data.

We perform our evaluations on p2psim,1 a peer-to-
peer simulator recently developed by the Parallel and Dis-
tributed Operating Systems group at MIT. The topologies
we use for our simulations are extracted directly from la-
tency and failure data gathered on PlanetLab [1]; another

1http://pdos.lcs.mit.edu/p2psim

1



contribution of this paper is the presentation and analysis
of several different features of this data. Using real-world
data in a simulator enables us to compare a non-trivial
number of overlay networks under conditions that could
actually arise in a deployment situation, without requir-
ing the multi-institution collaboration, massive debugging
effort, and extensive testing that would be necessary to
gather the same data on PlanetLab itself. There are al-
ready several overlays and overlay services running con-
tinuously on PlanetLab, but often the set of participating
nodes is hand-tuned by researchers to avoid nodes that ex-
hibit strange network behavior. One goal of our work is to
understand the effects this behavior has on overlays, en-
abling researchers to design systems that can easily run
under a wide variety of network conditions.

The next section provides an overview of previous work
in peer-to-peer overlay performance analysis and compar-
ison, comparing and contrasting it to our approach. We
follow this with a presentation of our PlanetLab data set
in Section 3, and then give a brief overview of the four
overlay protocols we explore in Section 4. We present
and analyze our experimental results in Section 5, discuss
their implications in Section 6, and conclude in Section 7.

2 Related Work
In the area of peer-to-peer system performance evaluation,
there has been previous work focusing on topics related to
the thesis of this paper. Various peer-to-peer overlay pro-
tocols proposed in the literature [4,8,9,15,19,21] include
performance evaluations in a static network. Lookup hop-
count and latency are the usual metrics.

In [12], Liben-Nowell et. al. give a theoretical anal-
ysis of Chord in a network with churn. The concept of
half-life is introduced to measure the rate of membership
changes. It is shown that Ω(log n) stabilization notifica-
tions are required per half-life to ensure efficient lookup
with O(log n) hops. The analysis focuses only on the
asymptotic communication cost due to Chord stabiliza-
tion traffic.

In [20], Xu studies the tradeoff of routing state ver-
sus network diameter. The study concludes that existing
overlay protocols that maintain log(n) state have achieved
the optimal asymptotic state vs. network diameter trade-
offs. Chord is asymptotically optimal, but further im-
provements to its exact state/diameter tradeoff are still
possible.

Recent work by Gummadi et. al. [6] has begun to sys-
tematically compare the performance of different overlays
and examine the impact of various design choices. In par-
ticular, Gummadi et. al. analyze how different routing ge-
ometries affect overlay resilience and proximity routing.
However, their analysis is done without taking stabiliza-
tion into consideration and therefore is unable to quantify
the cost of different overlay protocols.

Rhea, Roscoe and Kubiatowicz compared the imple-

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 50  100  150  200  250  300  350  400  450  500

C
D

F 
of

 p
ai

rs

Pairwise ping time (ms)

Fully-connected
Non-transitive

Figure 1: Median pairwise latency distribution in PlanetLab.

mentations of two overlays [17], focusing primarily on the
case for benchmarks as a way to better understand differ-
ent design decisions. Our work focuses on the behavior
of the algorithms, using synthetic workloads to explore
specific behavior aspects. We believe both approaches are
necessary to derive a complete and robust understanding
of peer-to-peer overlay networks.

Other recent work [10, 13] proposes peer-to-peer over-
lays based on de Bruijn graphs as resilient alternatives to
existing overlay protocols. While we feel this is a promis-
ing area of research, space and time constraints prevent
us from including de Bruijn-based overlays in our experi-
ments. We plan to explore this in future work. Similarly,
unstructured and randomized overlay networks [3, 5, 14]
are beyond the scope of this paper.

3 Data Set
In this section we present the characteristics of our
PlanetLab-based topology, as extracted from continuous
measurement of PlanetLab [1]. The data set consists of
fully-pairwise ping times taken between all PlanetLab
nodes, at intervals of fifteen minutes. Each data point
is the average of ten pings attempts. If ten pings have
not successfully returned within two minutes, the link
is considered down. Our analysis focuses on measure-
ments taken between November 1, 2003 and November
18, 2003.

To carry out our experiments, we derived two different
topologies from the PlanetLab data set: a fully-connected
topology and a non-transitive topology. The fully-
connected topology consists of 159 PlanetLab nodes, each
of which is directly connected to every other node in the
set. This topology is used as a baseline in our compar-
isons. The non-transitive topology contains all of the 248
nodes in the PlanetLab data set,2 and is used to simulate
the real-world conditions that peer-to-peer overlays will
be subjected to when put into production (see Section 3.2).

2Nodes which were observed to be dead for the duration of our data
set were excluded.

2



The distribution of median RTTs between nodes in each
topology is shown in Figure 1. The mean RTT for both
topologies is approximately 118 ms.

