The Hideous Name t

Rob Pike
P.J. Weinberger

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

The principles of good naming computing have been known for decad&be
invention of new facilities in computing systems can be guided by fivesgples. For
example, the introduction of networking need not require any change to the majority of
system utilities, because objects sucliilas on remote machines can be given syntacti-
cally familiar names withirthe local machine’s name spadadeed the implementers of
networks often do well by these standards by striving to makemte files essentially
indistinguishable fromocal ones. Unfortunately,the situation with internetwork mail
addresses is not as satisfactoijhe practitioners of internetworking would profity
understanding the benefits of simple, uniform syntax.

research!ucbvax!@cmu-cs-pt.arpa: @CMU-ITC-LINUS:dave%CMU-ITC-LINUS@CMU-CS-PT
- Carnegie-Mellon University mailer

| cannot tell what the dickens his name is.
- Shakespeardjerry Wives of Windsotl. ii. 20.

Introduction

Any objectrelevant to computation- file, process, user, computer, network or whateveneeds a
name. Thename determines the access: it is by interpratiegname, within theame spacé inhabits,
that a program or person is given access to the obJéetmanner in which namesre constructed affects
not only how objects are named but also how they are used.

The form of names and nhame spaceabéssubject of this essayVe will use file names from several
operating systems as examples to illustrate criteria for distinguishing good namémdtontne same cri-
teria may be applied toetwork mail names, pointing out some of the shortcomings of the cadédmic
systems for internetworking.

The criteria are not new, and seem to be generally accdptedye not applied in practicehis
paper is an attempt to re-establish their use.

Principles of Names and Name Spaces

What's in a name~?A string of characters, encoded by some convention (ASCIl or EBCDIC), that
identifies an objectlf the function of a name stopped there, this definition would be sufficiednBM’s
MVS, for example, a file name is @b most 44-character string, largely uninterpreted by system software.
The name space is ‘flat,’ or linear.

Systems designed more recently use names to drggnizeas well as identify. For instance,
although inMVS the disk containing the file is specified separately from the name, in MS-DOS part of the

T An earlier version of this appeared in Summer 1985 Usenix Conference Proceedings, Salt Lake City, Utah.

name of a file is a string that identifies the disk diinadding the file. Syntaxseparates these components
of the name; MS-DOS uses a colon following the disk name, a single character:

A:FILE
is a file on disk drived, while
B:FILE

is a file on disk driveB.

The advantage of putting such information in namekas software need not know about disks to
manipulate files.Internally, of course, system software must use the syntax of the nalmeate the file,
but this is largely transparent to applications software, and users.

The MVS system uses independent information (stored in a catalog) to find a fileitgiverme,
while MS-DOS exposes location information in the narS-DOS users may putelated files on the
same disk, thus using a distinguished piece of the rianmelp organize their worldMVS users must
instead adapad hocstrategies (conventions for the syntax of namesheosame endThuseach system
does both more and less for the user: MVS provides no help in organization and a naming independent
the physical location othe file, while MS-DOS provides the oppositmstead,if nhames had multiple
components (that is, syntax), where the components did not necessarily cortesploysical devices, the
name space would have the advantages ofdhéiboth MVS and MS-DOS, with the disadvantages of
neither. Sucla name space exists.

A good example: UNIX®

UNIX file name space is a tree, with file nantkeat specify a path from one node to anothEne
representation of the name is a simple ASCII string, with sldsBeparating node identifierS.hename

/usr/rob/bin/cat-v

is a path from the root of the tree (denoted by the leading sthsti)ygh nodes calledsr , rob andbin ,

to a file calledcat-v . Nodesintermediate irthe tree are calledirectories Thesystem uses the compo-
nents to find the file, whiclthe user can use as syntax to organize sets of filesexample, although on
mMostUNIX systems, the strinfyisr specifies aseparate disk drive, this is irrelevant to both software and
users; it is merely a string that identifies the directory beneath which users’ files may be found.

