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Abstract

Networking systems such as Ensemble, the x-kernel, Scout,
and Click achieve flexibility by building routers and other
packet processors from modular components. Unfortu-
nately, component designs are often slower than purpose-
built code, and routers in particular have stringent effi-
ciency requirements. This paper addresses the efficiency
problems of one component-based router, Click, through
optimization tools inspired in part by compiler optimiza-
tion passes. This pragmatic approach can result in signifi-
cant performance improvements; for example, the combi-
nation of three optimizations reduces the amount of CPU
time Click requires to process a packet in a simple IP
router by 34%. We present several optimization tools, de-
scribe how those tools affected the design of Click itself,
and present detailed evaluations of Click’s performance
with and without optimization.

1 Introduction

Modular components make systems more flexible and
extensible. Different compositions of the same components
can implement fundamentally different functionality. Fur-
thermore, the use of fine-grained components with simple
specifications can make a system easier to understand. Be-
cause of its requirements for flexibility and extensibility,
and its difficulty, networking software has been a popular
field for the application of component techniques [6, 8, 9,
11, 13, 15].

Networks get faster at an even greater rate than proces-
sors, however, making the efficiency of networking soft-
ware ever more important. Even as component systems
make networking software easier to program, component
techniques introduce inefficiencies that monolithic soft-
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ware can avoid.
One way to avoid component overhead is to apply com-

piler optimization techniques at the component level. For
example, object-oriented optimizations such as static class
analysis can reduce the cost of communication between
components. Dead code elimination, instruction or com-
ponent selection, and inlining also have obvious applica-
tions.

Starting from this principle, we have developed several
optimizers for Click, a system for building extensible rout-
ers from modular components [11]. The optimizers read
Click router configurations on standard input, analyze and
transform them in various ways, and write the optimized
configurations to standard output. They are thus easily
combined, much like compiler optimization passes, but
unlike compiler optimization passes, they work at the level
of router configurations. Our optimizations run quickly
and make real routers significantly faster. For example, the
combination of three optimization tools reduces the Click
CPU time cost of an IP router by 34%, and raises its peak
forwarding rate by 89,000 minimum-size packets per sec-
ond, to 446,000. (On a newer PC, this peak forwarding
rate jumps to 740,000 packets per second.) For high input
rates, the performance of our optimized Click IP router is
limited by our I/O system, not by the CPU time cost of
Click.

The optimization tools form the main contribution of
this work. They demonstrate that compiler optimizations
can usefully be applied at the level of networking compo-
nents. In particular, we hope to show that analogies with
compiler optimizations and programming language tech-
niques can usefully guide the design of pragmatic tools
for optimizing modular routers, and, perhaps, component
systems in general. We also discuss the original Click sys-
tem’s performance issues and relationships between the
optimizers and Click’s design, and provide a detailed anal-
ysis of the forwarding performance of an optimized Click
IP router on several types of PC hardware.

In the rest of this paper, we discuss related work (Sec-
tion 2), present aspects of Click relevant for performance
(Section 3), describe our optimization approach in gen-
eral (Section 5) and particular optimizer tools (Sections 4,
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6, and 7), present performance results (Section 8), and
conclude (Section 9).

2 Related Work

Previous work has described the Click modular router
and the IP router configuration on which we base our
evaluation [11].

The x-kernel [8] provides a framework for implement-
ing and composing network protocols. Protocol nodes in
the x-kernel resemble Click elements. Hand optimization
of x-kernel configurations demonstrated that path inlin-
ing, which combines the effect of our devirtualizer (Sec-
tion 6.1) with inlining, can significantly decrease protocol
latency [12]. Automatic configuration optimization is not
supported.

Scout [13], a successor to the x-kernel, was designed
for routing and high performance networking, rather than
protocol composition. Scout comes with a simple rule-
based optimizer similar to our click-xformtool (Section 6.2).
However, their optimizer transforms paths, or linear chains
of “elements”; click-xform transforms subgraphs, which
is much more powerful. Optimizations implemented by
hand for a Scout TCP forwarder [16] address similar prob-
lems to those we attacked in our IP router—for instance,
the number of components on the forwarding path.

Dynamic modular networking systems, such as Sys-
tem V STREAMS [15] and FreeBSD’s Netgraph [6], focus
on the dynamic construction and manipulation of config-
urations. A complete configuration cannot be easily ex-
tracted from these systems, so optimizing a configuration
must proceed piecemeal. We know of no automatic opti-
mizers for these systems.

Previous work applying compiler optimizations to com-
ponents and systems tends to be more integrated with
traditional compiler technology. The Ensemble [9] and
Esterel [4] projects, for example, use language processors
that understand the entirety of the programming languages
used to write their systems’ components. In contrast, our
optimizers understand components at a high level; some
do not handle C++, the implementation language, at all.
The Ensemble/Esterel approach affords potentially greater
opportunities for optimization, but it also leads to far more
complex language processors.

In particular, Ensemble is a component-based network
protocol architecture designed especially for group mem-
bership and communication protocols. Unlike Click, the x-
kernel, Scout, STREAMS, and Netgraph, which all use con-
ventional systems programming languages like C or C++,
Ensemble components are written in OCaml, a functional
programming language. The Ensemble authors translate

their OCaml components into formal statements in the
Nuprl theorem proving system. From there, they can ex-
tract optimized versions of each node and compose them
according to various combination predicates. Nuprl can
theoretically perform many kinds of optimizations, but
the process is not fully automatic. Human interaction with
the Nuprl system is required to extract useful specifications
from Ensemble components. This may take anything from
a half-hour to an entire afternoon to develop, and requires
input from both the component programmer and a Nuprl
expert [9]. The optimizations implemented by Ensemble
resemble a combination of our click-devirtualize and click-
xform. Forwarding performance was not reported.