We chose the PlanetLab data set for our study because
it represents a large, global-scale testbed on which peer-
to-peer systems are currently being deployed. However,
these continuously-running systems do not fully utilize
the entire set of available nodes, mostly because of patho-
logical network conditions. This data set exhibits real-
world levels of node failure, link non-transitivity, and
time-varying link latency. Understanding the effect of
these properties on overlay performance and robustness is
the major goal of this work; these properties are discussed
in the following three subsections.

3.1 Failures

The degree to which failures occur in the environment in
which a peer-to-peer overlay network operates is a ma-
jor determinant of its performance. Two important types
of failures that a system must take into account are link
failures and node failures (i.e. churn rate). A link fail-
ure occurs when a path through the network connecting
two nodes becomes unusable and two formerly connected
nodes can no longer communicate with each other. Link
failures have a variety of different causes, including the
presence of severe congestion in the network, or the fail-
ure of an intermediate router along the path. A node fail-
ure occurs when a particular node is cut off from the entire
system, reboots or becomes deactivated for maintenance,
or fails altogether.

In order to simulate conditions that accurately reflect
real world networks, we sought to characterize the fre-
quency of both node failures and link failures in our data
set. A previous study of the PlanetLab testbed [2] shows
that the mean time to failure (MTTF) of nodes in the sys-
tem is 321.7 hours (approximately two weeks), and that
the mean time to recovery (MTTR) from these failures
is 2.5 hours. Our analysis of the testbed shows that the
MTTF of links in PlanetLab is 9.48 hours and the MTTR
from these failures is 2.69 hours.

It is easy to imagine the effects that failures might have
on peer-to-peer overlay networks. One would expect an
increase in the amount of resources devoted to stabiliza-
tion and ultimately, if failure rates are sufficiently severe,
the complete inability to route requests. We seek to quan-
tify these effects using detailed simulation and real-world
data. Currently, p2psim is equipped to simulate node
churn, but is unable to model the effects of link failures;
as such, link failures will not be included in our analysis.
We do, however, feel that link failures are an important
aspect of real-world network topologies and leave their
exploration to future work.

November 1, 2003 through November 18, 2003

O
rd

er
ed

 P
ai

rs
 o

f 
N

od
es

Figure 2: Pairwise latency variation in PlanetLab over time.
Each horizontal line corresponds to an ordered pair of Planet-
Lab nodes, and the intensity of each point on that line denotes a
relative ping time between the two nodes over the course of eigh-
teen days. White represents the minimum ping time seen, black
the maximum, and middle gray represents the median. We use a
weighted contrast curve to scale intermediate colors, emphasiz-
ing variations near the median. See Section 3.3 for discussion.

3.2 Non-Transitivity
Another important characteristic of the PlanetLab data set
is the presence of non-transitive links. A set of three
nodes is said to exhibit non-transitivity if two of the nodes
are unable to directly communicate with each other, even
though they are both able to communicate with the third
node. For example, given the set of nodes {A, B, C}, if A
is able to communicate with B, B is able to communicate
with C, but A is not able to directly communicate with C,
the situation is said to be non-transitive. Note that any set
of more than three nodes exhibiting non-transitivity must
contain three nodes that meet this definition.

Non-transitivity could present problems for peer-to-
peer overlay networks, depending on their methods of
routing information dissemination. For example, systems
that route requests iteratively rather than recursively may
have problems when the next hop suggested by a neigh-
bor is not reachable from the source of the query, but looks
alive to the neighbor suggesting it.

The primary cause of non-transitivity in our data set is
the existence of three distinct classes of nodes: Internet1-
only nodes, Internet2-only nodes, and nodes that are
multi-homed, i.e. able to communicate on both Internet1
and Internet2. Internet2-only nodes are not able to di-
rectly communicate with Internet1-only nodes and vice
versa, while both are able to communicate with multi-
homed nodes, leading to non-transitivity. The bulk of
the nodes in the PlanetLab testbed are hosted at univer-
sities, which tend to be multi-homed; however, the sys-
tem also incorporates many nodes that are hosted at cor-
porate sites with a connection only to Internet1, as well as

3



nodes co-located with Internet2 routers. The result is that
PlanetLab contains a nontrivial number of nodes from all
three of the aforementioned classes. As the diversity of
the network connections in the system continues to grow,
it will become increasingly more important for peer-to-
peer overlay networks deployed on PlanetLab to take non-
transitivity into account.

To assess the degree of non-transitivity present in Plan-
etLab, we examined all possible combinations of three
nodes from the 248 available in the data set. If exactly
two of the three links between the nodes in a combina-
tion were functioning, the combination was declared to
be non-transitive. Of the 248!

3!×245! = 5022992 combina-
tions analyzed, 248536 (approximately 9.9%) were non-
transitive. Based on this observation, it is clear that non-
transitivity is a non-negligible feature of our data set.

