
OverCite: A Cooperative Digital Research Library

by

Jeremy Stribling

Submitted to the Department of Electrical Engineering
and Computer Science

in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2005

c© Massachusetts Institute of Technology 2005. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

September 2, 2005

Certified by .
M. Frans Kaashoek

Professor
Thesis Supervisor

Accepted by. .
Arthur C. Smith

Chairman, Department Committee on Graduate Students

2

OverCite: A Cooperative Digital Research Library
by

Jeremy Stribling

Submitted to the Department of Electrical Engineering and Computer Science
on September 2, 2005, in partial fulfillment of the

requirements for the degree of
Master of Science in Computer Science and Engineering

Abstract

CiteSeer is a well-known online resource for the computer science research community,
allowing users to search and browse a large archive of research papers. Unfortunately,
its current centralized incarnation is costly to run. Although members of the community
would presumably be willing to donate hardware and bandwidth at their own sites to assist
CiteSeer, the current architecture does not facilitate such distribution of resources.

OverCite is a design for a new architecture for a distributed and cooperative research
library based on a distributed hash table (DHT). The new architecture harnesses donated
resources at many sites to provide document search and retrieval service to researchers
worldwide. A preliminary evaluation of an initial OverCite prototype shows that it can
service more queries per second than a centralized system, and that it increases total storage
capacity by a factor of n/4 in a system of n nodes. OverCite can exploit these additional
resources by supporting new features such as document alerts, and by scaling to larger data
sets.

Thesis Supervisor: M. Frans Kaashoek
Title: Professor

3

4

Acknowledgments

My advisor, Frans Kaashoek, provided the encouragement and vision needed to embark on
this project and write this thesis. I thank him for his time and tireless effort, and for taking a
chance on a fresh-faced kid from Berkeley. In addition, the OverCite project has been joint
work with Robert Morris, Jinyang Li, Isaac Councill, David Karger, and Scott Shenker, all
of whom made important contributions to the success of this work.

I am eternally grateful to Frank Dabek, Jinyang Li, Max Krohn, and Emil Sit for creat-
ing and debugging the software on which OverCite runs. This work would not have been
possible without their genius, creativity, and patience. Thanks also to Dave Andersen for
the use of the RON network, and helping me deploy the new nodes.

The comments of Jayanthkumar Kannan, Beverly Yang, Sam Madden, Anthony Joseph,
the MIT PDOS research group, and the anonymous IPTPS reviewers greatly improved
previous drafts of this work. I also thank C. Lee Giles for his continued support at PSU.

I thank Dan, John, Sanjit, Frank, Nick, Thomer, Frans, Max, Jinyang, Robert, Athicha,
Rodrigo, Emil, Mike, and Alex for keeping my days interesting, my mind challenged, and
my desk covered in plastic yogurt lids and little round magnets.

Without the love and support of my family and friends, I never would have made it this
far. Thanks to everyone.

This research was conducted as part of the IRIS project (http://project-iris.net/), supported by
the National Science Foundation under Cooperative Agreement No. ANI-0225660.

Portions of this thesis were previously published in

Jeremy Stribling, Isaac G. Councill. Jinyang Li, M. Frans Kaashoek, David R. Karger, Robert
Morris and Scott Shenker. OverCite: A Cooperative Digital Research Library. In Proceedings
of the 3rd IPTPS, February 2005.

and consist of text originally written and/or edited by authors of that document.

5

6

Contents

1 Introduction 13
1.1 Problem Statement . 13
1.2 Solution Approach . 14
1.3 Related Work . 15
1.4 Contributions . 16
1.5 Thesis Outline . 16

2 CiteSeer Background 19

3 OverCite Design 21
3.1 Architecture . 21
3.2 Tables . 22

4 Calculations 25
4.1 Maintenance Resources . 25
4.2 Query Resources . 26
4.3 User Delay . 27

5 Implementation 29
5.1 Code Overview . 29
5.2 The DHTStore Module . 29

5.2.1 Meta-data Storage . 30
5.2.2 File Storage . 30

5.3 The Index Module . 31
5.4 The OCWeb Module . 32

6 Evaluation 33
6.1 Evaluation Details . 33
6.2 CiteSeer Performance . 34
6.3 Centralized Baseline . 34
6.4 Distributed OverCite . 35
6.5 Multiple OverCite Servers . 37
6.6 File Downloads . 38
6.7 Storage . 39

7

7 Features and Potential Impact 41

8 Discussion and Conclusion 43
8.1 DHT Application Design . 43
8.2 Future Work . 44
8.3 Conclusion . 44

8

List of Figures

4-1 The timeline of a query in OverCite, and the steps involved. Each vertical bar
represents a node with a different index partition. DHT meta-data lookups are
only required at index servers without cached copies of result meta-data. 26

5-1 Implementation overview. This diagram shows the communication paths between
OverCite components on a single node, and network connections between nodes. . 30

6-1 Average latency of all queries on CiteSeer, as a function of the number of concur-
rent clients. 34

6-2 Average query throughput on CiteSeer, as a function of the number of concurrent
clients. 34

6-3 Average latency of queries with more than 5 results on a centralized server, as a
function of the number of concurrent clients. 35

6-4 Average query throughput on a centralized server, as a function of the number of
concurrent clients. 35

6-5 Average throughput of a single node serving text files from an on-disk cache, as
the number of concurrent file requests varies. 35

6-6 Average latency of queries with more than 5 results on a distributed OverCite
system, as a function of the number of concurrent clients. 36

6-7 Average query throughput on a distributed OverCite system, as a function of the
number of concurrent clients. 36

6-8 The distribution of Searchy query latencies. The tail of both lines reaches 1.3
seconds. 36

6-9 Average query throughput on a distributed OverCite system, as a function of the
number of Web servers increases. The client issues 128 concurrent queries at a time. 37

6-10 Average throughput of OverCite serving Postscript/PDF files from the DHT, as the
number of concurrent file requests varies. 38

9

10

List of Tables

2.1 Statistics of the PSU CiteSeer deployment. 20

3.1 The data structures OverCite stores in the DHT. 23

6.1 Storage statistics for a centralized server. 39
6.2 Average per-node storage statistics for the OverCite deployment. 39

11

12

Chapter 1

Introduction

CiteSeer is a popular repository of scientific papers for the computer science commu-
nity [23], supporting traditional keyword searches as well as navigation of the “web” of
citations between papers. CiteSeer also ranks papers and authors in various ways, and can
identify similarity among papers. Through these and other useful services, it has become a
vital resource for the academic computer science community.

Despite its community value, the future of CiteSeer is uncertain without a sustainable
model for community support. After an initial period of development and deployment at
NEC, CiteSeer went mostly unmaintained until a volunteer research group at Pennsylvania
State University (PSU) recently took over the considerable task of running and maintaining
the system.

This thesis describes OverCite, a new system that provides the same services as Cite-
Seer on a distributed set of geographically-separated nodes. OverCite eliminates the need
for a single institution to contribute all of the resources necessary to run CiteSeer; the re-
source and bandwidth requirement of each participating node is significantly reduced. The
rest of this chapter describes the problems with the current CiteSeer architecture more fully,
outlines OverCite’s solution to these problems, and lists the contributions of the develop-
ment and deployment of OverCite.

1.1 Problem Statement

If CiteSeer were required to support many more queries, implement new features, or sig-
nificantly expand its document collection or its user base, the resources required would
quickly outstrip what PSU, or any other single noncommercial institution, could easily
provide. For example, to include all the papers currently indexed by Inspec [20] (an en-
gineering bibliography service), CiteSeer would need to increase its storage usage by an
order of magnitude. The research community needs a technical solution to overcome these
resource and scalability constraints.

An ideal solution to this problem would put the research community in control of its
own repository of publications. An open, self-managed, self-controlled research repository
would appeal to the collaborative nature of academic researchers, and allow them to retain
control over their work. Commercially-managed systems such as Google Scholar [17] or

13

the ACM Digital Library [1], while certainly feasible solutions, place control of a valuable
document collection in the hands of a single organization (and potentially allows the or-
ganization to control copyrights as well); we argue that a community-controlled solution
would be more flexible and fitting to the needs of researchers.