The structure of the name space (a directory tree) is reflected stytbeof the name (a path through
the tree). Werethe file system arranged differently, say as a flat atrayform and interpretation of file
names would also be different; for exampliX processes are named by small integers.

Properties of Name Spaces

Name spaces have some general properi@st, names within the space may be absolute or rela-
tive. Absolutenames specify an object by position with respect to a single fixed pointasuhbk root of
the UNIX file system (named); relative names, with respect to a local pgthe ‘current working direc-
tory’ in UNIX, named. (dot)). Also,an operating system typicalhas operators to manipulate its name
space, such as systemalls to create and remove filggNIX also provides a system call (nammadunt) to
join together two name spaces by attaching the root of one space, resident on adiskahave, to a leaf
of another.

Finally, a name space has syntaxhow a name is constructed and semantics— the nature of the
object a name identifies.

A UNIX file name, for example, is sequence of slash-separated strings that identifies a formatless
byte stream.Externalconventions may provide further semantics: tingX file system contains objects
that are not ordinary filesSimply by having ordinary file names, though, these objects bedieary file
properties such as protectioBomeexamples from our research versiorJofiX, called the Ninth Edition:

Device files. With names conventionally prefixed (that is, residing in the directdey) , thesefiles pro-
vide direct access to deviceShename/dev/mt |, for example, identifies a magnetic tape drive.

Processes. Thdirectory/proc contains files with names that are process numb@peningsuch a file

provides access tprocesses for purposes such as interactive debuggiligough processes have
integers that identify them, it is conveni¢atprovide names for them in the file system as wiedir
example, listing the directory containing the process filesdsnple way to identify running pro-
cesses.

Databases. Sondatabases are conveniently represented as hame-value palmgiarchy, and such data-
bases may be mapped into file system name spacd-or example, the directorin/face con-
tains ahierarchically-structured database that associates digitized images of people’s faces with the
people’s electronic mail addresses.

Other files. UNIX has the notion oftandard inputthe input connected to a (typically) interactive program.
The name&/dev/stdin identifies a file that, when openedpnnects to the standard input of the
program. Thisllows files that demand a file name (such as the file comparison programyieen
input directly from the interactive terminal or from a pipe.

Because these unusual objects have regular naxisting tools can treat them as files, so standard soft-
ware can provide services for them that would otherwise require special handling.

Some of the Ninth Edition examples abovave different names in oth@NIX systems.
/dev/stdin is often represented by the single characteas an argumerb commands, but this con-
vention is capriciously followedBecausdt must be provided explicitly by each program, it is only avail-
able in some program®y providing/dev/stdin in the global name space, it is available uniformly for
all programs, alwaysAs another example, processes are represented by an integer process idemitifier,
is only meaningful to a few process-specific system cdllsesecalls implement their owprotection
mechanism, although the protectiprovided by the file system suits perfectly (these system calls predate
the process file system}inally, virtual terminals implemented using the multiplexed files of the Seventh
Edition (an earlier research version of the system) have no external name, so it is impossible to open one for
I/0. TheNinth Editionprovides a name in the file system that is available, without prearrangement or spe-
cial protocol, to any program.

Connecting Name Spaces

When machines are connectedether, their name spaces may be joined to facilitate the sharing of
files. If the name spaces have the same clean structure, that structure can be extended simply to describe
the larger space.The Newcastle Connectlon names a file on another machine,ushyax , as
/..lucbvax/usr/rob/bin/cat-v ; the Ninth Edition notation is
/nfucbvax/ustr/rob/bin/cat-v . In the former the name space has bertended by making it a
subspace of a larger space, in the latter a new name subspace has been graftednooinisitgtin nei-
ther case has theyntaxof names been changed; any progtaat understands a file name will understand a
network file name without change, and relative names for files (thwsedon’t begin with/) are
unchanged. As spectacular example, we might see on which machineg/osdras a login by searching
(using a program callegrep) through the system administration files (callett/passwd) on all the
machines:

grep wnj /n/*/etc/passwd

The file name ‘wildcard’ charactet matches all files within a directoryHere, it happens to match all
machines reachable from the local machaithoughgrep is oblivious of this distinctionWe could even
investigate those machines connecteddovax by

grep wnj /nfucbvax/n/*/etc/passwd

The file system that is the union of these name spaces mighhbaylebal root, so the meaning of
an absolute name may become ambiguous because of the presendépié reference pointsin fact,
there might be no single point to which all names can be fikegractice, though, this ambiguity is unim-
portant.