3.3 Time-Varying Latency
PlanetLab’s network environment is not isolated, nor is its
workload static. As such, we expect the latency between
nodes to vary with time as the network undergoes differ-
ent levels of congestion and the load on the nodes fluctu-
ates. Any overlay deployed in such an environment must
cope with a constantly changing topology, and overlays
that depend on locality properties for their performance
must make continual estimates of round trip times in the
network and update routing information as necessary.

In Figure 2, we plot the variation in ping times be-
tween pairs of nodes in our data set, relative to the median
ping time of the pair. The intensity of each point on the
graph indicates the relative ping time between two Plan-
etLab nodes for one measurement, plotted over eighteen
days in November of 2003. Overall ping times tend to
stay relatively close to their medians (represented by the
middle gray color); white corresponds to the minimum
ping time seen between the two nodes, while black is the
maximum. We see by the vertical bands in the graph that
ping times tend to fluctuate in aggregate, and in fact cor-
respond with well-known time-of-day network usage pat-
terns. Close inspection reveals that there are exactly eigh-
teen thin, evenly-spaced darker vertical bands, occurring
approximately between noon and 9:00 pm Eastern time
each day. Moreover, there are two darker sets of thick
vertical bands, each made up of five thin bands, corre-
sponding to the two full Monday to Friday weeks covered
by this data set. On average, the ping time between two
nodes can by vary by a full second from the median, and
in some cases by more than thirty seconds.

4 Overlays
This paper compares four peer-to-peer overlay protocols:
Chord [19], Tapestry [21], Kademlia [15] and Kelips [9].
The protocols have been implemented in the simulator in
as much detail as possible (by the authors and others),
based on published papers and communication with the

Number of successors 4 – 32
Finger base 2 – 128
Finger stabilization interval 2 min – 32 min
Succlist stabilization interval 1 min – 32 min

Table 1: Chord parameters.

Base 2 - 128
Stabilization interval 2 min – 32 min
Number of backup nodes 1 – 4
Backup nodes used in a lookup 1 – 4

Table 2: Tapestry parameters.

architects of each overlay. The protocols have been some-
what adapted in order to implement a compatible lookup
function, which takes a key as an argument, and pursues
the lookup until it has contacted the node responsible for
that key. This section briefly summarizes the protocols
and discusses the parameters that we varied in order to
explore protocol performance. 3

4.1 Chord
In Chord, for our simulations, a lookup completes when
it reaches the node whose ID most closely precedes the
key (the predecessor), which can provide the ID of the
key’s successor. The base b of the ID space is vari-
able for this implementation: a node with ID x keeps
(b− 1) logb(n) fingers (used for performance) whose IDs
lie at exponentially increasing fractions of the ID space
away from itself. Any node whose ID lies within the range
x+( b−1

b )i+1∗2160 and x+( b−1
b )i∗2160, modulo 2160, can

be used as the ith finger of x. This flexibility allows for
Proximity Neighbor Selection [6]. Each node also keeps
a successor list of s nodes (used for correctness). Chord
can route either iteratively or recursively (see [19] for ex-
planations of these different styles); we explore both.

A Chord node x periodically pings all current fingers to
check their liveness. If a finger i doesn’t respond, x issues
a lookup request for the key x + ( b−1

b )i ∗ 2160, yielding
node f . Node x retrieves f ’s successor list, and uses the
successor with the lowest latency as the level i finger. A
node stabilizes its successor list by periodically retrieving
and merging its successor’s successor list. Table 1 lists the
Chord parameters that are varied in the simulations.

4.2 Tapestry
A Tapestry node ID can be viewed as a sequence of l
base-b digits. A routing table has l levels, each with b
entries. Nodes in the mth level table share a prefix of
length m−1 digits, but differ in the mth digit. Each entry
may contain up to c nodes, sorted by latency. The closest

3A subset of these descriptions first appeared in a recent submis-
sion [11], and was written collectively by those authors.

4



Nodes per entry (k) 8, 16, 32
Parallel lookups (α) 1 - 5
Stabilization timer 2 min - 32 min
Refresh timer 2 min - 32 min

Table 3: Kademlia parameters.

of these nodes is the entry’s primary neighbor; the others
serve as backup neighbors.

Nodes forward a lookup message for a key by resolving
successive digits in the key (prefix-based routing). When
no more digits can be resolved, an algorithm known as
surrogate routing determines exactly which node is re-
sponsible for the key (see [21] for the details of this al-
gorithm). Routing in Tapestry is recursive.

For lookups to be correct, at least one neighbor in each
routing table entry must be alive. Tapestry periodically
checks the liveness of each primary neighbor, and if the
node is found to be dead, the next closest backup in that
entry (if one exists) becomes the primary. If a primary is
found to be dead in the course of a lookup (i.e. an RPC to
that node timed out), a backup may be used instead; the
number of backups used in such a way is a configurable
parameter in our implementation. Table 2 lists the param-
eters varied in the simulations.