Because of CiteSeer’s value to the community, it is likely that many institutions would
be willing to donate resources to CiteSeer in return for more control over its evolution. One
possible solution is for PSU to accept these donations (either as grants or hardware) and use
them to enhance the performance of the existing CiteSeer configuration. Unfortunately, this
does not address any bandwidth or centralized management limitations currently faced by
PSU. As one step toward decentralization, willing institutions could purchase and maintain
machines to act as CiteSeer mirrors. However, the hardware and bandwidth requirements of
this machine, as well as the complex setup and maintenance required of a CiteSeer mirror,
might discourage some otherwise interested institutions from participating. If the price of
adoption were not so high, a potentially large number of institutions might be willing to
donate the use of machines and bandwidth at their sites.

Thus, for CiteSeer to prosper and grow as a noncommercial enterprise, it must be
adapted to run on a distributed set of donated, geographically-separated nodes [21]. The
challenge that this thesis addresses is how to realize, robustly and scalably, a distributed
version of CiteSeer. A well-funded, professionally-maintained, centralized library service
will always have more available resources (i.e., storage and bandwidth), and obtain better
performance, than a distributed approach constructed from volunteer resources. This thesis
shows, however, that designing a cooperative library using donated hardware and network
resources is feasible.

With a wide-spread and potentially diverse set of resources, such as the donated Cite-
Seer nodes we envision, one major difficulty is providing a unified service to the user,
despite the lack of centrally-coordinated facilities. A distributed version of CiteSeer, in
particular, must face the problem of maintaining and coordinating a decentralized search
index and distributed storage, allowing data access from anywhere in the network without
requiring any centralized elements. At the same time, adding more resources to a system
introduces more potential points of failure; component and network failures must be han-
dled gracefully. Furthermore, the system should be able to scale as more nodes are added,
and handle more demanding workloads than CiteSeer experiences today (see Table 2.1).
Our solution, OverCite, addresses all of these issues.

1.2 Solution Approach

OverCite is a design that allows such an aggregation of distributed resources, using a dis-
tributed hash table (DHT) infrastructure. A DHT is peer-to-peer software that enables the
sharing of data in a structured overlay network, without the need for centralized compo-
nents. An application can use a DHT to store data robustly on a distributed set of nodes,
and efficiently locate and retrieve specific items from anywhere in the network. DHTs
also mask network failures from the application, allowing the storage and retrieval of data
even under significant network churn. Examples of DHTs include Chord/DHash [12, 41],
Kademlia [30], Pastry [37], and Tapestry [45], among many others.

14

By employing a DHT as a distributed storage layer, OverCite gains several attractive
properties that make it a tenable alternative to CiteSeer. First, the DHT’s robust and scalable
model for data management and peer communication simplifies and automates the inclu-
sion of additional CPU and storage resources. An institution seeking to donate resources
would need only download, install and configure the OverCite software on its machines,
and OverCite could immediately take advantage of the new resources. Second, the DHT
simplifies the coordination of distributed activities, such as Web crawling, by providing
a shared medium for storage and communication. Finally, the DHT acts as a rendezvous
point for producers and consumers of meta-data and documents. Once a node has crawled
a new document and stored it in the DHT, the document will quickly be available to other
DHT nodes, and the application itself, for retrieval.

While peer-to-peer file-sharing technologies such as BitTorrent [11] and content dis-
tribution networks such as Akamai [2] and Coral [15] provide ways to serve data in a
distributed fashion, they do not solve the same problems as a DHT. In particular, they
cache data, but do not store it. Instead, they rely on a Web source to be available as per-
manent storage. Furthermore, they do not provide a facility for storing meta-data, or the
relationship between documents. For these reasons, we choose to implement OverCite us-
ing a DHT, which provides both long-term, arbitrary data storage, decentralized content
distribution, and a convenient interface for application development.

In addition to the DHT, OverCite employs a Web crawler and a distributed, parti-
tioned search index to serve queries. This combination of components allows OverCite
to distribute the services of CiteSeer among many volunteer sites. Chapter 3 describes the
OverCite design in more detail.

1.3 Related Work

Digital libraries have been an integral tool for academic researchers for many years. Pro-
fessional societies such as ACM [1] and IEE [20] maintain online repositories of papers
published at their conferences. Specific academic fields often have their own research
archives, such as arXiv.org [4] and CiteSeer [23], which allow researchers to search and
browse relevant work, both new and old. More recently, initiatives like DSpace [40] and
the Digital Object Identifier system [13] and seek to provide long-term archival of pub-
lications. The main difference between these systems and OverCite is that OverCite is a
community-based initiative that can incorporate donated resources in a peer-to-peer fash-
ion.

Previous work on distributed library systems includes LOCKSS [36], which consists
of many persistent web caches that can work together to preserve data for decades against
both malicious attacks and bit rot. Furthermore, the Eternity Service [3] uses peer-to-peer
technology to resist censorship of electronic documents. There have also been a number of
systems for searching large data sets [5, 9, 16, 19, 29, 38, 43, 44] and crawling the Web [7,
10, 28, 39] using peer-to-peer systems. We share with these systems a desire to distribute
work across many nodes to avoid centralized points of weakness and increase robustness
and scalability.

As mentioned above, services like BitTorrent [11] and Coral [15] provide an alternative

15

style of content distribution to a DHT. Like DHTs such as DHash [12], these systems can
find the closest copy of a particular data item for a user, and can fetch many data items in
parallel. However, the DHT model of data storage is more closely aligned to OverCite’s
vision of creating a full citation database and providing a complete Web service given
donated resources.

1.4 Contributions

At a technical level, exploring the design of a distributed digital library raises a number of
interesting research problems. For example, how does one build a distributed search engine
for a domain that includes hundreds of thousands of documents, but is more specific (and
smaller) than the World Wide Web? What is the best way to store terabytes of data in a
DHT? How does one design a distributed, wide-area online repository to be robust against
server failures? The exploration and solution of these and other problems is the main
contribution of the design described in this thesis.

OverCite is also an interesting and novel application for DHTs. The scale of the data
set, as well as the potential usefulness of the services to the academic community, make
OverCite an intriguing and challenging use of peer-to-peer technology. The implementa-
tion and subsequent testing of OverCite highlights important issues in DHT design (and in
general, distributed systems). Furthermore, OverCite serves as a case study for the use of
DHTs as a substrate for complex peer-to-peer applications, and hopefully others can apply
the lessons we learned to future applications.

Simple calculations (Chapter 4) show that, despite the necessary coordination between
wide-area nodes, an OverCite network with n nodes will have a performance benefit of n/3
times the current centralized system. For example, with 100 nodes, OverCite system-wide
has approximately 30 times the storage of a single CiteSeer node. In practice, we find that
our initial OverCite prototype can provide approximately n/4 times more storage than a
single node (See Section 6.7 for details).

We demonstrate the performance properties of our OverCite implementation on a small,
wide-area set of nodes. In particular, our preliminary experiments show that OverCite can
handle more queries per second than a centralized service, and can provide reasonable
throughput while serving large files.

OverCite, by potentially aggregating many resources, could offer more documents and
features to its users, enabling it to play an even more central role in the community. For
example, we will make OverCite available as a service to the community, and hope it will
improve and enhance the way academic researchers publish and find documents online.

1.5 Thesis Outline

This thesis describes the design, analysis, implementation and evaluation of an OverCite
prototype. After a brief overview of the current CiteSeer architecture and system properties
in Chapter 2, Chapter 3 details the components and data structures used in OverCite, and
Chapter 4 calculates the potential performance and overhead costs incurred by OverCite.

16

Chapter 5 describes the implementation of our prototype, while Chapter 6 evaluates the
prototype with respect to query and file throughput. Chapter 7 postulates new features that
could be added to OverCite, given its wealth of resources, and Chapter 8 discusses future
work and concludes.

17

18

Chapter 2

CiteSeer Background

CiteSeer’s major components interact as follows. A Web crawler visits a set of Web pages
that are likely to contain links to PDF and PostScript files of research papers. If it sees a
paper link it hasn’t already fetched, CiteSeer fetches the file, parses it to extract text and
citations, and checks whether the format looks like that of an academic paper. Then it
applies heuristics to check if the document duplicates an existing document; if not, it adds
meta-data about the document to its tables, and adds the document’s words to an inverted
index. The Web user interface accepts search terms, looks them up in the inverted index,
and presents data about the resulting documents.