Knit [14], a component framework for C programs,
also applies programming language techniques to sys-
tems components. Its implementation strategy, where Knit
modifies object files produced by an unmodified C com-
piler, resembles our approach more than the integrated
approach of systems like Ensemble. The Knit “flattening”
optimization is like an version of our devirtualizer that
additionally inlines code.

3 Click and Its Performance

Click is a component framework for PC router con-
struction. The components are fine-grained packet pro-
cessing modules called elements. Each element has a class;
element class definitions are written in C++. Router con-
figuration designers then combine elements into routers
using a simple declarative language of our design. This
makes Click routers flexible, extensible, and relatively easy
to construct. Figure 1 shows a standard-compliant Click
IP router with two network interfaces. Elements appear as
boxes; arrows between boxes are connections, which deter-
mine how packets travel from element to element. As indi-
cated by this diagram, Click configurations can be thought
of as graphs with elements at the vertices. For more details,
see [5, 11].

Component designs are often slower than purpose-
built code. The cost of inter-component communication
is pure overhead, and reusable components may require
slower, more general algorithms. Performance is a sec-
ondary goal for Click, since the fastest core routers will
never run on PCs. However, even gigabit Ethernet taxes
high-end PC processors and buses, and will for years to
come. There are no spare cycles; slow software means
dropped packets. Therefore, Click was designed to be as
efficient as possible, within the parameters of a flexible,
extensible component framework.

Among the relevant design choices: C++, our imple-
mentation language, has low inherent overhead and hap-
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Figure 1—A Click IP router with two network interfaces.

pily coexists with operating system kernels. The Click
packet abstraction is a thin veneer over the Linux ker-
nel’s sk_buff; extensive use of inline functions makes it
as efficient as sk_buff while providing a friendlier inter-
face. To avoid overhead, elements perform only rudimen-
tary input checking. For example, they often assume that
received packets have the expected protocol, so protocol
dispatch must be made explicit in router configurations.
Click replaces the host operating system’s interrupt-driven
network stack with polling device drivers and a constantly-
active kernel thread. This important change eliminates re-
ceive livelock [10], where receive interrupt processing oc-
cupies all CPU resources and drives the forwarding rate to
zero, and raises a Click IP router’s peak forwarding rate to
over four times that of unmodified Linux.

Nevertheless, sources of overhead remain.

• Virtual functions and packet transfer. Packets are
transferred between elements via dynamic dispatches, or
virtual function calls in C++ terminology. This is much
cheaper than alternatives like implicit queues between

ARPQuerier

ARPQuerier

RED

Figure 2—A configuration fragment that stresses the branch predictor.

components, but it still has inefficiencies. We investigated
the cost of virtual function calls relative to conventional
function calls on a Pentium III processor. The Pentium
caches the targets of indirect branch instructions; when
correctly predicted, a virtual function call takes about 7
cycles, comparable to a conventional function call. Incor-
rectly predicted calls, however, take dozens of cycles. A
Click IP router’s forwarding path takes 1160 cycles on this
processor, making the cost of misprediction significant in
percentage terms.

Unfortunately, the branch predictor performs poorly
on Click routers. For example, two elements with the same
class may connect to elements with different classes, as
in Figure 2. Packet transfers from the two ARPQueriers
share one call site, since the two elements have the same
class; however, the elements transfer packets to different
targets, so if packets alternate between the ARPQueriers,
the branch predictor is always wrong.1

Of course, even well-predicted virtual function calls
are more expensive than no function calls at all. Click’s
fine-grained components are easy to work with, but lead
to routers with many elements on the forwarding path—
sixteen, in the case of our standards-compliant IP router.
At a conservative seven cycles per packet transfer, 9% of
this router’s forwarding path cost is due to function call
overhead.

• General-purpose elements. Click elements should
be as general-purpose as possible. This makes it easier to
reuse elements, design router configurations, and analyze
configurations written by others. It also tends to make the
elements themselves less efficient.

For example, many packet classification tasks in Click
use programmable generic classifiers called Classifier, IP-
Filter, and IPClassifier. These elements compile textual fil-
ter specifications, such as “src 10.0.0.2 && tcp src port 25”,
into decision tree structures traversed on each packet. Al-
most every configuration we’ve written involves one or
more of these elements, and initially, they were by far the
slowest elements in our configurations. We sped up their
inner loops by restricting decision tree operations, and
implemented an extensive set of decision tree optimiza-

1Furthermore, simpler Click elements often use syntactic sugar called
simple_action that can halve their code size, but confuses the pre-
dictor.
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void Classifier::push(int, Packet *p) {

const unsigned char *packet_data = p->data() - _align_offset;

Expr *ex = &_exprs[0]; int pos = 0; // ...

do {

if ((*((unsigned *)(packet_data + ex[pos].offset)) & ex[pos].mask.u) == ex[pos].value.u)

pos = ex[pos].yes;

else

pos = ex[pos].no;

} while (pos > 0);

checked_push_output(-pos, p);

}

inline void FastClassifier_a_ac::length_unchecked_push(Packet *p) {

const unsigned *data = (const unsigned *)(p->data() - 0);

step_0:

if ((data[3] & 65535U) == 8U) {

output(0).push(p);

return;

}

output(1).push(p);

return;

}

a. Classifier inner loop b. click-fastclassifier output

Figure 3—Classification code with and without click-fastclassifier.

tions, similar to BPF+’s [3], to optimize them further. Still,
a special-purpose classification element built for a single
task can beat any generic classifier. This is the essential in-
sight behind compilers’ dynamic code generation [7] and
program specialization/partial evaluation techniques.