4.3 Kademlia
A Kademlia node’s routing table consists of b buckets,
where b is the number of bits in a Kademlia node ID.
Bucket i in node x’s routing table consists of (at most)
k node IDs that share the first i most significant bits in x’s
node ID. In a bucket, node IDs are sorted by the last time
they have been seen, with the least-recently seen node at
the head.

A node x does a lookup for key A by sending parallel
RPCs to the α nodes whose IDs are closest to A, using
XOR as the distance metric. A node replies to this RPC
by sending back a list of the k nodes it believes are closest
to A. Node x then sends RPCs to these new nodes, trying
at all times to keep α outstanding RPCs. The lookup con-
verges in O(log n) iterations to the node responsible for
A, (i.e. the node whose ID is closest to A). In our tests,
nodes only look up values corresponding to node IDs; the
lookup succeeds as soon as communication with that node
is established.

A node updates its routing table on every incoming
RPC request or reply, updating the most-recently-seen
timestamp. Every stabilization period each node checks
its routing state, and if all entries in a bucket are older
than the value of the refresh timer, the node refreshes its
routing table by doing a lookup for a key in the bucket’s
range. Thus, Kademlia can leverage communication due
to lookups to stabilize its routing state, without requiring
extra background traffic. Table 3 summarizes the param-
eters we vary in the Kademlia simulations.

Gossip interval 0.125 min – 24 min
Group targets 1 – 64
Contact targets 1 – 16
Group ration 1 – 64
Contact ration 1 – 16
Contacts per group 2 – 8
Times a new item is gossiped 0 – 4
Routing entry timeout 5 min – 40 min

Table 4: Kelips parameters.

4.4 Kelips
Kelips nodes divide themselves into k groups, where k is
chosen to be the square root of the number of nodes. A
node’s group is its ID mod k. Each node’s routing table
contains an entry for every other node in its group, and
“contact” entries for a few nodes from each of the other
groups. Thus a node’s routing table size is a small con-
stant times

√
n, in a network with n nodes.

In the simulator’s variant of Kelips, lookups are only
defined for node IDs. The originating node executes a
lookup for a key by asking a contact in the key’s group
for the IP address of the target key’s node, and then (iter-
atively) contacting that node. If that fails, the originator
tries routing the lookup through randomly chosen nodes.

Nodes periodically gossip to discover the existence of
new members of the network, and may also learn about
other nodes due to lookup communication. Routing table
entries that have not been refreshed for a certain period of
time expire. Nodes learn RTTs and liveness information
from each RPC, and preferentially route lookups through
low-RTT contacts.

Table 4 lists the parameters we vary for Kelips. Targets
are the number of randomly chosen nodes a node sends
information to every gossip interval, and rations are the
number of nodes mentioned in the gossip messages. Con-
tacts per group is the maximum number of contact entries
per group in a node’s routing table; if it has value c, then
the size of each node’s routing table is

√
n + c(

√
n − 1).

5 Evaluation
In this section we present the results of simulating the four
overlay protocols described in Section 4, preceded by a
description of our experimental setup and methodology.
We first give baseline results for all overlays in a static
fully-connected environment, and then show the effects
of churn and non-transitivity on performance, both sepa-
rately and combined. Finally, we explore the effects of
time-varying latencies on lookups.

5.1 Experimental Setup
We performed the experiments presented in this section
using p2psim, a recently-developed discrete event simula-
tor designed for peer-to-peer overlay networks. Currently
p2psim models only network latency, not bandwidth con-

5



 0

 50

 100

 150

 200

 250

 300

 350

 400

 0  5  10  15  20  25  30  35  40

M
ea

n 
la

te
nc

y 
(m

s)

Bytes per node per second

Iterative
Recursive

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0  5  10  15  20  25  30  35  40

M
ea

n 
la

te
nc

y 
(m

s)

Bytes per node per second

Figure 3: Tradeoffs in Chord under the baseline scenario.
Shown for both iterative and recursive routing. The finger base
and stabilization intervals have the greatest effect on perfor-
mance.

Figure 4: Tradeoffs in Tapestry under the baseline scenario.
The ID base and stabilization intervals have the most effect on
performance. Fewer points are shown due to a smaller parameter
range.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0  5  10  15  20  25  30  35  40

M
ea

n 
la

te
nc

y 
(m

s)

Bytes per node per second

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0  5  10  15  20  25  30  35  40

M
ea

n 
la

te
nc

y 
(m

s)

Bytes per node per second

Figure 5: Tradeoffs in Kelips under the baseline scenario. The
number of known contacts per group and the gossip interval have
the greatest effect on performance.