CiteSeer assigns a document ID (DID) to each document for which it has a PDF or
Postscript file, and a unique citation ID (CID) to every bibliography entry within a docu-
ment. CiteSeer also knows about the titles and authors of many papers for which it has no
file, but to which it has seen citations. For this reason CiteSeer also assigns a “group ID”
(GID) to each title/author pair for use in contexts where a file is not required. The GID also
serves to connect newly inserted documents to previously discovered citations.

CiteSeer uses the following tables:

1. The document meta-data table, indexed by DID, which records each document’s au-
thors, title, year, abstract, GID, CIDs of document’s citations, number of citations to
the document, etc.

2. The citation meta-data, indexed by CID, which records each citation’s GID and citing
document DID.

3. A table mapping each GID to the corresponding DID, if a DID exists.
4. A table mapping each GID to the list of CIDs that cite it.
5. An inverted index mapping each word to the DIDs of documents containing that

word.
6. A table indexed by the checksum of each fetched document file, used to decide if a

file has already been processed.
7. A table indexed by the hash of every sentence CiteSeer has seen in a document, used

to gauge document similarity.
8. A URL status table to keep track of which pages need to be crawled.
9. A table mapping paper titles and authors to the corresponding GID, used to find the

target of citations observed in paper bibliographies.

19

Property Measurement
Number of papers (# of DIDs) 715,000
New documents per week 750
HTML pages visited 113,000
Total document storage 767 GB
Avg. document size 735 KB
Total meta-data storage 44 GB
Total inverted index size 18 GB
Hits per day >1,000,000
Searches per day 250,000
Total traffic per day 34.4 GB
Document traffic per day 21 GB
Avg. number of active conns 68.4
Avg. load per CPU 66%

Table 2.1: Statistics of the PSU CiteSeer deployment.

Table 2.1 lists statistics for the current deployment of CiteSeer at PSU, current as of
November 2004. CiteSeer uses two servers, each with two 2.8 GHz processors. Most of
the CPU time is used to satisfy user searches. The main costs of searching are lookups in
the inverted index, collecting and displaying meta-data about search results, and converting
document files to user-requested formats. The primary costs of inserting new documents
into CiteSeer are extracting words from newly found documents, and adding the words to
the inverted index. It takes about ten seconds of CPU time to process each new document.

20

Chapter 3

OverCite Design

The primary goal of OverCite is to spread the system’s load over a few hundred volunteer
servers. OverCite partitions the inverted index among many participating nodes, so that
each node only indexes a fraction of the documents. This parallelizes the work of cre-
ating, updating, and searching the index. OverCite makes the user interface available on
many nodes, thus spreading the work of serving files and converting between file formats.
OverCite stores the document files in a DHT, which spreads the burden of storing them.
OverCite also stores its meta-data in the DHT for convenience, to make all data available
to all nodes, and for reliability. The choice of a DHT as a shared storage medium ensures
robust, scalable storage along with the efficient lookup and management of documents and
meta-data. OverCite partitions its index by document, rather than keyword [25, 34, 42, 43],
to avoid expensive joins on multi-keyword queries, and limit the communication necessary
on document insertions.

3.1 Architecture

OverCite nodes have four active components: a DHT process, an index server, a Web
crawler, and a Web server that answers queries. Isolating the components in this man-
ner allows us to treat each independently; for example, the inverted index is not tied any
particular document storage solution. We describe each component in turn.

DHT process. OverCite nodes participate in a DHT. The DHT provides robust storage
for documents and meta-data, and helps coordinate distributed activities such as crawling.
Since OverCite is intended to run on a few hundred stable nodes, each DHT node can keep
a full routing table and thus provide one hop lookups [18,26,27]. Because we expect failed
nodes to return to the system with disks intact in most cases, and because all the data is soft
state, the DHT can be lazy about re-replicating data stored on failed nodes.

Index server. To avoid broadcasting each query to every node, OverCite partitions the
inverted index by document into k index partitions. Each document is indexed in just one
partition. Each node maintains a copy of one index partition; if there are n nodes, there are
n/k copies of each index partition. OverCite sends a copy of each query to one server in

21

each partition, so that only k servers are involved in each query. Each of the k servers uses
about 1/k’th of the CPU time that would be required to search a single full-size inverted
index. Each server returns the DIDs, partial meta-data, scores, and matching context of
the m highest-ranked documents (by some specified criterion, such as citation count) in
response to a query.

We can further reduce the query load by observing that many queries over the CiteSeer
data will involve only paper titles or authors. In fact, analysis of an October 2004 trace of
CiteSeer queries shows that 40% of answerable queries match the title or author list of at
least one document. Furthermore, a complete index of just this meta-data for all CiteSeer
papers is only 50 MB. Thus, an effective optimization may be to replicate this full meta-
data index on all nodes, and keep it in memory, as a way to satisfy many queries quickly
and locally. Another option is to replicate an index containing common search terms on
all nodes. Moreover, if we would like to replicate the full text index on all nodes for even
faster queries (i.e., k = 1), we may be able to use differential updates to keep all nodes
up-to-date on a periodic basis, saving computation at each node when updating the index.

In future work we plan to explore other possible optimizations for distributed search
(e.g., threshold aggregation algorithms [14]). If query scalability becomes an issue, we
plan to explore techniques from recent DHT search proposals [5, 16, 19, 29, 38, 43] or un-
structured peer-to-peer search optimizations [9, 44].

Web crawler. The OverCite crawler design builds on several existing proposals for dis-
tributed crawling (e.g., [7, 10, 28, 39]). Nodes coordinate the crawling effort via a list of
to-be-crawled page URLs stored in the DHT. Each crawler process periodically chooses a
random entry from the list and fetches the corresponding page. When the crawler finds a
new document file, it extracts the document’s text words and citations, and stores the doc-
ument file, the extracted words, and the document’s meta-data in the DHT. The node adds
the document’s words to its inverted index, and sends a message to each server in the same
index partition telling it to fetch the document’s words from the DHT and index them. A
node keeps a cache of the meta-data for documents it has indexed, particularly the number
of citations to the paper, in order to be able to rank search results locally. While many en-
hancements to this basic design (such as locality-based crawling and more intelligent URL
partitioning) are both possible and desirable, we defer a more complete discussion of the
OverCite crawler design to future work.

Web-based front-end. A subset of OverCite nodes run a Web user interface, using round-
robin DNS to spread the client load. The front-end accepts search terms from the user,
sends them to an index server in each partition, collects the results and ranks them, and
displays the top b results for the user. The front-end also retrieves document files from the
DHT, optionally converts them to a user-specified format, and sends them to the user.

3.2 Tables

Table 3.1 lists the data tables that OverCite stores in the DHT. The tables are not explicitly
distinct entities in the DHT. Instead, OverCite uses the DHT as a single large key/value

22

Name Key Value
Docs DID FID, GID, CIDs, etc.
Cites CID DID, GID
Groups GID DID + CID list
Files FID Document file
Shins hash(shingle) list of DIDs
Crawl list of page URLs
URLs hash(doc URL) date file last fetched
Titles hash(Ti+Au) GID

Table 3.1: The data structures OverCite stores in the DHT.

table; the system interprets values retrieved from the DHT based on the context in which
the key was found. These tables are patterned after those of CiteSeer, but adapted to storage
in the DHT. These are the main differences:

• The Files table holds a copy of each document PDF or PostScript file, keyed by
the FID, a hash of the file contents.

• Rather than use sentence-level duplicate detection, which results in very large tables
of sentences, OverCite instead uses shingles [6], a well-known and effective tech-
nique for duplicate detection. The Shins table is keyed by the hashes of shingles
found in documents, and each value is a list of DIDs having that shingle.

• The Crawl key/value pair contains the list of URLs of pages known to contain doc-
ument file URLs, in a single DHT block with a well-known key.

• The URLs table indicates when each document file URL was last fetched. This
allows crawlers to periodically re-fetch a document file to check whether it has
changed.

In addition to the tables stored in the DHT, each node stores its partition of the inverted
index locally. The index is sufficiently annotated so that it can satisfy queries over both
documents and citations, just as in the current CiteSeer.

