Bell Laboratories

= ATsT
—

Subject: Bitmap Graphics SIGGRAPH'84 Course Notes date: May 21, 1984
Waork Program- 311403-0101 - File- 39199-11
from: Rob Pike
Leo Guibas*®
Dan Ingalls*®

™: 11271-840521-05TMS
PREFACE TECHNICAL MEMORANDUM

When the bitmap display on the Alto, Xerox's personal computer, was first being used, its
ers wrote a number of subroutines for special purpose tasks such as character draw-
ing, highlighting, and copying rectangles. These subroutines all contained similar code to deal
with problems such as bitfield insertion and rectangles with edges within words. Dealing with
all these problems in a single, general operator looked forbidding, but the time spent reinvent-
ing the inner loops was becoming frustrating, so in 1975 Dan Ingalls and Diana Merry at Xerox
PARC encapsulated the operation of copying a bit string from one location to another in a prim-
itive they called bitblt for bit-boundary block transfer. The first bitblt operated on a single scan
line, but the outer loop was later added, making bitblt a rectangle operator. As bitblt was
experimented with, it proved to be so useful that it is now the central graphics primitive on a
number of bitmap displays.

These notes explain why bitblt is so successful. They are an overview of our understanding
of bitmap graphics based on bitblt. They address the basic properties of bitmap displays, bitblt
itself, and associated operators such as line-drawing primitives. Because the pixels on bitmap
displays are usually represented by a single bit, Boolean algebra applies to the pixels, and the
rectangular operators form a simple algebra. “Using this algebra, the primitives may be com-
posed to build algorithms for rotation, magnification, area filling and other traditional graphics
applications.

Bitmap displays demand large amounts of memory and processing power. It is important
that bitblt be implemented efficiently, since inefficiencies can result in (literally) visible degrada-
tions of performance, even for a single invocation. Unfortunately, though, implementing bitblt
efficiently is a difficult problem. Later, we will present a complete, correct, very slow imple-
mentation of bitblt, but one simple and small enough to be understood easily. The following
sections discuss techniques for improving its performance, and illustrate these by showing how
they have been used, and how well they worked, in actual systems.

Next, we discuss how bitblt can be used for programming interactive graphics applications.
Structured picture elements such as text, menus and windows are easily implemented using
bitblt, but using them well requires some understanding of how bitblt itself behaves. Applica-
tions such as bitmap paint programs also depend critically on the semantics of bitblt.

The most important consideration through all these discussions is the integrated viewpoint
that bitblt provides. The details of hardware and software implementation focus on a single
operator that provides a rational, powerful model for raster graphics. Bitmap devices are popu-
lar because their style of graphics is convenient and flexible, but it is bitblt that makes that style”
manageable. By simultaneously addressing the issues of efficiency, representation and access,
bitblt makes it possible to ignore the low-level detail inherent in bitmap displays, and attend to
the more important and useful task of building an interactive graphics environment. Represen-
tative displays from some of the systems that have been built using bitblt are shown in Figure 1.

The reason we have assembled these notes is that, despite its importance, little has been
written about bitblt in the literature, to the point that hardware manufacturers who are not ‘in
the know’ make serious mistakes in the implementation of their systems. Until now, too much
information about bitblt has been available only as folklore. By discussing the algorithmic,
implementation and systems-level basics and implications of bitblt, we hope to enlarge the com-
munity of bitblt-knowledgeable people, and prevent the development of bitblt-antagonistic
hardware.