Figure 6: Tradeoffs in Kademlia under the baseline scenario.
Due to its use of lookups for stabilization, Kademlia uses very
little bandwidth. Both k and α have an effect on performance.

straints or queuing delay, which suffices for comparing the
relative performance of different parameter configurations
and protocols. All topologies used in our experiments
were generated from our PlanetLab data set (Section 3).
As a workload, each live node in the network generates
lookups for random keys in the identifier space. The time
between lookups issued by an individual node is exponen-
tially distributed about a mean of 116 seconds, the mean
time between requests measured by a recent study of an
unstructured peer-to-peer system [18]. This ensures that
each node generates several lookups per discrete sample
in our data set. The length of each simulation is six hours
in simulated time, unless otherwise noted. All overlays
begin the test with complete, ideal routing information.

The metric by which we evaluate the performance of
these four overlays illustrates the tradeoff between two
important aspects of peer-to-peer systems: total band-

width usage and lookup latency. Bandwidth is often a
serious bottleneck in such systems, and minimizing the
bandwidth consumed per node (due to lookup and stabi-
lization traffic) is a very real goal for system architects.
On the other hand, finding data as quickly as possible is
important for the user experience. Hence, our simulations
examine the tradeoff between bandwidth and latency to
see which parameter settings and overlays offer the best
performance in terms of both these metrics. Each graph in
this section plots bandwidth consumed (in bytes per node
per second) versus the average latency of a lookup (in mil-
liseconds); each point on the graph represents a full exper-
iment run with a certain set of parameters. We optimisti-
cally model timeouts experienced when communicating
with a dead node as one round-trip time, and these time-
outs are accounted for when computing the mean lookup
latencies in the following sections. Furthermore, lookup

6



 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0  5  10  15  20

M
ea

n 
la

te
nc

y 
(m

s)

Bytes per node per second

Tapestry
Chord (iterative)

Chord (recursive)
Kelips

Kademlia

Figure 7: The performance tradeoffs of all overlays in the base-
line scenario. The curve shown is the convex hull of the mass of
points for each protocol, representing the optimal performance
tradeoff for that protocol.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0  5  10  15  20

M
ea

n 
la

te
nc

y 
(m

s)

Bytes per node per second

Tapestry
Chord (iterative)

Chord (recursive)
Kelips

Figure 8: The performance tradeoffs of all overlays in the churn
scenario.

results are checked for correctness and queries are retried
if their results are incorrect, increasing lookup latency.

5.2 Baseline
As a baseline performance metric, we ran a set of exper-
iments for each protocol on the fully-connected topology
of 159 nodes with no churn, using the median latency ob-
served between each pair of nodes. Not surprisingly, each
protocol performs best when it keeps a large amount of
state and stabilizes as infrequently as possible. Figures
3, 4, 5 and 6 demonstrate the effect of different parame-
ter settings on Chord, Tapestry, Kelips, and Kademlia, re-
spectively. Maintaining a higher number of neighbors (the
base parameters in Chord and Tapestry, contacts per group
in Kelips, and number of entries per bucket in Kademlia)
lowers the latency, while decreasing the amount of stabi-
lization traffic in Chord, Tapestry and Kelips lowers the
bandwidth. Because Kademlia uses lookup traffic to sta-
bilize, it does not need to use extra bandwidth for stabi-
lization; this accounts for both its low bandwidth numbers

as well as the seeming lack of points, as many parameter
settings appear as points with the same value. Changing
the number of parallel lookups in Kademlia is the main
source of increasing bandwidth, lowering lookup laten-
cies at the same time.

To illustrate tradeoffs between overlays, we present the
results for all protocols in this baseline environment in
Figure 7. Each line on the graph represents the convex
hull of the mass of data points collected for each overlay;
essentially, this is the curve that traces the best perfor-
mance tradeoffs available to an individual overlay. At the
knees of the curves, where both latency and bandwidth are
small, we see that in this baseline scenario all protocols
behave similarly, though the two-hop scheme of Kelips
has a slightly lower latency than the other overlays.

5.3 Churn
Next, we wish to explore the degree to which the rate of
churn seen on PlanetLab affects the different protocols.
As mentioned in Section 3.1, PlanetLab nodes have mean
lifetimes of about two weeks, and a mean time to repair of
about 2.5 hours; we scaled these numbers down linearly
to fit into the time scale of our simulations. We ran these
simulations on the fully-connected topology of 159 nodes.
Unfortunately, the p2psim implementation of Kademlia
is too CPU-intensive to run with the churn scenario, so
we do not include Kademlia numbers in this section or
Section 5.5.