23

24

Chapter 4

Calculations

OverCite requires more communication resources than CiteSeer in order to manage the
distribution of work, but as a result each server has less work to do. This section calculates
the resources consumed by OverCite, comparing them to the costs of CiteSeer.

4.1 Maintenance Resources

Crawling and fetching new documents will take approximately three times more bandwidth
than CiteSeer uses in total, spread out among all the servers. For each link to a Postscript or
PDF file a node finds, it performs a lookup in URLs to see whether it should download the
file. After the download, the crawler process checks whether this is a duplicate document.
This requires (1) looking up the FID of the file in Files; (2) searching for an existing
document with the same title and authors using Titles; and (3) verifying that, at a shin-
gle level, the document sufficiently differs from others. These lookups are constant per
document and inexpensive relative to downloading the document. Steps (2) and (3) occur
after the process parses the document, converts it into text, and extracts the meta-data.

If the document is not a duplicate, the crawler process inserts the document into Files
as Postscript or PDF, which costs as much as downloading the file, times the overhead f
due to storage redundancy in the DHT [12]. The node also inserts the text version of the
document into Files and updates Docs, Cites, Groups, and Titles to reflect this
document and its meta-data.

Next, the node must add this document to its local inverted index partition (which is
stored at a total of n/k nodes). However, each additional node in the same index partition
need only fetch the text version of the file from Files, which is on average a tenth the size
of the original file. Each of these n/k nodes then indexes the document, incurring some
cost in CPU time.

The additional system bandwidth required by OverCite to crawl and insert a new doc-
ument is dominated by the costs of inserting the document into the DHT, and for the other
nodes to retrieve the text for that document. If we assume that the average original file
size is x, and the size of the text files is on average x/10, then the approximate bandwidth
overhead per document is fx + (n/k)(x/10) bytes.

We estimate the amount of storage needed by each node as follows. The DHT divides

25

Figure 4-1: The timeline of a query in OverCite, and the steps involved. Each vertical bar rep-
resents a node with a different index partition. DHT meta-data lookups are only required at index
servers without cached copies of result meta-data.

document and table storage among all n nodes in the system: this requires (d + e)f/n
GB, where d and e are the amount of storage used for documents and meta-data tables,
respectively. Furthermore, each node stores one partition of the inverted index, or i/k GB
if i is the total index size.

These bandwidth and storage requirements depend, of course, on the system parameters
chosen for OverCite. Some reasonable design choices might be: n = 100 (roughly what
PlanetLab has obtained through donations), k = 20 (so that only a few nodes need to
index the full text of each new document), and f = 2 (the value DHash uses [12]). With
these parameter choices, and the measurements from CiteSeer in Table 2.1, we find that the
OverCite would require 1.84 MB of additional bandwidth per document (above the .735
MB CiteSeer currently uses) and 25 GB of storage per node.

These calculations ignore the cost of DHT routing table and data maintenance traffic.
In practice, we expect these costs to be dwarfed by the traffic used to serve documents as
we assume nodes are relatively stable.

4.2 Query Resources

Because OverCite partitions the inverted index by document, each query needs to be broad-
cast in parallel to k−1 nodes, one for each of the other index partitions.1 Each node caches
the meta-data for the documents in its index partition in order to rank search results and
return relevant data fields to the querying server. When all k nodes return their top m
matches, along with the context of the matches, relevant meta-data, and the value of rank
metric, the originating node sorts the documents and displays the top b matches. Figure 4-1
depicts this process.

The packets containing the queries will be relatively small; however, each response will

1We assume here that no queries match in the meta-data index; hence, these are worst-case calculations.

26

contain the identifiers of each matching document, the context of each match, and the value
of the rank metric. If each DID is 20 bytes, and the context, meta-data, and rank metric
value together are 150 bytes, each query consumes about 170mk bytes of traffic. Assuming
250,000 searches per day, k = 20, and returning m = 10 results per query per node, our
query design adds 8.5 GB of traffic per day to the network (or 85 MB per node). This
is a reasonably small fraction of the traffic currently served by CiteSeer (34.4 GB). This
does not include meta-data lookup traffic for any uncached documents on the index servers,
which should be an infrequent and inexpensive operation.

Serving a document contributes the most additional cost in OverCite, since the Web-
based front-end must retrieve the document fragments from the DHT before returning it
to the user. This will approximately double the amount of traffic from paper downloads,
which is currently 21 GB (though this load is now spread among all nodes). However,
one can imagine an optimization involving redirecting the user to cached pre-constructed
copies of the document on specific DHT nodes, saving this addition bandwidth cost.

OverCite spreads the CPU load of performing each query across multiple nodes, be-
cause the cost of an inverted index lookup is linear in the number of documents in the
index. We demonstrate this effect experimentally in Section 6.4.

4.3 User Delay

User-perceived delay could be a problem in OverCite, as constructing each Web page re-
quires multiple DHT lookups. However, most lookups are parallelizable, and because we
assume a one-hop DHT, the total latency should be low. For example, consider the page
generated by a user keyword query. The node initially receiving the query forwards the
query, in parallel, to k − 1 nodes. These nodes may need to lookup uncached meta-data
blocks in parallel, potentially adding a round-trip time to the latency. Therefore, we expect
that the node can generate the page in response to a search in about twice the average round
trip time of the network, plus computation time.

Generating a page about a given document (which includes that document’s citations
and what documents cite it) will take additional delay for looking up extra meta-data; we
expect each of those pages to take an average of three or four round trip times.

27

28

Chapter 5

Implementation

The OverCite implementation consists of several modules, corresponding to the architec-
tural components listed in Section 3.1 (see Figure 5-1). The DHTStore module is a library
that allows other modules to store and retrieve data objects from a distributed hash table.
The Index module computes an index over the documents in the local machine’s partition,
and performs queries over that index. Finally, the OCweb module presents a Web-based
interface to users, and communicates with the DHTStore module and both local and remote
Index modules to perform queries and provide access to document meta-data and the docu-
ments themselves. The current implementation does not yet include a Crawler module; we
have populated OverCite with existing CiteSeer data, and plan to implement a distributed
crawler in the future. In this chapter, after a brief code overview, we describe each of the
above components (and the interaction between components) in detail.

5.1 Code Overview

The OverCite implementation consists of nearly 10,000 lines of C++ code, and uses the SFS
libasync library [31] to provide an asynchronous, single-threaded execution environment
for each module. Modules on the same machine communicate locally through Unix domain
sockets; modules on different machines communicate via TCP sockets. All inter-module
communication occurs over the Sun RPC protocol.

5.2 The DHTStore Module

The DHTStore module acts as an interface between the rest of the OverCite system and
the DHT storage layer. The module takes the form of a library that can be used by other
system components to retrieve meta-data and documents from DHash [12], a distributed
hash table. The library communicates with DHash over a Unix domain socket.

DHTStore can work with any DHT that provides a put/get interface for data manage-
ment, and supports unauthenticated, non-content-hash blocks (i.e., the application can have
complete control of the key for each item inserted in the DHT). Additionally, the OCWeb
module requires an interface that lists neighbors of the local DHT node, though we plan to
remove this dependence in the future.

29

Figure 5-1: Implementation overview. This diagram shows the communication paths between
OverCite components on a single node, and network connections between nodes.

5.2.1 Meta-data Storage

OverCite stores CiteSeer data in the DHT as Section 3.2 describes. Each logical table
within the DHT indexes its data using a hash of its CiteSeer identifier and a well-known
string; for example, the keys used to index the Docs table are the hash of the string “DID”
concatenated with the DID of the document. This method ensures that nodes can look up
information about a particular data item knowing only the appropriate CiteSeer identifier.
The current implementation supports all tables listed in Table 3.1, with the exception of
Shins, Crawl, and URLs.

While choosing the keys in this manner allows OverCite to store meta-data under a
well-known identifier despite future updates, mutable blocks present a potential challenge
to the DHT. When an application uses the content hash of a block as the block’s key, the
data can be treated as immutable, and data consistency is easily verifiable by both the DHT
and the application. However, mutable data stored under arbitrary keys must be handled
with care by the DHT; if multiple nodes update the data concurrently, the correct state of
the block’s data is not well-defined.