Users could address both of these sources of over-
head within the Click framework. For example, they could
write big, coarse-grained elements to reduce inter-element
packet transfer, or write specialized elements rather than
general ones. These solutions come at the cost of flexibil-
ity and extensibility and are therefore unacceptable. There
would be no problem, however, if programs implemented
the solutions instead of users. That idea motivates this
work.

4 Click-Fastclassifier

The click-fastclassifier tool addresses the Classifier in-
efficiencies described above, and provides a convenient
introduction to our optimization methodology.

Again, the problem is that Click’s classifiers traverse
a decision tree structure laid out in memory. Compare
this with the approach of compiling decision trees into
code with inlined constants. This always improves upon
the original classifiers’ data-cache usage, since there is no
tree to access. The compiled code might be larger than the
original code for large decision trees; still, i-cache usage
and cycle counts will usually be better in the compiled ver-
sion. To implement this optimization, users would create
an element class for each classifier in their configuration by
translating decision trees—perhaps even those generated
by Click itself—into if statements.

The click-fastclassifier optimization tool automates ex-
actly this process. In particular, it:

– Reads a Click configuration file from standard input.

– Searches the configuration for classification elements
(Classifier, IPFilter, and IPClassifier), and combines ad-
jacent Classifiers to improve optimization possibilities.

– Extracts those elements into a “harness” configuration
and runs Click on the harness. Click checks the clas-
sifiers for syntax errors, creates their decision trees,
then outputs those trees in human-readable form; the
optimizer parses this output. Since click-fastclassifier
uses Click to extract decision trees, classifier syntax
changes need be implemented exactly once. The “har-
ness” configuration, which contains only the classifiers
and generated boilerplate, avoids possible side effects
from running Click on the input configuration.

– Generates C++ source code for new element classes,
one per decision tree. (Classifiers with identical deci-
sion trees use the same class.) The code consists of
Click boilerplate plus a packet-handling function con-
sisting of the decision tree translated into C++. Fig-
ure 3 shows Classifier’s packet-handling function and
the equivalent function generated by click-fastclassifier
for a simple classifier (“Classifier(12/0800, –)”, which
compares the twelfth and thirteenth bytes of the packet
data against the hex value 0800).

– Changes each classifier element in the router configura-
tion to use its corresponding generated class. For exam-
ple, an element declaration like “c :: Classifier(12/0800,
–)” might change to “c :: FastClassifier@@c”.

– Writes a combination of the new router configuration
and C++ source code to standard output. When the
user installs this configuration, Click will first compile
the source code and dynamically link with the result.
This makes the new element classes accessible to the
configuration.

Thus, click-fastclassifier transparently optimizes every clas-
sifier element in a router configuration. The original, sim-
pler configuration need not be modified.

The speedup attributable to click-fastclassifier depends
both on the classifiers’ decision trees and on the packets
passing through the classifiers. The best case is a very large
tree of which most packets traverse a large fraction before
being emitted. We implemented a 17-rule firewall from
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Building Internet Firewalls [18, pp 691–2] in IPFilter, then
measured IPFilter’s CPU cost for a packet matching the
next-to-last rule (DNS-5). Without click-fastclassifier (and
with Section 8’s evaluation setup), this took 388 nanosec-
onds, or 23% of the total time it takes a packet to pass
through the default Click IP router (excluding devices).
With click-fastclassifier, this dropped by more than half, to
188 ns.

5 The Tool Approach

In general, Click optimization tools are programs like
click-fastclassifier that read router configurations on stan-
dard input, analyze and transform the configurations, and
output the results on standard output. All the optimizers
we’ve built have important properties in common, and the
optimizers have affected the design of Click itself.

5.1 Optimizers and Click

Optimizers don’t link with element class definitions.
They couldn’t; elements meant for the Linux kernel re-
quire symbols and features not available at user level, for
instance. Thus, optimizers do not run configurations as
programs, but treat them more as graphs. A library pro-
vides an extensive set of graph manipulations—adding
and removing elements and so forth.

Graph operations aren’t relevant in Click itself, where
configurations don’t change after they are installed. To
add an element to a Click router, the user must install
an entirely new configuration, although this can be done
in such a way that important state is transferred into the
new router. In retrospect, this single decision—that router
configurations should be static—allowed optimizers to ex-
ist. In some other component-based networking systems,
system state builds up dynamically, through “add” and
“remove” operations; a current configuration is difficult
to extract from such a system, let alone install as a unit.
Allowing for dynamic configuration changes would also
greatly reduce available optimization opportunities; click-
fastclassifier, for example, assumes that classifier configu-
rations remain the same throughout a router’s lifetime.

5.2 The Click language

The existence of optimizers has influenced the little
language used for writing router configurations. We could
have thought of this language as a script for controlling
the router. Instead, we think of it as abstractly specifying
a router configuration—as static and declarative, rather
than dynamic and imperative. In this view, the language’s
sole function is to describe the collection of elements in
the router and the connections between them. Clearly, such

a language is more easily parsed outside the context of a
router than any Tcl-like script alternative.

Optimizers cannot link with actual element definitions,
so they don’t necessarily know the element classes available
to a router. Therefore, we changed the language so that
programs can be parsed correctly without knowing which
names correspond to element classes.