A bad example: VAX/VM S

Unfortunately, not everyone chooses naming conventions in accord with these guid€imes.
VAX/VMS our canonical file mightbe calledUCBVAX::SYS$DISK:[ROB.BIN]JCAT_V.EXE;13
The VMS file namingscheme provides a distinct syntax for each level in the nBIBBVAX:: is a
machine; SYS$DISK: is a disk (actuallya macro that expands to a disk name suclDiE#0:);
[ROB.BIN] is a directoryCAT_Vis a file ‘base’ nameEXE is a file ‘type’; and;13 is a version num-
ber.

Although this syntax may seem unnecessarily cumbersome, it has a precedenhalogous to
expressions in programming languages. Consider a C expression such as

*structure[index].field->ptr . If * were postfix and the only dereferencing operatdhe
expression mightbe written structure/index/field/ptr/ . Functionally-mindedprogrammers
might use thenotationcontents(ptr(field(index(structure)))) . (A single character can-

not be used in C because it could not distingigfi andX->Y, with X a structure pointer andan inte-

ger or structure element respectively, but this ambiguity could be eliminated in a different langliagé.)

VMS use syntax to distinguish tigpes of the components of a nantesteadthe UNIX file system delib-

erately hides the distinctionsAside from the obvious advantages such as simplicitgyftax and the
usurping of only a single character, the uniformity also makes the name space easier to manipulate: the
mount system call aliases a disk and a directory.

VMS has no true name space manipulation operatthoughone couldbe constructed, it would be
limited in scope: how could a disk be mountdp SYS$DISK:[ROB.BIN] when disks are always
before directories in the naméfstead VMS has macros such &YS$DISK to hide the manner in which
the space is assembled, and even to provide the concept of a local name by automatically inserting an
expanded macro before an unqualified name.

The problems witldynamic evaluation of macros are well knowkor example, the VMS service to
set the referencepoint for local names (the equivalent @NIX chdir) sets the default prefix for file
names, but the prefix will only be evaluated andsecked for validity, when a file name is interpreted,
which may be arbitrarily and confusingly long after the prefas set.In fact, the default prefix macro is
handled in a special way, because directories are not constructed by simple concatradioeGtory
[.BIN] in directory[ROB] is namedROB.BIN] . Also,these local names are not really logighll; the
prefix implicitly binds them to a root of the name spagaisimplies that all names are always attacteed
some root, and therefore if the root changes, the name must also change, invisibly.

Another problem with VMS names is that one cannot detheévalent of searching the VMS pass-
word files SYSUAF.LIS) on various machines with:SYS$SYSTEM:SYSUAF.LIS ; the* operator
doesn’t apply tdhat portion of a nameThisis an example of the general problem that whenever the name
syntax ischanged all programs that interpret names must be modifiate subtly, although if the
machine ucbvax were a gateway we could access files on a distant macldse
UCBVAX: KREMVAX:file , it is only because the semantics:of explicitly permit such accesslhe

operator is implemented by passiing string after it to the remote machine, but first checking its syn-
tax, so the file name parser must have special code for muitifde

A Quibble about Cedar

The Cedar file system hasuniform naming syntax, just likeNIX, except that files have version
numbers, separated from the file name by an exclamation!mafke implementers thought thaersion
numbers are fundamentally different components of file names and therefore deserved differenBsyntax.
the change in syntax requires new rules to define the meaning of file n#@mgsod test of naming
schemes is whether arbitrary nanoesistructed by the syntactic rules make sense within the rules of the
system or whether their interpretation requires new semantic rules. Cedar file,
/usr/rob/bin/cat-v!3 is clearly version 3 ofat-v , but what igusr/rob!3/bin/cat-v ?

