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Abstract
A protocol for a distributed hash table (DHT) incurs communi-
cation costs to keep up with churn—changes in membership—in
order to maintain its ability to route lookups efficiently. This pa-
per formulates a unified framework for evaluating cost and per-
formance. Communication costs are combined into a single cost
measure (bytes), and performance benefits are reduced to a single
latency measure. This approach correctly accounts for background
maintenance traffic and timeouts during lookup due to stale routing
data, and also correctly leaves open the possibility of different pref-
erences in the tradeoff of lookup time versus communication cost.
Using the unified framework, this paper analyzes the effects of DHT
parameters on the performance of four protocols under churn.

1 Introduction
The design space of DHT protocols is large. While all designs
are similar in that nodes forward lookups for keys through
routing tables that point to other nodes, algorithms differ in
the amount of state they keep: from O(1) with respect to a
network size of size n [7, 9] to O(log n) [10, 13, 14, 16] to
O(

√
n) [6] to O(n) [5]. They also differ in the techniques

used to find low latency routes, in the way they find alternate
paths after encountering dead intermediate nodes, in the ex-
pected number of hops per lookup, and in choice of parame-
ters such as the frequency with which they check other nodes
for liveness.

How is one to compare these protocols in a way that sep-
arates incidental details from more fundamental differences?
Most evaluations and comparisons of DHTs have focused on
lookup hopcount latency, or routing table size in unchanging
networks [2, 12, 15]. Static analysis, however, may unfairly
favor protocols that keep large amounts of state, since they
pay no penalty to keep the state up to date, and more state
usually results in lower lookup hopcounts and latencies.

This paper presents a framework for evaluating DHT al-
gorithms in the face of joining and leaving nodes, in a way
that makes it easy to compare tradeoffs between state main-
tenance costs and lookup performance. The paper compares
the Tapestry [16], Chord [14], Kelips [6], and Kademlia [10]
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lookup algorithms within this framework. These four reflect
a wide range of design choices for DHTs.

We have implemented a simple simulator that models
inter-node latencies using the King method [3]. This model
ignores effects due to congestion. We compare the perfor-
mance of the DHTs using a single workload consisting of
lookup operations and a particular model of churn. With these
restrictions, we find that with the right parameter settings all
four DHTs have similar overall performance. Furthermore,
we isolate and analyze the effects of individual parameters
on DHT performance, and conclude that common parameters
such as base and stabilization interval can behave differently
in DHTs that make different design decisions.

2 A Cost Versus Performance Framework
DHTs have multiple measures for both costand performance.
Cost has often been measured as the amount of per-node state.
However, an analysis should also include the cost of keeping
that state up to date (which avoids timeouts), and the cost of
exploring the network to search for nearby neighbors (which
allows low-latency lookup). A unified cost metric should in-
dicate consumption of the most valuable system resource; in
our framework it is the number of bytes of messages sent.
This choice reflects a judgment that network capacity is a
more limiting resource to DHTs than memory or CPU time.

Lookup performance has often been measured with hop-
count, latency, success rate, and probability of timeouts. Our
framework uses lookup latency as the unified performance
metric relevant to applications. Lookup hopcount can be ig-
nored except to the extent that it contributes to latency. The
framework accounts for the cost of trying to contact a dead
node during a lookup as a latency penalty equal to a small
constant multiple of the round trip time to the dead node, an
optimistic simulation of the cost of a timeout before the node
pursues the lookup through an alternate route. DHTs retry al-
ternate routes for lookups that return failed or incorrectly for
up to four seconds, which effectively converts failed lookups
into high latencies.

Protocol parameters tend to obscure differences in cost and
performance among protocols, since the parameters may be
tuned for different workloads. A key challenge is to under-
stand differences solely due to parameter choices. We evalu-
ate each protocol over a range of parameter values, outlining
a performance envelope from which we can extrapolate an
optimal cost-performance tradeoff curve.



Parameter Range

Base 2 – 128
Stabilization interval 36 sec – 19 min
Number of backup nodes 1 – 4
Number of nodes contacted during repair 1 – 20

Table 1: Tapestry parameters.

3 Protocol Overviews
This paper evaluates the performance of four existing DHT
protocols (Tapestry [16], Chord [14], Kelips [6], and Kadem-
lia [10]) using the above framework. This section provides
brief overviews of each DHT, identifying the tunable param-
eters in each.