To overcome this problem, OverCite treats its meta-data blocks as append-only data
structures, using new DHash data types inspired by OpenDHT [35]. When meta-data is first
inserted, OverCite places the entire record as a data block under the appropriate key. For
subsequent updates to the meta-data, such as a citation count increase or a title correction,
OverCite appends an update field to the block. On a fetch, the DHTStore module receives
both the original data structure and an update log of all updates; given this information the
module can reconstruct the meta-data block into its correct form.

5.2.2 File Storage

OverCite stores files (both Postscript/PDF files and their text equivalents) within a file-
system-like structure using immutable, content-hash blocks. An inode block contains the
name and size of a file, and pointers to a number of indirect blocks, each of which point
to 16KB blocks of file data. OverCite stores the content-hash key of the inode block in the

30

document’s meta-data; thus, an OverCite module can find a document file knowing only
the DID of the document. The DHTStore module can fetch many file blocks in parallel,
improving the time for file reconstruction. However, due to the absence of request conges-
tion management in DHash, the higher-layer module fetching the blocks using DHTStore
should limit the number of outstanding file fetches at any one time.

5.3 The Index Module

The Index module consists of a server daemon (indexd), a meta-data and text-file cache,
and an interface to a local search engine. indexd listens on both TCP and Unix domain
sockets for Sun RPCs, which request either local query operations or instruct the node to
include new documents in its index.

As detailed in Section 3.1, each node is responsible for indexing and querying some
subset (partition) of the documents. The Index module uses a deterministic function of the
node’s DHT identifier to determine responsibility for a particular partition. OverCite uses
this same function to place new documents in exactly one partition. Currently the module
assumes a centralized agent telling all nodes in each partition about all relevant documents;
future releases of OverCite will include distributed reconciliation of the set of documents
between nodes in the same partition. OverCite does not yet support citation queries or a
full, in-memory meta-data index.

The meta-data and text-file cache manages the information needed by the Index module
to index documents and return query results. The cache coordinates the retrieval of all
DHT information via the DHTStore module, ensuring that only one fetch for a particular
data item is happening at any one time. The cache can also throttle the rate of its requests
to ensure it doesn’t overwhelm the DHT. It keeps all fetched document meta-data in an
in-memory cache, and keeps the fetched text files in both an in-memory cache of limited
size and an on-disk cache.

OverCite uses Searchy [24] as a local search engine. Searchy is a fast, flexible, updat-
able search engine developed at MIT, and indexes each document using its DID as an iden-
tifier. The Index module interfaces with Searchy through command line calls, and parses
Searchy’s output to retrieve the DIDs, search term positions, and scores of the results. The
module then uses this information to retrieve the meta-data and text file from the DHT (or,
more likely, the cache) for each of the top m results, extracts the context information, and
returns all the relevant information in an RPC response via indexd. OverCite can harness
any local search engine, provided a class exists for the engine that implements OverCite’s
expected search engine API.

We chose to deploy OverCite using Searchy, rather than reusing the current homegrown
CiteSeer search engine solution, for several reasons. The current CiteSeer implementation
does not perform well at high loads, as shown in Section 6.2. Furthermore, Searchy proved
to be more extensible, flexible, and easier to debug than the CiteSeer engine, due to its
modular design and active development status.

31

5.4 The OCWeb Module

OverCite uses the OCWeb module to provide an interface between a user’s Web browser
and the storage and index layers of the system. This component is implemented as a module
for the OK Web Server (OKWS) [22], a secure, high-performance web server. Because
OKWS also uses libasync, this choice of Web server allows OCWeb to access the DHTStore
library and interact with DHash directly.

To display document and citation meta-data to users, the OCWeb module looks up the
information using the DHTStore module and formats it as HTML. To perform queries on
behalf of a user, the module contacts the DHT to learn about the local node’s neighbors.
In our DHash-based implementation, this operation returns all of the nodes in the DHash
location table. Based on the DHT identifiers of these neighbors, the module chooses one
from each index partition (excluding the partition of the local index server). For simplicity,
our current implementation assumes that at least one neighbor in each index partition is
running an Index module; however, to decouple the index from the DHT a future version
may use a source other than the DHT to learn about index servers. Currently, the module
picks the live node in each partition with the lowest ping time, and opens a TCP connection
to the indexd running on the node. If the node is not running indexd, the module switches to
the next closest node. When a user submits a query, the OCWeb module sends the full query
to each of the chosen nodes (including the local node), aggregates and sorts the results, and
returns the top results (including title and context) to the user.

32

Chapter 6

Evaluation

OverCite harnesses distributed resources to provide a scalable, community-controlled digi-
tal research library. However, the extra computation and storage resources afforded by this
design benefit the user only if the system can perform queries and retrieve requested data
with reasonable performance, even under heavy load. This chapter explores the perfor-
mance of our OverCite implementation with respect to query rate, throughput, and storage.

Although the scale of the following preliminary experiments is smaller than the ex-
pected size of an OverCite system, and the code is currently an early prototype, this evalua-
tion demonstrates basic performance properties of the OverCite design. We plan to perform
a more in-depth analysis of the system once the code base matures and more nodes become
available for testing.

6.1 Evaluation Details

For this evaluation, we deployed OverCite on five geographically-spread nodes in North
America, and three local MIT nodes. These eight nodes ran all components of the system;
an additional three nodes at MIT participated only in the DHT. The DHash instance on
each node spawned three virtual nodes for load-balancing purposes. All results represent
the average of five experiments (except Figures 6-1 and 6-2, due to time constraints).

We inserted 14,755 documents from the CiteSeer repository into our OverCite deploy-
ment, including the meta-data for the documents, their text and Postscript/PDF files, and
the full citation graph between all documents. Unless otherwise stated, each experiment
involves two index partitions (k = 2). All Index modules return up to 30 results per query
(m = b = 30), and the context for each query contains one highlighted search term. Fur-
thermore, each node has a complete on-disk cache of the text files for all documents in its
index partition (but not the document meta-data or Postscript/PDF files). Index modules do
not throttle their DHT requests for this evaluation.

To evaluate the query performance of OverCite, we used a trace of actual CiteSeer
queries, collected in October 2004. Because we are using a subset of the full CiteSeer
document repository, queries returned fewer results than in CiteSeer. The client machine
issuing queries to OverCite nodes is a local MIT node that is not participating in OverCite,
and that can generate requests concurrently to emulate many simultaneous clients.

33

6.2 CiteSeer Performance

First, we tested the performance of the current CiteSeer implementation on an unloaded
CiteSeer mirror at PSU. In this experiment, the client machine issues queries at varying
levels of concurrency to emulate many simultaneous clients. For each query, the client
opens a new TCP connection to the server, issues the query, and waits to receive the full
page of results from the server. At each concurrency level, the client issues 1000 total
queries.

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100 120 140

L
at

en
cy

 o
f

ea
ch

 r
eq

ue
st

 (
se

co
nd

s)

Number of concurrent queries

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100 120 140
Q

ue
ri

es
/s

ec
on

d

Number of concurrent queries

Figure 6-1: Average latency of all queries
on CiteSeer, as a function of the number of
concurrent clients.

Figure 6-2: Average query throughput on
CiteSeer, as a function of the number of con-
current clients.

Figures 6-1 and 6-2 show CiteSeer’s performance, as a function of the number of con-
current queries. Query latency increases linearly as concurrency increases, while query
throughput holds roughly constant at 5 queries per second. These results are not directly
comparable to the following OverCite results, since the CiteSeer mirror uses the full repos-
itory (more than 700,000 documents) and runs on different hardware. A more direct com-
parison is an objective for future work.

6.3 Centralized Baseline

As a point of comparison for the fully-distributed OverCite system, we first evaluated a
single-node version of OverCite. The single node indexes the full document set using one
index partition, and has a complete in-memory cache of all document meta-data; thus, the
node never communicates with the DHT or Index modules on remote nodes. The queries
in these experiments involve no network hops other than the one between the client and the
server.

Figures 6-3 and 6-4 show the performance (in terms of latency and throughput) of
OverCite on a single node, as the number of concurrent queries increases. We see that la-
tency increases linearly with the number of concurrent queries, while the number of queries
that can be served per second roughly levels off around 14 queries/sec. Figure 6-3 shows
only the latency of queries that returned more than 5 results.