The optimizers have somewhat inhibited language evo-
lution. Syntax changes and extensions are rare, for example.
Extensions require updates to two parsers. More funda-
mentally, optimizers expect to be able to arbitrarily trans-
form configuration graphs and generate Click-language
files corresponding exactly to the results. Language ex-
tensions would have to keep this in mind. Because of these
factors, we have ended up changing the Click language only
to improve compound elements, its abstraction facility.2

Optimizers inspired the archive feature, where a con-
figuration may consist of multiple files bundled into a sin-
gle archive. Several tools use this feature to attach source
and/or object code specialized for a single configuration.
Click compiles and loads the object code before parsing
the configuration itself.

An alternative design might have had optimizers call
Click to parse a configuration. An option would cause Click
to emit the resulting parse tree without initializing the re-
sulting router. Unfortunately, Click and the optimizers have
different parsing requirements, and supporting both in a
single parser might not be significantly simpler than keep-
ing two parsers. For example, the Click parser complains
about unknown element classes, automatically compiles
away compound element abstractions, aborts early when
certain errors occur, and keeps only general information
about the locations of errors in the source file. These choices
simplify and speed up the Click parser, which must live in
the Linux kernel, but are inappropriate for optimizers.

5.3 Elements and specifications

Optimizers cannot easily understand or analyze ele-
ment implementations. Element classes are written in C++,
whose imperative features and weak type system make it
harder to analyze than languages like OCaml or Esterel.
Therefore, we developed mechanisms to embed simple
specifications for element properties directly in the C++
source. Scripts extract these specifications from the source
and write them, in structured form, into files read by the
optimizers. Click uses the specifications directly.

For example, each element must inform Click whether
its input and output ports support “push” or “pull” packet

2Compound elements let users create libraries of common configura-
tion fragments. Some optimizers also depend on them.
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transfer.3 Originally, this took place in unstructured code.
However, our more advanced optimizers need this infor-
mation; click-devirtualize (Section 6.1) must compile dif-
ferent code depending on whether an element is using push
or pull. Therefore, we replaced the unstructured code with
a simple, textual processing code encapsulating the same
information. Element classes specify their processing code
in their class definitions, using a function like this:

const char *processing() const { return "a/ah"; }

(“a/ah” says that the input port and the first output port
may be used as either push or pull, but the second output
port is always push.) Click calls this (virtual) function to
fetch the processing code, while tool support scripts search
the source for definitions of processing and extract the
corresponding codes. Other functions used in the same
way include flow_code and class_name.

This approach maintains a common understanding be-
tween tools and Click, since they use the same specification.
It also limits the implementation’s flexibility. An element
has exactly one processing code, for example; it cannot
change its code depending on its configuration. We have
not found this onerous.

Some specifications pose a more difficult problem than
processing codes. The click-align tool, for example (Sec-
tion 7.1), must know how particular elements will change
the data alignment of passing packets. We have not fig-
ured out how to specify this information textually. Instead,
click-align contains explicit code for the more commonly
relevant element classes. This solution is unsatisfactory.
Alignment specifications can get out of date with the el-
ement code itself, for example. At least the specifications
could be embedded in the element code as comments.

Despite this, we have found external specifications like
processing codes and alignment specifications extremely
convenient in practice. External specifications can be shared
between optimizers or targeted at individual ones. Com-
pared with general approaches like Esterel or Nuprl that
analyze source code directly, external specifications are
more limited, but also easier to write and maintain. Fur-
thermore, our optimizers seem more efficient and easier
to write and use than general theorem provers.

5.4 Analogies

We think of Click optimizers as compiler optimization
passes working on a high-level machine language whose
“instructions” are element classes. Most of the optimizers
correspond to well-known compiler or programming lan-
3Push and pull are different ways to pass packets between elements.
See [11] for more information.

guage optimization techniques: click-fastclassifier to dy-
namic code generation, click-devirtualize to static class
analysis, click-xform to instruction selection or peephole
optimization, click-undead to dead code elimination. This
useful analogy inspired the construction of our first opti-
mizer.

Like compiler optimization passes, or Unix filters, op-
timizers are easy to combine in different orders.

6 Optimization Tools

We have written three optimizers besides click-fastclas-
sifier: click-devirtualize, click-xform, and click-undead. Sec-
tion 8 evaluates their effectiveness on a simple IP router
configuration.

6.1 Click-devirtualize

The click-devirtualize tool addresses virtual function
call overhead by changing packet-transfer virtual func-
tion calls into conventional function calls. Users write el-
ement classes not knowing the context in which they will
be used. Assume instead that every RED element was im-
mediately followed by a Queue. Then the virtual function
call by which RED transfers packets downstream could
be replaced with a conventional function call to Queue’s
packet handling function. This transformation obviously
limits the flexibility of the RED element, and is therefore
inappropriate for hand implementation. Click-devirtualize
simply runs the optimization automatically.

Click-devirtualize reads a router configuration, then
reads and partially parses the C++ source code for each
element class used in that configuration. It generates new
C++ element classes, roughly one per element, that replace
each virtual function call for packet transfer with the cor-
rect direct function call. For example, consider an element
whose first output port connects to the first input port of a
Counter element. Then click-devirtualize would transform
code like this, in the normal element class,

Element *next = output(0).element();

// call goes through virtual function table

next->push(output(0).port(), packet_ptr);

into code like this:

Counter *next = (Counter *)output(0).element();

// call is resolved at compile time

next->Counter::push(0, packet_ptr);

Note that ‘output(0).port()’ was changed to ‘0’, the
actual port number. Click-devirtualize inlines several other
method calls as well.