Connecting to other machine’ sfile systems

The IBIS remote filesystem orUNIX 4.2BSD names a remote file asbvax:file . Many pro-
grams don’t understand this syntax; the shell (command interpreter) must be modified tofileake
behave as we expect, because the shell expects a slash to separate name corfaserity.changing
the syntax, the implicit semantics of the original naming scheme is losthe Ninth Edition name
/nfucbvax/file it is obvious whatfile refers to: a file in the root directory atbvax. But what
is it in ucbvax:file ? Itmightbe a file in the root, but it isn’tlt is a filein theinitial working directory
on thedestinationmachine (cbvax) of the userinvoking the name on the source machine (unless it
begins with/); its meaning depends on who is askinthe extra semantics af complicate attempts to
patch the syntactic problem¥Ve might try creating a connection (called a symbolic iimkINIX) from the

name/n/ucbvax to the nameucbvax: , but/n/ucbvax/file would then still point to a file in
someone’s home directory, and /n/ucbvax/usr/wnj/file would refer to
Jusriwnj/usr/wnij/file . If the link evaluates taicbvax:/ , things work as expectedut the

slash-less form of IBIS naming is made unavailable.

Part of the problem in the IBIS file system is that it is implemented outside the name Bparsing
a variant of the standard system eaflunt, the Ninth Edition remote filsystem guarantees that the syn-
tax and semantics of names are free eofbrprises. For example, it is clear what
/nfucbvax/n/kremvax/file refers to, but what about the IBIS namgbvax:kremvax:file ?
Where doe&remvax:file get interpreted?

There areother ways to interpret file names likebvax:file . Whenusing theUNIX program
uucp to copy a local file to a remote machine, tr@meuchbvax!file refers to the file orucbvax
whose name ile prefixed by thecurrent directory on theourcemachine. Theprize goes to DECNET,
however:ucbvax::file refers tofile in the home directory of the ‘default network user’ on the desti-
nation machine, andcbvax"wnj password"::file refers tofile in wnj’'s home directory.lt is
inexcusable that the password is in the file name, let alone that it is in clear text.

Thestory sofar

In summarythere are some guidelines for constructing naming conventions, particularly for objects
in a network. Thereshould be both relative names and absolute naRekativenames are more important
because, among other reasons, the root of the hame space may be uokmawrunique.The syntax
should be cleamnd uniform; every new syntactic rule requires at least one, and usually many, semantic
rules to resolve peculiarities introduced by the new synifathe name spads a tree or any other kind of
graph, a single character should be used to separate nodes in a name.

If these guidelines are followed, names of objétta network of machines will be easy to construct
and interpret; difficult problems of networking will be completely hidtiethe users and programs access-
ing objects in the networkif they are ignored, both useasd programs must be aware of and understand
the details of naming locally, globally and everywhere in between.

Principles of mail names

Now consider the other common name space, mail naiag.names are more compléxan file
names, for botlsyntactic and semantic reasoffhereare conflicting syntactic traditions, the most familiar
two being theUNIX tradition and the ARPANET traditionAlso, mail names are interpreted bger pro-
grams only, with no operating system to enforce semantibsss,the interpretation of the nanspace is
subject to arbitrary hackery.

Even a trivial case like the nampgv in the command
mail pjw

has no clear meaningVhenelectronic mail was invented, the napje referred to a mailbox on tHecal
machine —the only machine to which mail could be sefitielocal space ofmailbox names was a small
flat space.Later,when systems were connectedether, there were two ways to generalifethe com-
puters were closely connected (that is, sharing administration), one could thddtat name space over
the whole set of machines, so that sayimajl pjw on any of the machines geisv 's mailbox onpjw 's

home machinelf the machines were instead loosely connected, a more attractive scheméevulde
machine names to qualify the local mailbox namgsi@system in the ARPANET tradition, or
system!pjw in the UNIX tradition. Thetwo methods differ only in the naming and how the software
decides to find the destinatioftn the first alternative, it looks ugw in a database, while in the secdhd

looks upsystem . In both cases, the software on the machines involved must also have a protocol for
delivering mail, but that’s irrelevant her&lotethat neither naming scheme has anything to do with routing
the message.