*Yovnw DADM Dala Alen Malifawwnie

—
- e A ad—— e

e IS a program
proof

UL troff
for display inal
ayer Was

mmittia

| pic | troff |

. e~ oamtn b - o s 4 & e ben e o

Pron

that interprets the typesetter codes generated by
on he Blit.

running t

r alime e NN e e ahm o ke - e = e es

is a variant of Lpu: Box "processor

. cat line

(the standard Unix pro

that prints the file’s line up
dified. line up .1i
Therefore, whenever the line rly'rt.l
U jim o, box “mouse
-UL watch }

would notice it had {

e description

o

$'cd /ust/rob/rep/blit
$1s " -)
figl.pic’ figd.pi¢ " jis.pic -
figl.pic’ f|91‘.p|c '-acr(is'
s.“.

msm tty3 -

‘24K
ROM

© Junh 29 14:46
“Jul 2 82:29 Co
0 S SRR T Vo S TV) PR AN - 11 = ~ LIS S AL IS S

line ri
box 1%h"
line right

“"to Unix" 1ljust

line down
line down .1i

runn ing

-dceflle hPX

a"sv[0] = /uSr/ g d:nh/u-)

gnames[0

mpx: trof*’ trmg‘m[1}'-

shq:e
maes[Z]-'clon «52386
gnames([3]1="rite"e52392

me-es[ﬂ-"\ * mpXx. troff'.lSEH?B
53268

?1325[5]- \’. figl.pic “ul
or($im ? ;...) gnames[$il

i

- Figure.1: Hardwase Overviaw .

Fxgure 1a Bht scnee)

.um. . . . tuvm .

keyboard |

Raster Graphics 3

RASTER GRAPHICS +

The earliest computer displays, developed from the oscilloscope industry, plotted individual
points, and drew all higher-level objects as sequences of dots. Later generations of displays
were controlled by a display list: a list of instructions to the display, typically encoding the (x, y)
coordinates of each point and its intensity. Subroutines in the display list allowed more compli-
cated pictures — even beyond the capability of the display to draw quickly — to be displayed
and dynamically changed. An obvious improvement was to interpret descriptions of lines and
other simple curves directly by the hardware, so the display list was more compact and less
expensive to compute. From this background has grown the vector graphics or display segment
model of computer graphics, described in Newman and Sproulll® and currently represented by
the GKS standard.!

The frame buffer model, also called raster graphics, is rooted in the television industry, and
instead represents an image as a two-dimensional array of intensities mapped onto a television
tube to create the image. Frame buffers have one great advantage: the complexity of the
displayed image does not affect the amount of memory consumed to display it. They have
disadvantages, too, of course. The most obvious is economic: to store a reasonably complex pic-
ture might take 8 bits per pixel on a 512x512 display, which requires a quarter megabyte of
relatively expensive high-speed memory. Also, the processing required for dynamic graphics
on a frame buffer demands a dedicated CPU for reasonable performance, again because of the
large amount of memory that must be updated. In time, though, the cost of TV tubes and
memories has dropped, so a frame buffer is now less expensive to make than a vector display,
and personal computers with frame buffers are becoming common.

During the early 1970’s, researchers at Xerox PARC built a small personal computer called
the Alto, and gave it a frame buffer with only a single bit per pixel — a bitmap display.
Although binary pixels are clearly incapable of high-quality graphics, at least at typical frame
buffer resolutions, the Alto’s frame buffer was intended to simulate paper, for which only two
values are required (print and background, or black and white). Unfortunately, the simple seg-
mented graphics model that works well on vector displays is clumsy on bitmap displays.
Perhaps surprisingly, the graphics model that has arisen to take the place of segments on bit-
map displays capitalizes upon the lowest level of representation of single-bit-per-pixel images,
rather than hiding it.

Traditionally, bitmaps have been viewed as imperfect approximations to the ideal images one
would like to display. Such ideal images are assumed to be described by continuous variation
in color, intensity and so forth. The imperfection is brought about by the discrete nature of the
imaging devices we possess, as well as the digital nature of the computers themselves, which
forces us to quantize these continuous variables into a discrete (but possibly very large) set of
values. In particular, bitmap coordinates are integral, as are the pixel values within them.
From this ‘imperfect’ viewpoint, bitmaps are essentially an implementation artifact, and the
graphics programmer should not be exposed to them. Instead, the programmer should be
given access to the ideal shapes of plane geometry, plus continuous functions for describing
color and intensity modulation. The operators available in such a package always correspond to
operations on these ideal objects. It is the responsibility of the package’s implementor to discre-
tize all these continuous functions internally and transform the ideal continuous operators into
their discrete counterparts.