While click-devirtualize can generate a new element
class for every element, it usually does not. For exam-
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ple, Discard elements are dead ends—they do not trans-
fer packets elsewhere—so all Discard elements can share
code.4 Therefore, two elements can share code if they have
the same class (Counter, say) and each connect to a Discard.
The two Discards share code, so the packet-transfer virtual
function calls in the Counters resolve to the same function
(namely, Discard::push). Similarly, two elements with
the same class, each connected to one of the two Counters,
can share code, and so forth. Two elements cannot share
code if any of the following properties is true:

1. The elements have different classes.

2. The elements have different numbers of input or out-
put ports.

3. There exists an input or output port where that port
is push on one element, but pull on the other. (Again,
push and pull are different mechanisms for packet
transfer.)

4. There exists a pull input port, or a push output port,
where the elements connected to that port cannot
share code, or the two connections terminate at dif-
ferent port numbers.

In our IP router configurations, analogous elements in
different interface paths can always share code.

Since code expansion may make complete devirtualiza-
tion impractical, click-devirtualize can be told that certain
elements should not be devirtualized. Click-devirtualize
should be the last optimizer applied in any chain, since it
cements the order of elements in the configuration graph.

6.2 Click-xform

Click-xform reads a router configuration and an arbi-
trary collection of pattern and replacement subgraphs. It
checks the configuration for occurrences of each pattern
and replaces each occurrence with the corresponding re-
placement. When there are no more occurrences of any
pattern, it emits the transformed configuration. Pattern
and replacement subgraphs are router configuration frag-
ments written as compound elements in the Click language.
A pattern matches a subset of the configuration graph if
the subset contains corresponding elements that are con-
nected the same way. Furthermore, connections into or
out of the subset must occur only in places allowed by the
pattern. Element configuration strings must also match,
except that patterns may contain wildcards that stand for
any configuration argument.

Although click-xform is a general-purpose configura-
tion transformer, we designed it for a more specific task:
4Strictly speaking, only Discards with push input ports can share code.

Pattern Replacement

Paint($p)

CheckIPHeader(...)

Strip(14)
IPInputCombo($p, ...) CheckIPHeader(...)

Strip(14)

Figure 4—A pattern–replacement pair suitable for click-xform.

Paint(1)
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DropBroadcasts
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from eth0
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from other devices

to Linux to other devices

to ICMP error
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Figure 5—A portion of the IP router configuration.

replacing collections of general-purpose elements with op-
timized combination elements. This optimization both
lowers virtual function costs by reducing the number of
elements in a forwarding path, and reduces the overhead
of general-purpose code.

We discourage Click programmers from using these
combination elements directly, since they are relatively in-
flexible and have complex specifications. Instead, com-
bination element programmers should write click-xform
patterns that replace general-purpose element collections
with the corresponding combination elements. Router de-
signers use general-purpose elements, keeping their con-
figurations easy to read and modify, but pass their con-
figurations through click-xform before installation. Using
the programmer-supplied patterns, click-xform will auto-
matically change the configuration to use combination el-
ements wherever that makes sense. This process somewhat
resembles instruction selection or peephole optimization.

Figure 4 shows an example pattern–replacement pair.
The IPInputCombo element combines the functions of a
Paint–Strip–CheckIPHeader sequence. Applying that pat-
tern–replacement pair, plus two others, can reduce the
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IPInputCombo(1, ...)

LookupIPRoute(...)

IPOutputCombo(1, 1.0.0.1, 1500)

IPFragmenter(1500)
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to eth0

Figure 6—A router fragment equivalent to Figure 5 using faster
“combo” elements.

number of elements on an IP forwarding path from ten to
three; see Figure 5 and Figure 6.

Searching a graph for an occurrence of a pattern is
a variant of subgraph polymorphism, a well-known NP-
complete problem. Click-xform implements Ullman’s sub-
graph polymorphism algorithm [17], which works well for
the patterns and configurations seen in practice. For ex-
ample, click-xform takes about one minute to run several
hundred replacements on a router graph with thousands
of elements, and much less time for normal-sized routers.

Click-xform, and the other optimizers, compile away
compound element abstractions before analyzing router
configurations. This gives the optimizers a further ad-
vantage over manual optimization. Users would have to
remove compound element abstractions by hand, compli-
cating the configuration, to expose all optimization oppor-
tunities.

6.3 Click-undead

The click-undead optimizer performs the equivalent of
dead code elimination on router configurations. For exam-
ple, click-undead removes StaticSwitch elements and their
unused branches; StaticSwitch routes all packets along one
of several output paths. Generally, click-undead is effective
only in the presence of compound element abstractions,
which are the most likely source of dead code in Click con-
figurations. For example, a compound element might use
StaticSwitch to route packets along one of several possi-
ble paths depending on some configuration argument. We
don’t discuss click-undead in the evaluation section, since
none of the elements in our IP router are dead code.

7 Other Tools

Our success with optimizers encouraged us to build
tools that address other Click architectural issues, or that

play with novel configuration analyses. The most useful of
these, click-align, allows Click to run on non-x86 architec-
tures without complicating the packet data model. Click-
combineand click-uncombine construct configurations that
represent the processing of multiple routers in a network;
this enables unusual router optimizations. Tools not de-
scribed further include click-check, which checks config-
urations for errors; click-flatten, which compiles away com-
pound element abstractions; click-mkmindriver, which cre-
ates a minimum Click containing only the elements needed
for a given configuration; and click-pretty, which pretty-
prints configuration files as HTML.