Due to space constraints, we omit the full data point
graphs for individual overlays, and simply show the con-
vex hull performances for all overlays under churn in Fig-
ure 8. Because the rate of churn is so low on Planet-
Lab, the performance tradeoffs of the overlays are rela-
tively unaffected. A notable exception is Tapestry: the
figure shows a clear increase in both bandwidth and la-
tency from the static case. We attribute this to the fact that
Tapestry does not separate performance from correctness
in its routing state, and thus stabilizes all neighbors at the
same rate, leading to greater bandwidth usage. Similarly,
it cannot afford to ping neighbors as frequently, and thus
suffers more timeouts due to stale routing state.

5.4 Non-Transitivity
To examine how these overlays perform in the presence
of non-transitive links, we simulated them in our non-
transitive, 248-node topology with no churn (see Sec-
tion 3.2). A node that cannot communicate over a partic-
ular link sees the link as a three second timeout, chosen to
reflect transport level timeout values for new connections.

Figure 9 shows the convex hull performance of each
overlay in the presence of non-transitivity. Perhaps sur-
prisingly, we find that non-transitivity does not dramat-
ically affect Tapestry and Kelips when compared to the
baseline scenario, while Chord (both iterative and recur-
sive) sees a tremendous increase in latency. Kademlia sees

7



 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0  5  10  15  20

M
ea

n 
la

te
nc

y 
(m

s)

Bytes per node per second

Tapestry
Chord (iterative)

Chord (recursive)
Kelips

Kademlia

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0  5  10  15  20

M
ea

n 
la

te
nc

y 
(m

s)

Bytes per node per second

Tapestry
Chord (iterative)

Chord (recursive)
Kelips

Figure 9: The performance tradeoffs of all overlays in the non-
transitive scenario.

Figure 10: The performance tradeoffs of all overlays in the
non-transitive scenario with churn.

a moderate latency jump, as well.
The large performance gap between Tapestry and

Chord can be explained by two important observations.
First, Tapestry’s use of recursive routing ensures that it
communicates with the same set of neighbors through-
out the duration of the test, and thus after one round of
stabilization will remove all unreachable nodes from its
routing table. In contrast, a node using iterative routing
is constantly forced to communicate with new nodes dur-
ing lookups; in the presence of non-transitivity this will
lead to costly timeouts. However, this does not explain
why Tapestry also performs better than recursive Chord in
this scenario – this is due to the strictness of Chord rout-
ing, when compared to the less restrictive style of Tapestry
routing. Chord may only route in one direction around the
ID space, regardless of the routing style in use. Therefore,
if routing reaches a node where the only links available to
a certain node point past the successor (even if other nodes
in the network can reach the successor), the query will in-
correctly terminate prematurely. In Tapestry, however, a
lookup may proceed past the destination and then travel
back in the opposite direction (due to its surrogate routing
algorithm) until it eventually finds the correct destination.
Kelips, which has the least restrictive routing algorithm,
does even better than Tapestry under non-transitivity.

5.5 Churn and Non-Transitivity
Figure 10 shows the results of our simulations for
Tapestry, Chord, and Kelips on the 248-node non-
transitive topology, with churn. Again, the introduction
of churn does not significantly affect the performance of
any of the overlays. Mainly we see that Tapestry suffers
an increase in latency and bandwidth, just as in the fully-
connected churn scenario.

5.6 Time-Varying Latency
Finally, we tested the effect of time-varying latencies on
performance, as discussed in Section 3.3. We present the

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0  5  10  15  20  25  30  35  40

M
ea

n 
la

te
nc

y 
(m

s)

Bytes per node per second

Figure 11: Tradeoffs in Tapestry under the time-varying latency
scenario.

results for Tapestry in Figure 11. This test was conducted
in the fully-connected topology, with no churn, and lasted
for three days of simulated time. Variable latency links
seem to have little effect on performance when compared
to the baseline scenario in Figure 4; the only difference
is a slight increase in lookup latency. Looking again at
Figure 2, we see that the latencies between all pairs of
nodes tend to fluctuate in diurnal patterns, all at the same
time. Therefore, even though the latency of a particu-
lar link may have increased, so have the latencies of all
other links, so there is no room for improvement. Fig-
ure 2 also shows that the mean ping times of links tend to
be above their median ping times, hence the increase in
average lookup latency. Space and time constraints pre-
vent us from presenting time-varying latency results for
all overlays, but the analysis of the Tapestry results lead us
to suspect there will be no major impact on performance.

6 Discussion
Analysis of the data obtained from our experiments has
taught us several general lessons relating the design of

8



 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0  5  10  15  20

M
ea

n 
la

te
nc

y 
(m

s)

Bytes per node per second

Baseline
Non-transitive

Churn
Non-transitive + Churn

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0  5  10  15  20

M
ea

n 
la

te
nc

y 
(m

s)

Bytes per node per second

Baseline
Non-transitive

Churn
Non-transitive + Churn

Figure 12: Tradeoffs in Chord (iterative) under all conditions. Figure 13: Tradeoffs in Chord (recursive) under all conditions.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0  5  10  15  20

M
ea

n 
la

te
nc

y 
(m

s)

Bytes per node per second

Baseline
Non-transitive

Churn
Non-transitive + Churn

Figure 14: Tradeoffs in Tapestry under all conditions.

various aspects of peer-to-peer overlays to their effects on
performance. We feel that these lessons are important to
designers of future structured overlays, and present them
in this section.