34

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100 120 140

L
at

en
cy

 o
f

ea
ch

 r
eq

ue
st

 (
se

co
nd

s)

Number of concurrent queries

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100 120 140

Q
ue

ri
es

/s
ec

on
d

Number of concurrent queries

Figure 6-3: Average latency of queries with
more than 5 results on a centralized server,
as a function of the number of concurrent
clients.

Figure 6-4: Average query throughput on a
centralized server, as a function of the num-
ber of concurrent clients.

 0

 2

 4

 6

 8

 10

 12

 0 20 40 60 80 100 120 140

T
hr

ou
gh

pu
t (

M
B

/s
)

Number of concurrent file requests

Figure 6-5: Average throughput of a single node serving text files from an on-disk cache, as the
number of concurrent file requests varies.

Our client then requested text files from the single node server, rather than query results,
and measured the resulting throughput. Figure 6-5 shows the throughput as the number
of concurrent client requests varies. As serving these files requires no DHT or remote
index communication for the server, this performance represents the maximum throughput
OverCite can achieve while serving files.

6.4 Distributed OverCite

Next, we evaluated the full OverCite deployment. In these experiments, the client continues
to communicate with a single OverCite server, but now the server must forward the query to
a node indexing documents in the second partition as well. Furthermore, each Index module
must contact the DHT to look up meta-data about the top results for a query. Nodes clear
their in-memory meta-data cache between each experiment.

35

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100 120 140

L
at

en
cy

 o
f

ea
ch

 r
eq

ue
st

 (
se

co
nd

s)

Number of concurrent queries

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100 120 140

Q
ue

ri
es

/s
ec

on
d

Number of concurrent queries

Figure 6-6: Average latency of queries with
more than 5 results on a distributed OverCite
system, as a function of the number of con-
current clients.

Figure 6-7: Average query throughput on a
distributed OverCite system, as a function of
the number of concurrent clients.

Figures 6-6 and 6-7 plot latency and throughput for a multiple-partition, DHT-enabled
system as a function of concurrent queries. Again we see that latency rises linearly as
concurrency increases; latencies of queries with more than 5 results are higher than those
for the single partition case, due mostly to DHT lookups.

Figure 6-7 shows that using multiple nodes to process queries achieves greater through-
put than in the single partition case (Figure 6-4), even though the nodes access the DHT to
download document meta-data resulting in longer queries. However, it is important to no-
tice that Figures 6-3 and 6-6 show latencies of queries with more than 5 results; for queries
with no results (which account for more than 50% of the queries), the multiple-partition
case is actually faster, despite the additional round trip time to transfer results between
OverCite nodes.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

C
um

ul
at

iv
e

fr
ac

tio
n

of
 q

ue
ri

es

Searchy query latency (seconds)

1 partition
2 partitions

Figure 6-8: The distribution of Searchy query latencies. The tail of both lines reaches 1.3 seconds.

We infer then that the network round-trip times involved in this scenario do not bottle-
neck the throughput. Instead, we can explain the throughput disparity by examining the
difference in Searchy query times. Figure 6-8 shows the distribution of Searchy queries

36

during the above experiments. We see that the search times for multiple partitions (espe-
cially those above the median) are faster than those in the single partition case, accounting
for the increased throughput. This is due to the difference in index sizes: in the single par-
tition case, one server performs a query over the full index, while in the multiple partition
case two serves each perform parallel queries over an index of half the size. We verified
that this scaling trend holds true for larger document sets, as well.

6.5 Multiple OverCite Servers

One of the chief advantages of a distributed system such as OverCite over its centralized
counterparts is the degree to which OverCite uses resources in parallel. In the case of
OverCite, clients can choose from many different web servers (either manually or through
DNS redirection), all of which have the ability to answer any query using different sets
of nodes. Because each index partition is replicated on multiple nodes, OverCite nodes
have many forwarding choices for each query. We expect that if clients issue queries con-
currently to multiple servers, each of which is using different nodes as index neighbors,
we will achieve a corresponding increase in system-wide throughput. However, because
the nodes are sharing (and participating in) the same DHT, their resources are not entirely
independent, and so the effect on throughput of adding servers is non-obvious.

Figure 6-9 shows the number of queries per second achieved by OverCite, as a function
of the number of servers used as Web hosts. Each host uses a different neighbor for its
remote index partitions, and the client issues a total of 128 queries concurrently to all of
the available servers.

 0

 10

 20

 30

 40

 50

 60

 70

 0 1 2 3 4 5 6 7 8

Q
ue

ri
es

/s
ec

on
d

Number of Web servers

Figure 6-9: Average query throughput on a distributed OverCite system, as a function of the num-
ber of Web servers increases. The client issues 128 concurrent queries at a time.

Though the trend in the graph fluctuates somewhat across the number of servers, due
to wide variation in DHT lookup times between experiments and nodes, in general adding
more Web servers has the effect of increasing query throughput. Despite the fact that the
servers share a common DHT backbone (used when looking up document meta-data), the
resources of the different machines can be used by OverCite to satisfy more queries in
parallel.

37

6.6 File Downloads

A potential bottleneck in OverCite is its ability to fetch, reconstruct, and return Postscript
and PDF documents to a user. Such a request involves fetching potentially many blocks
in parallel from the DHT. As the archiving and dispensing of these documents is one of
main features of CiteSeer, it is essential that OverCite performs this task with reasonable
performance.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 20 40 60 80 100 120 140

T
hr

ou
gh

pu
t (

M
B

/s
)

Number of concurrent file requests

Figure 6-10: Average throughput of OverCite serving Postscript/PDF files from the DHT, as the
number of concurrent file requests varies.

Figure 6-10 shows the throughput of the OverCite file-serving system, for a single Web
server at various levels of request concurrency. Because OverCite throttles the number of
outstanding DHash fetch operations, throughput quickly reaches a maximum throughput
of 1.2 MB/s and plateaus there, despite the number of concurrent clients.

This limitation appears to be an artifact of having a small DHT: DHash encodes data in
such a way that it needs seven block fragments to reconstruct each block, hence in a small
network every node is involved in nearly every block fetch. As a simple exercise, assume
each DHash database lookup involves two disk seeks, and each seek takes 10 ms. Thus
each node can satisfy at most 50 fetches per second. Because each block fetch involves
retrieving fragments from seven of the eleven DHT nodes, each node participates in 7/11
of all fetches. Therefore, system-wide, we would expect only 50/(7/11) = 78 block
fetches to be possible per second. OverCite uses 16 KB blocks for document data, and at
78 blocks per second, could theoretically serve only 1.22 MB/s.

Without throttling requests, throughput drops to nearly zero after reaching the 1.2 MB/s
level. During this period of low throughput, DHash (specifically its lookup layer, Chord)
reports many RPC timeouts, even though all nodes are still alive and connected. However,
given the above scenario, this behavior is not surprising: if each node is serving data from
its disk as fast as possible, it would spend nearly all of its time blocking on disk operations,
and almost no time servicing RPC messages. This creates livelock conditions [33]; without
timely RPC responses, DHash nodes will give up on a fetch request, assuming the other
node has failed. A situation emerges in which requests queue up while blocking on the
disk, but once completed the results are no longer desired by the requester. Thus, the DHT
does very little useful work, and throughput drops significantly.

38

We do not expect to see this behavior once we deploy OverCite on a larger DHT. With
more nodes, each fetch will involve a much smaller fraction of the nodes, and OverCite
will be able to request more blocks per second without overwhelming the disks of all DHT
nodes.

6.7 Storage

Property Measurement
Document storage 4.5 GB
Meta-data storage .15 GB
Index size .40 GB

Total storage 5.05 GB

Property Measurement
Document storage per node 1.15 GB
Meta-data storage per node .35 GB
Index size per node .21 GB

Total storage per node 1.71 GB

Table 6.1: Storage statistics for a central-
ized server.

Table 6.2: Average per-node storage statis-
tics for the OverCite deployment.

Finally, we compare the storage costs of OverCite to those of a centralized solution.
Given that the current OverCite deployment stores 14,755 documents, Table 6.1 shows the
storage costs faced by a single node running all components of the system. This node
would incur a total storage cost of 5.05 GB.