7.1 Click-align

Click packet data is stored in a flat array of bytes, but
for speed and convenience, many elements load from this
array a machine word at a time. On the Intel x86 architec-
ture, these loads need not be aligned on word boundaries;
unaligned accesses are legal, and in our benchmarks, just
as fast as aligned accesses.5 On architectures such as ARM,
however, unaligned accesses crash the machine.

Possible solutions include using special instructions to
load words from packet data, checking packet data align-
ment at the beginning of every relevant element, and en-
forcing known alignments when packets are created or
read from devices. (Linux uses a combination of special
instructions and well-known alignments set by devices.)
Unfortunately, these possibilities would either slow down
the x86 case, complicate Click’s packet data model, or pre-
vent complex configurations.

Click instead asks the user to ensure that elements re-
ceive packets with the correct alignment. This requires two
new element classes: Align aligns packet data on a given
boundary using a data copy, and AlignmentInfo informs
elements what packet data alignments they can expect.

Inserting these elements by hand would be tedious
and error-prone, of course. The click-align language tool
therefore automates the process. It reads a configuration
on standard input, calculates the configuration’s expected
and required packet data alignments, and inserts Align ele-
ments wherever the expected and required alignments are
in conflict. The algorithm for calculating alignments was
patterned after data-flow analyses in the compiler litera-
ture; several heuristics minimize the number of inserted
Aligns. Finally, click-align removes redundant Aligns and
adds an AlignmentInfo element.

As mentioned above, the specifications for elements’
expected and required alignments are built in to the click-

5An unaligned load can cause two d-cache misses, but this is not a
problem in practice, since packet data is always in the cache.
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Figure 7—Portions of two routers, and the corresponding combined
configuration generated by click-combine.

align tool. For example, the tool knows that CheckIPHeader
expects input packets to be word-aligned.

7.2 Click-combine and click-uncombine

Network architects care about how individual routers
behave, and how multiple routers on their network might
interact. To facilitate simultaneous analysis of a multiple-
router network, the click-combine tool creates “router” con-
figurations that encapsulate the behavior of, and connec-
tions between, multiple routers. Such combined configu-
rations may be analyzed and manipulated, either to ensure
properties of the network—for instance, that the frame
formats at either end of each link are compatible—or to
optimize away redundant computation performed by more
than one router. The click-uncombine tool separates a com-
bined configuration into its component router parts. These
tools are speculative and experimental; we present them to
demonstrate how far the optimizer idea can be pushed.

Operationally, click-combine encapsulates router con-
figurations inside compound elements, then links those
compound elements together via RouterLink elements. The
user supplies several router configurations and inter-con-
figuration links, such as “router A’s ToDevice(eth0) ele-
ment connects to router B’s PollDevice(eth1) element”;
click-combine emits the combined configuration. Figure 7
demonstrates this in action.

The best use for combined configurations is probably
to check router networks for properties like loop free-
dom. Optimizations are also possible, though dangerous.
For example, the combined configuration in Figure 7 ex-
poses the point-to-point nature of the link between routers
A and B. There is therefore no need for an ARP mech-

anism on that link (unless and until the configuration
changes). We wrote a set of click-xform patterns and re-
placements that remove ARP from these kinds of links.
A tool chain like click-combine ... | click-xform

... | click-uncombine ... combines router config-
urations as appropriate to the state of the network, removes
ARP where possible, then extracts the possibly-modified
router configuration from the combination. We report per-
formance results for this optimization below.

8 Evaluation

We now turn to performance measurements for un-
optimized and optimized Click IP routers. Our reference
configuration is the Click IP router shown in Figure 1. We
first present performance in terms of CPU cycles required
to process a packet, then in terms of overall packet for-
warding rates. The optimizers described above can reduce
the CPU time spent per packet in the Click forwarding
path by 34%, and increase its peak forwarding rate by
89,000 packets per second. We present a detailed analysis
of the limiting factors for a Click router’s performance, and
demonstrate that our optimizations allow Click to forward
close to the maximum allowed by our hardware. Finally, we
analyze how the effectiveness of the optimizations changes
with newer hardware.

8.1 Testing configuration

Our testing configuration consists of nine Intel PCs
running a modified version of Linux 2.2.16. One PC is the
router host, four are source hosts, and four are destination
hosts. The router host has eight 100 Mbit/s Ethernet con-
trollers connected, by point-to-point links, to the source
and destination hosts. During a test, each source generates
an even flow of UDP packets addressed to a corresponding
destination; the router is expected to get them there.

The router host has a 700 MHz Intel Pentium III CPU
and an Intel L440GX+ motherboard. Its eight DEC 21140
Tulip 100 Mbit/s PCI Ethernet controllers [2] are on multi-
port cards split across the motherboard’s two independent
PCI buses. The Pentium III has a 16 KB level-1 instruc-
tion cache, a 16 KB level-1 data cache, and a 256 KB uni-
fied level-2 cache. The source and destination hosts have
733 MHz Pentium III CPUs and 200 MHz Pentium Pro
CPUs, respectively. Each host has one DEC 21140 Ethernet
controller. The source-to-router and router-to-destination
links are point-to-point full-duplex 100 Mbit/s Ethernet.

The source hosts generate UDP packets at specified
rates, and can generate up to 147,900 64-byte packets per
second. The destination hosts count and discard the for-
warded UDP packets. Each 64-byte UDP packet includes
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CPU time
Task (ns/packet)

Receiving device interactions 701
Click forwarding path 1657
Transmitting device interactions 547

Total 2905

Figure 8—CPU cost breakdown for an unoptimized Click IP router.