Parameter Tuning: In examining Figures 3, 4, 5 and 6,
we see a wide range of performance over the spectrum of
parameters for each overlay. The amount of bandwidth
consumed varies by a factor of 30 in most of the over-
lays, and in the case of Kelips, the mean lookup latency
varies by a factor of almost 4. This drastic variation in per-
formance indicates that parameter tuning is an extremely
important part of implementing peer-to-peer overlays in
a real world application. In addition, the optimal set of
parameters may change as the underlying network con-
ditions evolve. For this reason, an area of future work
in overlay design could be to explore the benefits of dy-
namically self-tuning parameters. Our study has shown
that a general heuristic to follow in choosing overlay pa-
rameters for a network such as PlanetLab is to maintain a
large number of neighbors (corresponding to a high base
or number of contacts per group) and minimize mainte-

nance traffic (corresponding to a large stabilization inter-
val). We hypothesize that these configurations perform
well because of the low degree of node churn present in
the PlanetLab network.

Churn: Previous work has emphasized the importance
of churn rates on the performance of overlay systems;
however, our study has shown that the real-world rates
of churn observed on PlanetLab do not have a signifi-
cant effect on the performance of peer-to-peer overlays.
Figures 12 and 13 show the performance of iterative and
recursive Chord in each of our experiments. For both
graphs, the baseline and churn curves are very close to-
gether, as are the non-transitive and non-transitive + churn
curves. This indicates that churn has a negligible effect on
the performance of Chord, which is consistent with most
of the other overlays. The one exception to this trend is
the performance of Tapestry, as shown in Figure 14. We
have discussed in Section 5.3 that this is primarily due to
the fact that Tapestry does not separate performance state
from correctness state in its routing tables. In other, more
transient networks, higher rates of churn may have a more
significant effect on the performance of peer-to-peer over-
lays and the separation of performance from correctness
could become an imperative design objective.

Non-Transitivity: Our study has shown that the pres-
ence of link non-transitivity in a network can have a con-
siderable impact on the performance of peer-to-peer over-
lays. In examining Figures 12 and 13, we can see the
large discrepancy between Chord’s performance with and
without non-transitive links. In contrast, however, we can
see from Figure 14 that non-transitivity has less of an ef-
fect on the performance of Tapestry. As presented in Sec-
tion 5.4, this is because Tapestry uses only recursive rout-
ing and is able to travel both forward and backward in the
identifier space in search of a key. Although the use of

9



recursive routing forces a node to relinquish fine-grained
control over the routing process (e.g. the ability to abort a
lookup in progress), it is generally more efficient than it-
erative routing, and much more robust to deleterious net-
work conditions such as non-transitivity. In addition, if
the degree of non-transitivity is significant in the target
environment of a peer-to-peer overlay, as it is in Planet-
Lab, the ability to traverse the identifier space in both di-
rections may be crucial to the performance of the overlay.

7 Conclusions and Future Work
We have explored the performance and robustness of four
structured peer-to-peer overlays in the presence of net-
work characteristics culled from the PlanetLab data set.
Our results show that while the amount of churn experi-
enced by PlanetLab nodes does not have a significant im-
pact on most overlays, the presence of non-transitivity in
a network can greatly impair the ability of certain overlay
designs to route quickly and efficiently. To our knowl-
edge, the effects of non-transitivity has not been explored
in previous overlay research, and we have found it can be
an important aspect of the underlying network layer.

One obvious direction for future work in this area is
to expand and diversify the types of overlays examined;
for example, studying overlays at different points in the
state/efficiency tradeoff space (e.g. Koorde [10] or un-
structured overlays). We would also like to explore the ef-
fects of other real-world pathological network conditions,
such as link failures, packet loss rate, and asymmetric link
latencies. Furthermore, examining how scaling the num-
ber of nodes beyond a few hundred affects performance,
as well as determining methods for allowing self-tuning
parameters, would be interesting areas of future research.

The goal of this work has not been to find the “best”
overlay, but rather to explore the interaction between over-
lay properties and the underlying network conditions. We
hope that this work will help inform the decisions of fu-
ture systems designers, leading to the deployment of more
efficient, robust, and scalable overlays on dynamic, non-
transitive networks.