3.1 Tapestry
The ID space in Tapestry is structured as a tree. A Tapestry
node ID can be viewed as a sequence of l base-b digits. A
routing table has l levels, each with b entries. Nodes in the
mth level share a prefix of length m − 1 digits, but differ in
the mth digit. Each entry may contain up to c nodes, sorted
by latency. The closest of these nodes is the entry’s primary
neighbor; the others serve as backup neighbors.

Nodes forward a lookup message for a key by resolving
successive digits in the key (prefix-based routing). When no
more digits can be resolved, an algorithm known as surrogate
routing determines exactly which node is responsible for the
key [16]. Routing in Tapestry is recursive.

For lookups to be correct, at least one neighbor in each
routing table entry must be alive. Tapestry periodically checks
the liveness of each primary neighbor, and if the node is found
to be dead, the next closest backup in that entry (if one exists)
becomes the primary. When a node declares a primary neigh-
bor dead, it contacts some number of other neighbors asking
for a replacement; the number of neighbors used in this way is
configurable. Table 1 lists Tapestry’s parameters for the sim-
ulations.

3.2 Chord
Chord identifiers are structured in an identifier circle. A key
k is assigned to k’s successor (i.e., the first node whose ID
is equal to k, or follows k in the ID space). In this paper’s
variant of Chord, a lookup for a key visits the key’s predeces-
sor, the node whose ID most closely precedes the key. The
predecessor tells the query originator the identity of the key’s
successor node, but the lookup does not visit the successor.
The base b of the ID space is a parameter: a node with ID x
keeps (b − 1) logb(n) fingers whose IDs lie at exponentially
increasing fractions of the ID space away from itself. Any
node whose ID lies within the range x + ( b−1

b )i+1 ∗ 264 and
x+ ( b−1

b )i ∗ 264, modulo 264, can be used as the ith finger of
x. Chord leverages this flexibility to obtain Proximity Neigh-
bor Selection [2,13]. Each node also keeps a successor listof
s nodes. Chord can route either iteratively or recursively [14];

Parameter Range

Number of successors 4 – 32
Finger base 2 – 128
Finger stabilization interval 40 sec – 19 min
Successor stabilization interval 4 sec – 19 min

Table 2: Chord parameters.

Parameter Range

Gossip interval 18 sec – 19 min
Group ration 8, 16, 32
Contact ration 8, 16, 32
Contacts per group 2, 8, 16
Times a new item is gossiped 2, 8
Routing entry timeout 30 min

Table 3: Kelips parameters.

this paper presents results for the latter.
A Chord node x periodically pings all its fingers to check

their liveness. If a finger i does not respond, x issues a lookup
request for the key x + ( b−1

b )i ∗ 264, yielding node f . Node
x retrieves f ’s successor list, and uses the successor with the
lowest latency as the level i finger. A node separately stabi-
lizes its successor list by periodically retrieving and merging
its successor’s successor list; successor stabilization is sepa-
rate because it is critical for correctness but is much cheaper
than finger stabilization. Table 2 lists the Chord parameters
that are varied in the simulations.

3.3 Kelips
Kelips divides the identifier space into k groups, where k is
a constant roughly equal to the square root of the number of
nodes. A node’s group is its ID mod k. Each node’s rout-
ing table contains an entry for each other node in its group,
and “contact” entries for a few nodes from each of the other
groups. Thus a node’s routing table size is a small constant
times

√
n, in a network with n nodes.

The variant of Kelips in this paper defines lookups only for
node IDs. The originating node executes a lookup for a key
by asking a contact in the key’s group for the IP address of the
target key’s node, and then (iteratively) contacting that node.
If that fails, the originator tries routing the lookup through
other contacts for that group, and then through randomly cho-
sen routing table entries.

Nodes periodically gossip to discover new members of the
network, and may also learn about other nodes due to lookup
communication. Routing table entries that have not been re-
freshed for a certain period of time expire. Nodes learn RTTs
and liveness information from each RPC, and preferentially
route lookups through low RTT contacts.