At this level, either of these two schemes is fairly convenidBiit when we try to connect lots of
systems with these flat name spaces, names must eithiict or be decorated artificially to disambiguate
them. Weshould apply the principles of good naming to find a better solution.

Mail names specify paths within a large name space populated by systems and mailboxtésmrather
files, but the basic idea is the sanihe question is what a path denotéhe answer depends on how the
software determines what to do with the mail.

Imagine we are on machinebvax and want to send mail w@system . Thereare two meth-
ods to negotiate the transactiohhe first method, used byNIX, viewssystem as the name of an author-
ity that the mail and mail address are passedtmtis, sending the mail involves a messagsystem of
the form, “I am machinaicbvax , here is mail fopjw .” The second, that of the ARPANET, interprets
system as the name of an authority that will say where to send the mail, asam fhachinaicbvax |,
where do | send mail fgujw ?” The destination of these messages is found by lookingysfem in a
database. (Thdetails of sending the message are outside this discusgiinnaming schemes for mail
follow some combination of thesdternatives. The UNIX method uses the same mechanism to resolve
names and to transmit mail; the ARPANET method resolves the names with one mechanisgsawine
other, not associated with the name at all, to send the mail.

Given these two models, how do we generalize mail delivelgrger networks?or ARPANET, a

mail addressiser@world3.world2.world1 is interpreted by looking upvorldl and then asking it
where to send mail faworld3.world2 . ForUNIX, a mail addresworld1!world2!world3!user
is interpretedby looking upworldl and then sending the mail amebrld2!world3!user to it.

Although thetwo forms sound similar, they have different problerf®nd, why does ARPA use two char-
acters when one is sufficient?)

The most common interpretation of th&lIX name is as a routbut it need have nothing to do with
a route. Oncethe name is handed off tworld1l , it can be rewritten to correspond to the syntax of
world1l ’s name space; ifact, UNIX mailers rewrite names freelyBecauseARPANET names are han-
dled differently, they cannot be rewrittethe answer to the routing question must produce the four-byte
binary network address of the destination mailb@t least in principle, this defect may becumvented.
The response to the routing question might be a little program: “Send the mail to A and tell it to use proto-
col P to send it to B” and so forthHowever that's not how it's done in practice.)

Consider again theelation between mail names and file nam@genthe operating system inter-
prets the namé/ucbvax/n/kremvax/file it discovers that the directofp/ucbvax refers toa
remote machine, finds the server on that machinesands it the nami/kremvax/file expecting
back a handle to use the fil&. doesnot care what the server does with the natheoes not expect to get
back instructions fofinding the file. It is asking for file service, not name servidedeedwereucbvax a
VMS machine, the server might invisibijtranslate /n/kremvax/file immediately into
KREMVAX::SYS$DISK:[NETUSER]file to discover it on its local systenRemotefile access would
be harder to implement using the ARPANET scheme.

Name server st consider ed speculative

Name servers don't scale well, for preciséhg reason that the ARPANET name scheme doesn't scale
well: the name server must understand all possible name synikesa system with a different naming
convention is connected, the name server must suddenly interpret all the difgrentes, instead of

T “Name server” is a nourphrase that is ambiguou¥.ou hand a name server a name, it hands you connection informa-
tion. Thusit serves connections, not nam&onsidetthe difference between air pollution and noise pollution.

leaving the job to the new system itsélflorse,how do you connect twoetworks, each with its own name
server? Eveiif the servers use the same data formats and algorithms, they might use unique identifiers that
become non-unique when they are joined.