For a variety of reasons, though, no such package can hide fully the discrete representation
involved beneath the surface. Perhaps the most fundamental reason is that certain laws that
hold in the continuous domain cannot be made to hold in the discrete domain, no matter how
careful one is about quantization. (We will have more to say about this shortly.) Also, good
quantized approximations to continuous tone images naturally involve very large bitmaps. Such

t This section includes material from Guibas and Stolfi,” © ACM by permission of the Assodiation for Computing
Machinery.

.

Form Editor i

System
workspace

Class Browser New Mail May 14 To: Robson Data Format meeting
Sent by Ingalls May 14 To: Cauell Fe: info management
instance class _ Sent to Ing
expandBy: read rhhil file I} ----- "
Y insewBy: v update mail 3 EYRT, TFiTen Acti
| insetOriginBy cornerBy: | Pate Mot Rardeopy all 1 7 pm _Nxﬁ files: Active
truncation and round off ‘intersect:) o Given a ¢ ﬂm.w@,\zmaw: nth&day&year (current system}, it converts it
. wansforming merge: 10 Julian g «36 ot bmer’s date system that counts days (and
Rt copying NPT fractions) racover \ber 24th, 4714 BC.
intersect: aRectangle
“#Answer @ Rectangle that is the area in Whilcl e r of intersect: S0 two uses will let you compute the interval between two dates:
overlaps with aRectangle. ” ForieT
GalleyEditor transiateVie b
tReclangle GalleyFormEditor block 6&%1;;2.AZ.8_NVR-EQAZ\S\:\s?sRL:.Z\fOLS_So
origin: (origin max: aRectangle origin) GalleyFormEditor border
corner: (corner min: aRectangle corner) And it fits on one card!
clippedBy: aRectangle
. + FormMedium destination: bitBlt destForm .4 L4 \
! window: (self visibleRectangle intersect: aRectangle)

PGB transformation: ransformation
SamLetter.galley

5&830 .&,m,E.no& Q&.m%. land oa o.ﬁﬁ.ﬁ?b??.ﬁ:w»@?o. ?aosm«u are n_ow.wmn with
expensive cars. Our parking lot is full of station wagons, but that is another story.
You would think that technical progress was forged in the multi-million dollar

O3] G

Co) |
i
Aye-= B =

Y
e
e
>4

Figure 1b. A Smalltalk screen. (Cartoon courtesy Frank Zdybel.)

Raster Graphics 5

large bitmaps are expensive to store and manipulate. Thus efficiency considerations often force
the graphics programmer to be aware of the implementation underneath.

As anyone who has taken a course in numerical methods knows, floating-point numbers do
not satisfy many of the identities that hold true for real numbers (in the mathematical sense of
‘real’). The science of numerical computing is largely devoted to compensating for these funda-
mental imperfections in floating-point arithmetic. Similarly, when images are discretized, cer-
tain errors are unavoidable. For example, consider the picket fence example shown in Figure 2.
Suppose each picket is 1 pixel wide, but the pickets are spaced 2.5 pixels apart. One reasonable
quantization method would rasterize the picket spacing to an alternating thickness of 2 and 3
pixels respectively, so as to make the overall length of the fence as close to its real value as pos-
sible, thereby maintaining the criterion of global faithfulness. Another method would simply
choose either 2 or 3 pixels and make all spacings that thickness, maintaining local faithfulness. It
is impossible to satisfy both criteria simultaneously.

o TLETTTHT]

(o))

Figure 2. A picket fence image (a) and two discretized versions of it: (b) globally faithful,
and (c) locally faithful.