Table 3 lists the parameters we use for Kelips. Rations are
the number of nodes mentioned in the gossip messages. Con-



Parameter Range

Nodes per entry (k) 4, 8, 16, 32
Parallel lookups (α) 1 – 10
Stabilization interval 20 min – 1 hour

Table 4: Kademlia parameters.

tacts per group is the maximum number of contact entries per
group in a node’s routing table; if it has value c, then the size
of each node’s routing table is

√
n + c(

√
n − 1).

3.4 Kademlia
Kademlia structures its ID space as a tree. The distance be-
tween two keys in ID space is their exclusive or, interpreted
as an integer. The k nodes whose IDs are closest to a key y
store a replica of y. The routing table of a node x has 64 buck-
ets bi (0 ≤ i < 64) that each store up to k node IDs with a
distance to x between 2i and 2i+1.

Kademlia performs iterative lookups: a node x starts a
lookup for key y by sending parallel lookup RPCs to the α
nodes in x’s routing table whose IDs are closest to y. A node
replies to a lookup RPC by sending back a list of the k nodes
it believes are closest to y in ID space. Each time node x re-
ceives a reply, it sends a new RPC to the next-closest node to
y that it knows about, trying at all times to keep α outstanding
RPCs. This continues until some node replies with key y, or
until k nodes whose IDs are closest to y (according to x) did
not return any new node ID closer to y. The simulated work-
loads look up node IDs, and the last step in a lookup is an
RPC to the target node. Our Kademlia implementation favors
proximate nodes. Like Kelips, Kademlia learns existence and
liveness information from each lookup. Table 4 summarizes
the parameters varied in the Kademlia simulations.

4 Evaluation
We implemented these four DHTs in a discrete-event packet-
level simulator, p2psim.1 The simulated network consists of
1, 024 nodes with inter-node latencies derived from measur-
ing the pairwise latencies of 1, 024 DNS servers using the
King method [3]. The average round-trip delay is 152 mil-
liseconds, which serves as a lower bound for the average DHT
lookup time for random keys. The simulator does not simu-
late link transmission rate or queuing delay. All experiments
involve only key lookup, as opposed to data retrieval.

Nodes issue lookups for random keys at intervals exponen-
tially distributed with a mean of ten minutes, and nodes crash
and rejoin at exponentially distributed intervals with a mean
of one hour. This choice of mean session time is consistent
with past studies [4], while the lookup rate guarantees that
nodes perform several lookups per session. Each experiment
runs for six hours of simulated time, and nodes keep their IP
address and ID for the duration of the experiment.

1http://pdos.lcs.mit.edu/p2psim
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Figure 1: Cost versus performance under churn in Tapestry. Each
point represents the average lookup latency and communication cost
achieved for a unique set of parameter values. The convex hull rep-
resents the best achievable cost-performance combinations.
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Figure 2: The convex hulls for all four protocols.

For each of the graphs below, the x-axis shows the com-
munication cost: the average number of bytes sent per second
sent by live nodes. The communication cost includes lookup,
join, and routing table maintenance traffic. The size in bytes
of each message is counted as 20 bytes for headers plus 4
bytes for each node mentioned in the message. The y-axis
shows performance: the average lookup latency, including
timeout penalties (three times the round trip time) and lookup
retries (up to a maximum of four seconds).

4.1 Protocol Comparisons
Each protocol has a number of parameters that affect cost
and performance. As an example, Figure 1 shows Tapestry’s
cost and performance for several hundred parameter combi-
nations. There is no single best combination of parameter val-
ues. Instead, there is a set of best achievable cost-performance
combinations: for each given cost, there is a least achievable
latency, and for each latency, there is a least achievable cost.
These best points are on the convex hullof the full set of



points, a segment of which is shown by the line in Figure 1.
Points not on the convex hull represent inefficient parameter
settings which waste bandwidth.

Figure 2 compares the convex hulls of Tapestry, Chord,
Kademlia and Kelips. Any of the protocols can be tuned to
achieve a latency less than 250 ms if it is allowed enough
bandwidth. The small difference in latency ( 20 ms) between
Chord and Tapestry when bandwidth is plentiful is because
Tapestry achieves a success rate of only 99.5%, compared
to 100% in Chord, due to a slower join process that causes
inconsistent views on which node is responsible for a given
key. Kademlia uses iterative routing, which we observe to
be slower than recursive routing when hopcounts are simi-
lar. When bandwidth is limited, the protocols differ signifi-
cantly in performance. Chord in particular uses its bandwidth
quite efficiently and can achieve low lookup latencies at little
cost. This behavior appears to be due to Chord giving priority
to stabilizing successors over fingers when bandwidth is lim-
ited, since correct successors are all that is needed to ensure
correct lookups. By focusing its limited stabilization traffic
on this small, constant amount of state (as opposed to its full
O(log n) state), Chord is able to maintain correctness. The
other protocols do not have a simple way to ensure correct
lookups, and so their lookup times are increased by the need
to retry lookups that return incorrect responses.