Table 6.2 shows the average per-node storage costs measured on our 11-node, 2-partition
OverCite deployment. Each node stores a total of 1.71 GB. This result is higher than ex-
pected given the storage formula from Section 4.1, which predicts 1.09 GB (using f = 2 for
content hash data and f = 5 for other data, the default DHash parameters). The additional
storage is due to several different factors: (a) storage overhead incurred in OverCite’s file
data format (i.e., inode and indirect blocks); (b) extra replicas of non-content hash blocks
stored on many nodes by an imperfect DHash replication implementation; and (c) a small
amount of additional data stored in the DHT for testing purposes.

Despite this overhead, OverCite uses less than a factor of four more storage than Cite-
Seer in total. Adding 11 nodes to the system decreased the per-node storage costs by
nearly a factor of three; assuming this scaling factor holds indefinitely, adding n nodes to
the system would decrease per-node storage costs by a factor of roughly n/4. Therefore,
we expect that an OverCite network of n nodes can store n/4 times as much as a single
CiteSeer node.

39

40

Chapter 7

Features and Potential Impact

Given the additional resources available with OverCite’s design (as demonstrated in Chap-
ter 6), a wider range of features will be possible; in the long run the impact of new capa-
bilities on the way researchers communicate may be the main benefit of a more scalable
CiteSeer. This section sketches out a few potential features.

Document Alerts: As the field of computer science grows, it is becoming harder for
researchers to keep track of new work relevant to their interests. OverCite could help by
providing an alert service to e-mail a researcher whenever a paper entered the database
that might be of interest. Users could register queries that OverCite would run daily (e.g.,
alert me for new papers on “distributed hash table” authored by “Druschel”). This service
clearly benefits from the OverCite DHT infrastructure as the additional query load due to
alerts becomes distributed over many nodes. A recent proposal [21] describes a DHT-based
alert system for CiteSeer.

Document Recommendations: OverCite could provide a recommendation feature simi-
lar to those found in popular Web sites like Amazon. This would require OverCite to track
individual users’ activities. OverCite could then recommend documents based on either
previous downloads, previous queries, or downloads by others with similar interests.

Plagiarism Checking: Plagiarism has only been an occasional problem in major con-
ferences, but with increasing volumes of papers and pressure to publish, this problem will
likely become more serious. OverCite could make its database of shingles available to
those who wish to check whether one paper’s text significantly overlaps any other papers’.

More documents: Most authors do not explicitly submit their newly written papers to
CiteSeer. Instead, they rely on CiteSeer to crawl conference Web pages to find new content.
CiteSeer could be far more valuable to the community if it could support a larger corpus
and, in particular, if it included more preprints and other recently written material. While
faster and more frequent crawling might help in this regard, the situation could only be
substantially improved if authors took a more active role in adding their material.

41

As an extreme case, one could imagine that funding agencies and conferences require
all publications under a grant and submissions to a conference be entered into OverCite,
making them immediately available to the community.1 Going one step further, one could
imagine that program committees annotate submissions in OverCite with comments about
the contributions of the paper. Users could then decide based on the comments of the PC
which papers to read (using the document-alert feature). This approach would have the
additional benefit that users have access to papers that today are rejected from a conference
due to limited program time slots.

Potential impact: Radical changes, such as the one above, to the process of dissemina-
tion of scientific results are likely to happen only in incremental steps, but are not out of the
question. Theoretical physics, for example, uses a preprint collection as its main document
repository; insertion into the repository counts as the “publication date” for resolving credit
disputes and, more importantly, researchers routinely scan the list of new submissions to
find relevant papers. This manual mode works less well for computer science, due in part
to the diverse set of sub-disciplines and large number of papers. OverCite, however, could
be the enabler of such changes for computer science, because of its scalable capacity and
ability to serve many queries.

1This would require rethinking anonymous submissions or providing support for anonymous submissions
in OverCite.

42

Chapter 8

Discussion and Conclusion

8.1 DHT Application Design

OverCite is among the first generation of complex DHT applications, and benefits from us-
ing a DHT in three major ways. First, using a DHT greatly simplifies a complex, distributed
system like OverCite by serving as a distributed, robust archive of data while automatically
handling failures. By leveraging existing DHash functionality, the OverCite implementa-
tion is relatively small at only 10,000 lines of code (DHash and Chord are roughly 40,000
lines of code). Second, the DHT simplifies the coordination of distributed activities, such
as crawling. Finally, the DHT acts as a rendezvous point for producers and consumers of
meta-data and documents. OverCite, by employing a DHT in this manner, can harness and
coordinate the resources of many cooperating sites, and will be able to provide a scalable,
feature-rich service to the community.

While the DHT has proven to be a useful tool for OverCite, a number of design chal-
lenges arose during the course of building our prototype. For example, putting values into
the DHT with an unrestricted choice of key is a recognized need of DHT applications [35].
However, not all DHTs (DHash, in particular) support this feature by default, partly due
to the complexity of maintaining the integrity of such data. We found that the ability to
store mutable data under an arbitrary key was essential to OverCite, and recommend that
future DHT designs include this feature. Block update logs are a useful and elegant way to
implement non-content-hash blocks, and provide viable, flexible consistency semantics to
applications.

One potential restriction facing a DHT-based application is the rate at which the DHT
can satisfy puts and gets. The OverCite implementation throttles DHT requests at many
places in the code; otherwise, high client load could easily overwhelm the DHT. Similarly,
the DHash data maintenance algorithm for mutable blocks did not originally throttle its own
bandwidth usage. Thus, when a new node joined the system, it would immediately become
flooded with traffic creating replicas of many meta-data blocks simultaneously, causing
congestion. The OverCite deployment uses an altered version of DHash that throttles this
data maintenance traffic.

43

8.2 Future Work

Though the basic OverCite implementation is complete, there remain many ways to im-
prove the system in the future. We plan to enhance and extend OverCite in the following
ways:

• One barrier to large-scale OverCite deployment, in addition to obtaining and de-
ploying more resources in the wide area, is the lack of an automatic document set
reconciliation algorithm between nodes in the same index partition. We plan to ex-
plore Merkle trees [8, 32] as an efficient means to gossip the identifiers of indexed
documents between nodes.

• Before OverCite can be fully operational, it should include a crawler module that
discovers, inserts, and indexes new research documents appearing on the Web. The
OverCite design in Section 3 includes a preliminary description of a distributed
crawler, but is not yet implemented.

• We plan to deploy OverCite on many more nodes over the course of the next several
months. As we scale up the network, we hope to gain a better understanding of
OverCite’s performance on a larger set of nodes.

• We plan to launch OverCite as a service for the academic community in the near
future. Along with the above items, such a service would require inserting the full
CiteSeer repository into the DHT, creating an attractive HTML appearance for Web
users, and thoroughly testing and debugging the robustness of all aspects of the code.

• The features listed in Section 7 would provide valuable services for the research
community, and would help draw users to OverCite. We will focus on adding new
features to OverCite once a large-scale deployment is live.

• One goal for OverCite is to provide an open programming interface to its meta-data
and documents. Such an API would allow the community to implement new features
on OverCite (such as those listed in Section 7) and analyze the data in arbitrary ways.

• We expect OverCite to run on a relatively small number of nodes, and the Chord
lookup service used by DHash is optimized for much larger deployments. A new
lookup protocol under development at MIT, Accordion [26], performs well at both
small and large scales. Accordion will ensure that OverCite achieves good perfor-
mance for low overhead while the size of the network is small, and will adapt to fit
the needs of an expanding network as well. We plan to run OverCite on Accordion
as soon as a stable implementation is available.

8.3 Conclusion

OverCite is a distributed digital research library solution. As a community-controlled al-
ternative to CiteSeer and Google Scholar, OverCite can aggregate donated resources at

44

many institutions to provide document search and retrieval service to researchers world-
wide. OverCite uses a DHT to store data and coordinate services, and partitions its index
across nodes for performance and scalability.

The OverCite implementation presented in this thesis can service more queries per sec-
ond than a centralized server, despite the addition of DHT operations and remote index
communication. These extra resources can be used to sustain interesting new digital li-
brary features, such as plagiarism detection and document alerts, that may be too resource-
intensive to deploy in a centralized environment. Future deployments of OverCite, includ-
ing many of the features discussed in this thesis, will be made available to the research
community in the near future.

45

46

Bibliography

[1] The ACM Digital Library. http://portal.acm.org/dl.cfm.