Acknowledgments
We would like to thank Jinyang Li, Thomer M. Gil, Frans
Kaashoek, Robert Morris, and Frank Dabek for their work
on the simulator and overlay implementations used in this
paper, as well as for numerous useful discussions. The
authors of [2] provided valuable insight into how to render
Figure 2, and Frank Dabek and Jinyang Li helped us fix its
contrast levels. Finally, thanks to Hari Balakrishnan and
the 6.829 TAs for their instruction and help over the past
semester.

References
[1] PlanetLab All-Pairs-Pings. http://pdos.lcs.mit.edu/∼strib/pl app/.

[2] ANONYMOUS. Workload and failure characterization on a large-
scale federated testbed. Under submission to SIGMETRICS 2004.

[3] CASTRO, M., COSTA, M., AND ROWSTRON, A. Should we build
Gnutella on a structured overlay? In Proc. of HotNets-II (Novem-
ber 2003).

[4] CASTRO, M., DRUSCHEL, P., HU, Y. C., AND ROWSTRON, A.
Exploiting network proximity in peer-to-peer overlay networks.
Tech. Rep. MSR-TR-2002-82, Microsoft Research, 2002.

[5] CHAWATHE, Y., RATNASAMY, S., BRESLAU, L., LANHAM, N.,
AND SHENKER, S. Making Gnutella-like P2P systems scalable.
In Proc. of SIGCOMM (August 2003).

[6] GUMMADI, K., GUMMADI, R., GRIBBLE, S., RATNASAMY, S.,
SHENKER, S., AND STOICA, I. The impact of DHT routing geom-
etry on resilience and proximity. In Proc. of SIGCOMM (August
2003).

[7] GUMMADI, K. P., DUNN, R. J., SAROIU, S., GRIBBLE, S. D.,
LEVY, H. M., AND J.ZAHORJAN. Measurement, modeling, and
analysis of a peer-to-peer file-sharing workload. In Proc. of SOSP
(October 2003).

[8] GUPTA, A., LISKOV, B., AND RODRIGUES, R. One hop lookups
for peer-to-peer overlays. In Proc. of Hot Topics in Operating Sys-
tems (May 2003).

[9] GUPTA, I., BIRMAN, K., LINGA, P., DEMERS, A., AND VAN

RENESSE, R. Kelips: Building an efficient and stable P2P DHT
through increased memory and background overhead. In Proc. of
IPTPS (February 2003).

[10] KAASHOEK, F., AND KARGER, D. Koorde: A simple degree-
optimal hash table. In Proc. of IPTPS (February 2003).

[11] LI, J., STRIBLING, J., MORRIS, R., KAASHOEK, M. F., AND

GIL, T. M. DHT routing tradeoffs in networks with churn. Under
submission to IPTPS 2004.

[12] LIBEN-NOWELL, D., BALAKRISHNAN, H., AND KARGER,
D. R. Analysis of the evolution of peer-to-peer systems. In Proc.
of Symposium on Principles of Distributed Computing (August
2002).

[13] LOGUINOV, D., KUMAR, A., RAI, V., AND GANESH, S. Graph-
theoretic analysis of structured peer-to-peer systems: Routing dis-
tances and fault resilience. In Proc. of SIGCOMM (August 2003).

[14] MANKU, G. S. Routing networks for distributed hash tables. In
Proc. of Symposium on Principles of Distributed Computing (July
2003).

[15] MAYMOUNKOV, P., AND MAZIERES, D. Kademlia: A peer-to-
peer information system based on the XOR metric. In Proc. of
IPTPS (March 2002).

[16] PETERSON, L., ANDERSON, T., CULLER, D., AND ROSCOE, T.
A blueprint for introducing disruptive technology into the internet.
In Proc. of HotNets-I (October 2002).

[17] RHEA, S., ROSCOE, T., AND KUBIATOWICZ, J. Structured peer-
to-peer overlays need application-driven benchmarks. In Proc. of
IPTPS (February 2003).

[18] SAROIU, S., GUMMADI, K. P., DUNN, R. J., GRIBBLE, S. D.,
AND LEVY, H. M. An analysis of internet content delivery sys-
tems. In Proc. of OSDI (December 2002).

[19] STOICA, I., MORRIS, R., LIBEN-NOWELL, D., KARGER, D.,
KAASHOEK, M. F., DABEK, F., AND BALAKRISHNAN, H.
Chord: A scalable peer-to-peer lookup protocol for internet appli-
cations. IEEE/ACM Transactions on Networking (2002), 149–160.

[20] XU, J. On the Fundamental Tradeoffs between Routing Table Size
and Network Diameter in Peer-to-Peer Networks. In Proc. of Info-
com (March 2003).

[21] ZHAO, B. Y., HUANG, L., STRIBLING, J., RHEA, S. C.,
JOSEPH, A. D., AND KUBIATOWICZ, J. D. Tapestry: A global-
scale overlay for rapid service deployment. IEEE Journal on Se-
lected Areas in Communications (2003). Special Issue on Service
Overlay Networks, to appear.

10