4.2 Parameter Exploration
Figure 1 shows that some parameter settings are much more
efficient than others. This result raises the question of which
parameter settings cause performance to be on the convex
hull; more specifically,

• What is the relative importance of different parameters
on the performance tradeoff for a single protocol?

• Do similar parameters have similar effects on the perfor-
mance tradeoffs of different protocols?

These questions are not straightforward to answer, since dif-
ferent parameters can interact with one another, as we will see
below. To isolate the effect of a single parameter, we calculate
the convex hull segment for each fixed value of that parameter
while varying all the other parameter values. The convex hull
of these segments should trace the full convex hull as shown
in Figure 2.

Tapestry: Figure 3 shows the effect of identifier base on
the performance of Tapestry. Each line on the figure repre-
sents the convex hull segment for a specific value of base.
With respect to bandwidth, these results are not surprising; as
we decrease base, each node has fewer entries in its routing
table,2 and thus needs to contact fewer nodes during stabi-
lization, using less bandwidth. For bases 2 and 4 nodes keep
exactly the same amount of state, but base 4 lowers the hop-
count leading to slightly improved latencies.

2If identifiers have base b in a network with n nodes, routing tables con-
tain b ∗ logb n entries on average [16].
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Figure 3: The effect of base in Tapestry.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0  10  20  30  40  50  60  70  80

av
er

ag
e 

lo
ok

up
 la

te
nc

y 
(m

s)

average live bandwidth (bytes/node/s)

Tapestry:stab=36000
Tapestry:stab=72000

Tapestry:stab=144000
Tapestry:stab=288000
Tapestry:stab=576000

Tapestry:stab=1152000

Figure 4: The effect of stabilization interval in Tapestry (values are
in milliseconds).

The latency results, however, are a bit counter-intuitive:
every value of base is able to achieve the same lookup perfor-
mance, even though a smaller base results in more hops per
lookup on average. This behavior is due to Tapestry’s prox-
imity routing. The first few hops in every lookup tend to be
to nearby neighbors, and so the time for the lookup becomes
dominated by the last hop, which is essentially to a random
node in the network. Therefore, in a protocol with proximity
routing, the base can be configured as a small value in order
to save bandwidth costs due to stabilization.

Figure 4 illustrates the effect of stabilization interval on
the performance of Tapestry. As nodes stabilize more often,
they achieve lower latencies by avoiding more timeouts on the
critical path of a lookup. Although this improvement comes at
the cost of bandwidth, the results show that the cost in band-
width is marginal when compared to the savings in lookup
latency. Thus, not only can the base be set low, but stabiliza-
tion also can happen frequently to keep routing state up to
date under churn. For this workload, a reasonable value is 72
seconds.



 0

 100

 200

 300

 400

 500

 600

 700

 800

 0  10  20  30  40  50  60  70  80

av
er

ag
e 

lo
ok

up
 la

te
nc

y 
(m

s)

average live bandwidth (bytes/node/s)

Chord:base=2
Chord:base=8

Chord:base=32
Chord:base=64

Chord:base=128

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0  10  20  30  40  50  60  70  80

av
er

ag
e 

lo
ok

up
 la

te
nc

y 
(m

s)

average live bandwidth (bytes/node/s)

Kelips:gossip=18000
Kelips:gossip=36000
Kelips:gossip=72000

Kelips:gossip=144000
Kelips:gossip=288000
Kelips:gossip=576000

Figure 5: The effect of base in Chord. Figure 6: The effect of gossip interval in Kelips (values are in mil-
liseconds).

Other experiments (not shown here) indicate that best per-
formance is largely insensitive to number of backup nodes
(as long as there are more than 1) and numbers of nodes con-
tacted during repair.