Ethernet, IP, and UDP headers as well as 14 bytes of data
and the 4-byte Ethernet CRC. When the 64-bit preamble
and 96-bit inter-frame gap are added, a 100 Mbit/s Ethernet
link can carry up to 148,800 such packets per second.

Since we are interested in the effects of our optimiza-
tions, we compare solely against unoptimized Click. This
also avoids unfair comparisons against non-polling sys-
tems.

8.2 CPU time

The most pertinent measure of the cost of a Click router
configuration is the CPU time required to forward a packet.
Each packet incurs additional costs, such as PCI contention
and bandwidth and network device processing time, but
those costs are similar for any configuration using the same
devices. Our optimizations focus on the forwarding path,
not device interactions, so CPU time is the correct cost
metric.

Figure 8 breaks down the CPU time required to for-
ward a packet on an unoptimized Click router. Costs are
measured in nanoseconds by accumulating Pentium III
cycle counters [1] before and after each block of code, and
dividing the totals over a 10-second run by the total num-
ber of packets forwarded. We break CPU cost into three
categories: receiving device interactions, such as pulling a
packet from the receive DMA ring; Click’s forwarding path;
and transmitting device interactions, such as enqueuing a
packet onto the Tulip’s transmit DMA ring. These measure-
ments are different than the true values, since using Pen-
tium performance counters has significant cost, and since
the overhead due to Click’s task queue, and due to other
processes on the system, is not included. However, the total
cost of 2905 ns measured with performance counters im-
plies a maximum forwarding rate of about 344,000 pack-
ets per second, consistent with the observed maximum
forwarding rate of 357,000 packets per second. Although
device interactions are expensive, Click’s forwarding path
takes the majority of time.

Our language optimizations reduce the CPU time spent
by the Click forwarding path by up to 36%, and the total
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Figure 9—Effect of language optimizations on CPU time cost. Black
bars show Click forwarding path cost, white bars show total cost includ-
ing device drivers. “Base” is an unoptimized IP router. “FC” is Base plus
click-fastclassifier, “DV” is Base plus click-devirtualize, and “XF” is Base
plus combination elements installed with click-xform. “All” denotes all
three optimizations applied together. “MR” denotes ARP elimination,
our sample multiple-router optimization; “MR+All” denotes all four
optimizations applied together. Finally, “Simple” is the minimal config-
uration, consisting only of device handling and a single packet queue.

CPU time per packet by up to 22%. Figure 9 illustrates
the effects of the language optimizations individually and
in combination. The leftmost column represents the cost
of pushing a packet through an unoptimized Click IP
router. Applying all the optimizations described in Sec-
tion 6—click-xform with the combination elements, click-
fastclassifier, and click-devirtualize—reduces the cost of the
Click forwarding path by 34%, from 1657 ns to 1101 ns.
Adding ARP elimination, the optimization enabled by Sec-
tion 7.2’s multiple-router configurations, reduces the cost
further to 1061 ns.

Of the three router-local optimizations, click-xform is
the most effective. Click-devirtualize provides a similar
performance improvement, but its optimization opportu-
nities overlap with those of click-xform. As a result, apply-
ing both of these optimizations is not much more useful
than applying either one alone. Click-fastclassifier is not
that effective here, reducing CPU time by just 3%. This is
because the single classifier in the configuration has a very
simple decision tree.

Forwarding a packet through Click incurs just four
cache misses (measured using Pentium III performance
counters): one to load the receive DMA descriptor, two
to read the packet’s Ethernet and IP headers, and one to
remove the packet from the transmit DMA queue after the
device marks it as sent. Each cache miss incurs a fetch from
main memory, which takes about 112 ns. Click runs with-
out incurring any other data or instruction cache misses.
With all three optimizers turned on, just 988 instructions
are retired during the forwarding of a packet. This implies
that significantly more complex Click configurations could
be supported without exhausting the Pentium III’s 16 KB
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Figure 10—Effect of language optimizations on forwarding rate for
64-byte packets. An ideal router that forwarded every packet would
appear as a straight line y = x.

L1 instruction cache.

8.3 Forwarding rates

Figure 10 graphs forwarding rate versus input rate for
variously optimized IP routers. The CPU time savings en-
abled by language optimizations translate into higher peak
forwarding rates. The maximum loss-free forwarding rate
(MLFFR) for an unoptimized IP router is 357,000 64-byte
packets per second. (Minimum-size packets stress the CPU
more than larger packets, and we are mostly concerned
with CPU time here.) The optimized IP router (“All”) has
a significantly higher MLFFR, 446,000 packets per sec-
ond; “MR+All” raises that further, to 457,000 packets per
second.

Unlike the unoptimized IP router, the optimized config-
urations are unable to sustain their peak forwarding rates,
dropping to approximately 400,000 packets per second as
the input rate increases. Interestingly, the same pattern ap-
plies to “Simple”, the simplest possible Click configuration.
Furthermore, the MLFFR of “Simple” is not much higher
than that of the optimized IP configurations, although its
total CPU time cost is 25% lower. These factors suggest
that the optimized IP routers and “Simple” are no longer
solely limited by CPU time cost.

8.4 PCI limitations

To investigate the factor limiting forwarding perfor-
mance for each router configuration, we examined where
our system dropped packets. Code inspection, Tulip doc-
umentation, and experiments showed that each packet has
one of four possible outcomes. It may be dropped on the
receiving Tulip card because the Tulip’s internal FIFO is
full (“FIFO overflow”), or because the Tulip was not able

to fetch a ready DMA descriptor after two tries (“missed
frame”); it may be dropped at the Click Queue when pack-
ets are arriving faster than they can be sent (“Queue drop”);
and if it survives those obstacles, it is sent (“packet sent”).
If a packet is to be dropped, it is best to drop it at the re-
ceiving card’s FIFO, as this early drop point avoids wasting
resources—in particular, it avoids all PCI bus and memory
operations.