[2] Akamai technologies, inc. http://www.akamai.com.

[3] Ross J. Anderson. The Eternity Service. In Proceedings of the 1st International
Conference on the Theory and Applications of Cryptology, 1996.

[4] arXiv.org e-Print archive. http://www.arxiv.org.

[5] Mayank Bawa, Gurmet Singh Manku, and Prabhakar Raghavan. SETS: Search en-
hanced by topic segmentation. In Proceedings of the 2003 SIGIR, July 2003.

[6] Andrei Z. Broder. On the resemblance and containment of documents. In Proceedings
of the Compression and Complexity of Sequences, June 1997.

[7] Timo Burkard. Herodotus: A peer-to-peer web archival system. Master’s thesis,
Massachusetts Institute of Technology, May 2002.

[8] Josh Cates. Robust and efficient data management for a distributed hash table. Mas-
ter’s thesis, Massachusetts Institute of Technology, May 2003.

[9] Yatin Chawathe, Sylvia Ratnasamy, Lee Breslau, Nick Lanham, and Scott Shenker.
Making Gnutella-like P2P systems scalable. In Proceedings of the 2003 SIGCOMM,
August 2003.

[10] Jungchoo Cho and Hector Garcia-Molina. Parallel crawlers. In Proceedings of the
2002 WWW Conference, May 2002.

[11] Bram Cohen. Incentives build robustness in BitTorrent. In Proceedings of the Work-
shop on Economics of Peer-to-Peer Systems, 2003.

[12] Frank Dabek, M. Frans Kaashoek, Jinyang Li, Robert Morris, James Robertson, and
Emil Sit. Designing a DHT for low latency and high throughput. In Proceedings of
the 1st NSDI, March 2004.

[13] The Digital Object Identifier system. http://www.doi.org.

[14] Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal aggregation algorithms for
middleware. Journal of Computer and System Sciences, 66:614–656, 2003.

47

[15] Michael J. Freedman, Eric Freudenthal, and David Maziéres. Democratizing content
publication with Coral. In Proceedings of the 1st NSDI, March 2004.

[16] Omprakash D Gnawali. A keyword set search system for peer-to-peer networks. Mas-
ter’s thesis, Massachusetts Institute of Technology, June 2002.

[17] Google Scholar. http://scholar.google.com.

[18] Anjali Gupta, Barbara Liskov, and Rodrigo Rodrigues. Efficient routing for peer-to-
peer overlays. In Proceedings of the 1st NSDI, March 2004.

[19] Ryan Huebsch, Joseph M. Hellerstein, Nick Lanham, Boon Thau Loo, Scott Shenker,
and Ion Stoica. Querying the Internet with PIER. In Proceedings of the 19th VLDB,
September 2003.

[20] Inspec. http://www.iee.org/Publish/INSPEC/.

[21] J. Kannan, B. Yang, S. Shenker, P. Sharma, S. Banerjee, S. Basu, and S. J. Lee.
SmartSeer: Continuous queries over CiteSeer. Technical Report UCB//CSD-05-1371,
UC Berkeley, Computer Science Division, January 2005.

[22] Maxwell Krohn. Building secure high-performance web services with OKWS. In
Proceedings of the 2004 Usenix Technical Conference, June 2004.

[23] Steve Lawrence, C. Lee Giles, and Kurt Bollacker. Digital libraries and autonomous
citation indexing. IEEE Computer, 32(6):67–71, 1999. http://www.citeseer.
org.

[24] Jinyang Li. Searchy. http://pdos.csail.mit.edu/˜jinyang/searchy.

[25] Jinyang Li, Boon Thau Loo, Joseph M. Hellerstein, M. Frans Kaashoek, David
Karger, and Robert Morris. On the feasibility of peer-to-peer web indexing and
search. In Proceedings of the 2nd IPTPS, February 2003.

[26] Jinyang Li, Jeremy Stribling, M. Frans Kaashoek, and Robert Morris. Bandwidth-
efficient management of DHT routing tables. In Proceedings of the 2nd NSDI, May
2005.

[27] Witold Litwin, Marie-Anna Neimat, and Donovan A. Schneider. LH* — a scalable,
distributed data structure. ACM Transactions on Database Systems, 21(4):480–525,
1996.

[28] Boon Thau Loo, Owen Cooper, and Sailesh Krishnamurthy. Distributed web crawling
over DHTs. Technical Report UCB//CSD-04-1332, UC Berkeley, Computer Science
Division, February 2004.

[29] Boon Thau Loo, Ryan Huebsch, Ion Stoica, and Joseph M. Hellerstein. The case for
a hybrid P2P search infrastructure. In Proceedings of the 3rd IPTPS, February 2004.

48

[30] Petar Maymounkov and David Maziéres. Kademlia: A peer-to-peer information sys-
tem based on the XOR metric. In Proceedings of the 1st IPTPS, March 2002.

[31] David Mazières. A toolkit for user-level file systems. In Proceedings of the 2001
Usenix Technical Conference, June 2001.

[32] Ralph C. Merkle. A digital signature based on a conventional encryption function.
pages 369–378, 1988.

[33] Jeffrey Mogul and K. K. Ramakrishnan. Eliminating receive livelock in an interrupt-
driven kernel. In Proceedings of the 1996 Usenix Technical Conference, January
1996.

[34] Patrick Reynolds and Amin Vahdat. Efficient peer-to-peer keyword searching. In
Proceedings of the 4th International Middleware Conference, June 2003.

[35] Sean Rhea, Brighten Godfrey, Brad Karp, John Kubiatowicz, Sylvia Ratnasamy, Scott
Shenker, Ion Stoica, and Harlan Yu. OpenDHT: A public DHT service and its uses.
In Proceedings of the 2005 SIGCOMM, August 2005.

[36] David S. H. Rosenthal and Vicky Reich. Permanent web publishing. In Proceedings
of the 2000 USENIX Technical Conference, Freenix Track, June 2000.

[37] Antony Rowstron and Peter Druschel. Pastry: Scalable, distributed object loca-
tion and routing for large-scale peer-to-peer systems. In Proceedings of the 18th
IFIP/ACM International Conference on Distributed Systems Platforms (Middleware
2001), November 2001.

[38] Shuming Shi, Guangwen Yang, Dingxing Wang, Jin Yu, Shaogang Qu, and Ming
Chen. Making peer-to-peer keyword searching feasible using multi-level partitioning.
In Proceedings of the 3rd IPTPS, February 2004.

[39] Aameek Singh, Mudhakar Srivatsa, Ling Liu, and Todd Miller. Apoidea: A decen-
tralized peer-to-peer architecture for crawling the world wide web. In Proceedings of
the SIGIR 2003 Workshop on Distributed Information Retrieval, August 2003.

[40] MacKenzie Smith. Dspace for e-print archives. High Energy Physics Libraries Web-
zine, (9), March 2004. http://dspace.org.

[41] Ion Stoica, Robert Morris, David Liben-Nowell, David R. Karger, M. Frans
Kaashoek, Frank Dabek, and Hari Balakrishnan. Chord: A scalable peer-to-peer
lookup protocol for Internet applications. IEEE/ACM Transactions on Networking,
pages 149–160, 2002.

[42] Torsten Suel, Chandan Mathur, Jo-Wen Wu, Jiangong Zhang, Alex Delis, Mehdi
Kharrazi, Xiaohui Long, and Kulesh Shanmugasundaram. ODISSEA: A peer-to-peer
architecture for scalable web search and information retrieval. In Proceedings of the
International Workshop on the Web and Databases, June 2003.

49

[43] Chunqiang Tang and Sandhya Dwarkadas. Hybrid global-local indexing for efficient
peer-to-peer information retrieval. In Proceedings of the 1st NSDI, March 2004.

[44] Beverly Yang and Hector Garcia-Molina. Improving search in peer-to-peer networks.
In Proceedings of the 22nd ICDCS, July 2002.

[45] Ben Y. Zhao, Ling Huang, Jeremy Stribling, Sean C. Rhea, Anthony D. Joseph, and
John D. Kubiatowicz. Tapestry: A resilient global-scale overlay for service deploy-
ment. IEEE Journal on Selected Areas in Communications, 22(1):41–53, January
2004.

50