Chord: Chord separately stabilizes finger and successors.
While the relevant graphs are not shown for reasons of space,
a 72 second successor stabilization interval is enough to en-
sure a high success rate (above 99%); faster rates result in
wasted bandwidth while slower rates result in a greater num-
ber of timeouts during lookups. The finger stabilization inter-
val affects performance without affecting success rate, so its
value must be varied to achieve the best tradeoff. Faster fin-
ger stabilization results in lower lookup latency due to fewer
timeouts, but at a higher communication cost.

Unlike Tapestry, there is no single best base value for
Chord. Figure 5 shows the convex hulls for different base val-
ues. The final convex hull is essentially made up of two base
values (2 and 8). Changing the base from 2 to 8 causes the
best achieved lookup latency to drop from 240 milliseconds
to 203 milliseconds due to decreased hopcount from 3.3 to
2.5. In comparison, small bases in Tapestry (see Figure 3) can
achieve the same low latencies as higher bases; we believe
this is due to a more involved join algorithm that samples a
larger number of candidate neighbors during PNS.

Kelips: The most important parameter in Kelips in the
gossip interval. Figure 6 shows that its value has a strong ef-
fect on the cost versus performance tradeoff. The other pa-
rameters improve performance without increasing cost, and
thus are simple to set. For example, more contacts per group
are always preferable, since that results in a more robust rout-
ing table and a higher probability that a lookup will complete
in just one hop, at only slightly higher cost. With 16 contacts,
for instance, the best lookup latency is 180 ms in 1.2 average
hops as opposed to 280 ms in 1.9 hops for 2 contacts.

Kademlia: Figure 7 shows the effect on Kademlia of vary-
ing the number of parallel lookups (α). The final convex hull

is made up of higher values of α, with bigger α resulting in
lower latency at the cost of more lookup traffic. A bigger α
decreases the time spent waiting for timeouts and increases
the chances of routing lookups through proximate nodes.

Figure 8 shows that the Kademlia stabilization interval has
little effect on latency, but does increase communication cost.
Stabilization does decrease the number of routing table en-
tries pointing to dead nodes, and thus decreases the number
of timeouts during lookups. However, parallel lookups al-
ready ensure that these timeouts are not on the critical path
for lookups, so their elimination does not decrease lookup la-
tency.

4.3 Discussion
Base and stabilization interval have the most effect on DHT
performance under churn, although they affect different pro-
tocols in different ways. These results are tied to our choice
of workload: the effect of base depends on the size of the net-
work, while the effect of stabilization depends on the average
session time of churning nodes.

5 Related Work
This paper’s contribution is a unified framework for compar-
ing DHTs under churn and the effects of their parameters on
performance under churn. Liben-Nowell et al. [8] focus only
on the asymptotic communication cost due to Chord stabiliza-
tion traffic. Rhea et al. [11] present Bamboo, a DHT protocol
designed to handle networks with high churn efficiently and
gracefully. In a similar vein, Castro et al. [1] describe how
they optimize their Pastry implementation, MSPastry, to han-
dle consistent routing under churn with low overhead. The
implementation of the protocols described here include simi-
lar optimizations.

6 Conclusions and Future Work
This paper presents a unified framework for studying the
cost versus lookup latency tradeoffs in different DHT pro-
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Figure 7: The effect of parallel lookups in Kademlia. Values of 1
and 2 are not shown, and perform considerably worse than α = 3.

Figure 8: The effect of stabilization interval in Kademlia (values
are in milliseconds).

tocols, and evaluates Tapestry, Chord, Kelips, and Kadem-
lia in that framework. Given the workload described in Sec-
tion 4, these protocols can achieve similar performance if
parameters are sufficiently well-tuned. However, parameter
tuning is a delicate business; not only can different parame-
ters interact within a protocol to affect the cost versus perfor-
mance tradeoff, but similar parameters in different protocols,
such as base and stabilization interval, can behave differently.
We also identify several parameters that are irrelevant under
churn.

As future work, we plan to isolate and evaluate the design
decisions that cause performance deviations between the pro-
tocols. We will also explore how varying the workload affects
the cost versus performance tradeoff. We hope that under-
standing the tradeoffs inherent in different design decisions,
as well as in parameter tuning, will lead to more robust and
efficient DHT designs.
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