Figure 11 shows the outcome rates for varying input
rates and for three router configurations, “Simple”, “Base”,
and “MR+All”. The solid line in each graph corresponds
to the forwarding rate. The other lines cumulatively add
other drop outcomes to the forwarding rate. The sum of all
outcomes is the input rate—that is, the straight line y = x.

The baseline IP router configuration is clearly CPU-
limited. All of its input packets are either forwarded or
dropped as missed frames. Missed frame drops occur when
a Tulip card finds that the next DMA descriptor is not free
twice in a row. This indicates that the CPU is emptying
and refilling the relevant receive DMA ring slower than the
Tulip card is filling it—that is, the CPU is overloaded.

The “Simple” configuration is not CPU-limited. None
of the packets dropped by “Simple” are missed frames;
they are either FIFO overflows or Queue drops. Both of
these outcomes indicate that the PCI bus or memory sys-
tem is overloaded. FIFO overflows occur when a receiving
Tulip card gets packets faster than it can request DMA de-
scriptors and write packets to memory. Queue drops occur
when packets are added to a Queue faster than ToDevice
removes them. Instrumenting the ToDevices revealed that
these elements were often idle—that is, they chose not to
pull packets—because their devices’ transmit DMA queues
were full. Thus, the CPU wanted to send packets faster than
the transmitting Tulip cards could process them. These
tasks—reading packets from memory, writing packets to
memory, and requesting DMA descriptors—are limited
not by the CPU, but by the PCI bus or the memory sys-
tem. Our analysis is not detailed enough to determine the
bottleneck resource precisely.

The “All” and “MR+All” plots in Figure 10 are probably
determined by the following factors. They initially flatten
out because the CPU isn’t fast enough; in this zone, all
dropped packets are due to missed frames. As the input
rate rises above that point, more and more PCI bandwidth
is consumed by the receiving Tulips checking (unsuccess-
fully) for a free DMA descriptor for each incoming packet
(these are “missed frames”). Above a certain input rate the
failed descriptor checks saturate the PCI bus. Each failed
descriptor check uses up PCI bandwidth that another Tulip
could have used to receive or send packet data. Thus, once
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Figure 11—Cumulative outcome rates as a function of input rate for three Click router configurations.

the PCI bus is saturated, increases in input rate cause de-
creases in forwarding rate. For a while these failed descrip-
tor checks do not result in Tulip FIFO overflows, since the
Tulip flushes the failed frame when the descriptor check
fails. As the input rate increases, however, packets arrive
faster than the Tulip checks for descriptors; at that point
the Tulip discards the excess packets (as FIFO overflows)
without any impact on the PCI bus. Thus input rates above
about 550,000 packets per second do not cause decreases
in forwarding rate.

8.5 Hardware evolution

In order to illustrate interactions between the optimiza-
tions and changing hardware capabilities, we measured
the performance of Click on three additional platforms.
Platform P1 consists of an 800 MHz Pentium III with 32-
bit/33 MHz PCI, P2 is the same machine with 64-bit/66-
MHz PCI, and P3 is a 1.6 GHz AMD Athlon MP with
64-bit/66 MHz PCI. P0 is the 700 MHz platform discussed
in the previous sections. In all platforms but P0, the Ether-
net hardware is the Intel Pro/1000 F gigabit Ethernet card.
This card has a 64-bit/66 MHz PCI interface, but will op-
erate at 32-bit/33 MHz when used in the slower bus. The
router has two interfaces, each with a full-duplex link to
a host. The two hosts both generate and count packets;
each of them generates half of any given load. Each host is
capable of generating a million 64-byte packets per second.

Figure 12 shows how much the optimizations improve
performance on each platform, and Figure 13 shows the
forwarding rates for the three platforms. P1 is almost iden-
tical to the router hardware discussed in the previous sec-
tion; P1 probably performs somewhat less well because
the Pro/1000 card requires the CPU to use programmed
I/O instructions for each batch of packets sent or received,
while the Tulip does not. The graph for P2 demonstrates
that performance for “Simple” was limited by the PCI bus
in P1, while performance for other Click configurations
was not. P3’s CPU is about twice as fast as that of P2; this

MLFFR (packets/s)
Platform All Base Ratio

P0 446,000 357,000 1.25
P1 430,000 350,000 1.23
P2 450,000 330,000 1.36
P3 740,000 640,000 1.16

Figure 12—Effect of “All” optimizations on MLFFR for each hardware
platform.

lets P3 forward about 1.9 times as fast as P2 for “Base,” and
about 1.6 times as fast for “All.” Our optimizations seem
effective on all platforms.

9 Conclusion

This paper has described optimization tools based on
compiler optimizations and programming language tech-
niques for Click, a component-based networking system.
Three of our optimizations collectively boost the perfor-
mance of a Click IP router to close to the maximum perfor-
mance allowed by our hardware. The optimizers are easy
to use, pleasant to write, improve system performance,
and extend system functionality; the click-align tool, for
example, allows Click to support non-x86 architectures.
We believe this technique, compiler-like tools for configu-
ration transformation, is valuable enough to influence the
way systems are built.

Complete source code for Click and the optimization
tools is available on-line athttp://www.pdos.lcs.mit.
edu/click/.
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