Name serverbave problems on other levels, tod&/ho administers a name server’'s databaHdethe
database is naudited frequently much of the data will be obsolete, while if the controls are too onerous,
people won't bother keeping the database curr@ihat does the databagm®ntain? Most name servers
produce network addresses, but no single network reaches everywhere.

Why are mail names such a mess?

Because people keep gluing name spaces together without smoothing the syntactic diff@tences.
result is the mail name equivalent of bastardized file names like
/nflucbvax/UCBVAX::KREMVAX:/rob/bin/A:dos-file where different conventions are mixed
in a single string.

Relative names areimportant
The ARPANET people define their names to have the form

local-part@omain

where botHocal-partanddomainare dot-separated lists wibrds. Domainsare the generalization of what

we have been calling systems; theal part is anything understood by the leftmost domain nakoeord-

ing to RFC 882 (“Domain Names Concepts and Facilities”), the domains are all absoluites dot signi-

fying the rootof the hierarchy is implicit at the right of the list of names, which makes it impossible to con-
nect disjoint name spaces since all interpreters of names mustlmames at the top level of the hierar-
chy. Also,for backwards compatibility, RFC 822 (“Standdoi the Format of ARPA Internet Text Mes-
sages”) allows all but the leftmosf the domain names to be elided, since “specification of a fully quali-
fied address can become inconvenient.”

What happensin practice?

As long as software continues to deliver mail, people are unwillinmpoove the state of affairs.
Mailers just butt together names with their own rewriting rules, producing names like:

1IJQ3SRA%UCLAMVS.BITNET%SU-LINDY @SU-CSLI.ARPA

This is the name of useédQ3SRA on machinetUCLAMVSaccessible through BITNET from machine
SU-LINDY, which is known toSU-CSLI on the ARPANET. Eachprogram that touched this name
rewrote it by its own rules, although the domains proposal is intended to prevent this.

There are two domains in this name (although the syiataxong):BITNET and ARPA However,
BITNET is not a registered name, so the gateway service between BITNET and ARPANET must be made
explicit in the name, requiring the invention ohaw syntax characte®q which is translated t@at the
gateway, because ARPANETames can only contain a singie Despitethe words in the standard about
hierarchy, the domain space is nearly flat, so the local parts ohthes carry source routing and domain
transitions explicitly. To worsen matters, machines that advertise adherence to the stani@atddo not;
instead the name translations that occigatitways (such as converti@o %and rearranging the compo-
nents) are at besid hoc. By legislating away bad names, ARPANET has redutted problem of
networking to a still-unsolved problenBut the mailers plod resolutely on.

Standar ds?

It is clear that standards are necessary for electronic mail to be deliediedaly across network
boundaries. Whateeds to be standardized is the interpretation of names, espeaigityatk boundaries.
Until sucha standard exists; is syntactically and semantically clean; distributes the interpretation of names
across the systems that understand them; and is adhered to, the network mail situation will not improve.

Conclusions
Doug Mcllroy has observed that

... bad notations can stifle progred®Romannumeralshobbled mathematics for a millennium but
were propagated by custom and by natural deference to authboitiaywe no longer meekly accept
individual authority. Instead,we have “standards,” impersonal imprimaturs on conventi®ome
standards are sound and indispensadme simply celebrate bureaucratic littleness of midhar-
vest of gimmicks to save appearances within the standard has grotiremmimmicks to save the
appearances within the appearancésu know how each one got thern overnight hack to paste
another tumor onto a wildancerous growthThe concern was with method, regardless of results.
The result is extravagantly worse than Roman numerals: you readftthe notation right to left or
left to right. As an amalgam of languages, it can’t be deciphered by a native speakeravfeaafy
them, much as if we were to switch at random places in a number béResen and Arabic signs
and between big-endian and little-end@der. But now that it all “works” — at least for the strong
of stomach— the tumors themselves are being standardized.

| fled, and cry’d out “Death”;
Hell trembled at the hideous name, and sigh'd
From all her caves, and back resounded, “Death.”

- Milton, Paradise Lost