Another reason bitmaps seep through to higher levels of system design is efficiency.
Dynamic raster graphics require very high-speed manipulations of the raster memory, where
the image being displayed is stored. In every case, the contents of the raster memory can be
computed by scan conversion algorithms from higher level shape, illumination and color
descriptions. Such algorithms are rarely, however, fast enough to cope with incremental updat-
ing of the display, as is often required in interactive applications. Although, as we remarked
earlier, ideal image manipulations do not always have exact counterparts in discrete form, they
sometimes do. For instance, the operation of copying or translating a subimage on the screen
has an exact counterpart in the discretized form. There are immense speed advantages to be
gained by doing these manipulations in the raster representations, rather than in the ideal ones
and then repeating the scan conversion.

Any attempt to ban bitmaps from anything other than a temporary low-level representation
for computer images is bound to encounter difficulties.

To facilitate raster manipulations, several novel computer systems have used specialized
instructions dealing with the raster memory. Typically these gzstems have been personal com-
puters, such as the Xerox Alto® or the M.L.T. Lisp Machine,?® where a premium is placed on
interactive graphics facilities. Their raster instructions are powerful primitives, often imple-
mented in a combination of hardware and micro-code. Such an instruction is known as bitbit
(bit boundary block transfer), or RasterOp in Newman and Sproull’s terminology.1?

The most common form of this instruction is a bitwise Boolean operation between two con-
formable (i.e., having the same dimensions), possibly overlapping, rectangles of pixels. If we
call one rectangle S for source and the other D for destination, then bitblt performs the operation
d-dw»s for corresponding bits d and s in D and S. Here » denotes some two-argument
Boolean operation, which is a parameter to bitblt. Such an instruction can obviously be used to
move rectangles of bits around the screen, by setting both D and S to the display bitmap.

6 Bitmap Graphics

There are many subtle issues regarding bitblt. How are the two rectangles to be specified?
In whose coordinate system? What if they are not conformable? Useful stipple and grey-scale
patterns can be obtained by replicating the image in a small rectangle across a large one. There
are also several interesting issues about the implementation of the bitblt instruction itself.

Bitblt has been found to have an amazing number of uses, far beyond simple rectangle copy-
ing. (This fact has been part of the raster graphics folklore for some time.) For example, it is
possible to rotate or transpose an nxn bitmap using a small constant times n bitblts, each of
which touches O(n) bits. Bitblt can also be used to fill in areas, count connected components,
and do other interesting and useful bitmap computations in ingenious ways. Part of the reason
for this power is that many interesting bitmap computations can be done entirely through local
operations, that is, by uniformly replacing each pixel with a function of itself and its neighbor-
ing pixels. Such algorithms have been used to a certain extent in the theory of iterative arrays18
(though not espedially in a graphics context) and correspond naturally to invocations of bitblt.
We will see some examples later.

Although bitblt was born of necessity, it has become the center of a powerful and convenient
graphics model. The most important attribute of this model is conceptual economy. Bitmaps
are a general representation of an image, and bitblt is a general primitive for manipulating
them. Graphical algorithms based on bitblt work identically on bitmaps containing characters,
synthetic shapes, lines, scanned images or any combination thereof.

Because bitblt operates at the lowest level of the representation, the hardware for a bitmap
graphics system can be very simple. This simplicity can result in high performance; indeed,
some of the most dynamic, interactive graphics systems have been developed for bitmap
displays. And although bitblt uses the image representation directly, it hides that representa-
tion from the programmer and is general enough to be the only access to the display on well-
designed systems.

There are other advantages to doing all raster manipulations through a single primitive.
There is an economy of implementation: the details of accessing the bitmap need be expressed
in only one place, and any performance improvements in bitblt benefit every application. Also,
applications that use bitblt are portable from one display to another, and can take advantage,
without change, of better hardware as it becomes available. From a software engineering
viewpoint, if all the applications are based on a common data structure and operation, different
applications coexist and compose more effectively.

DEFINITIONS AND DATA TYPES

This section presents a mathematical model for raster graphics. The model formally defines
the notions of pixels, raster images, and the primitive operations applicable to them, providing
a framework with clean and unambiguous operational semantics in which to present and dis-
cuss various raster algorithms. Part of this framework is a notation for succinctly describing
such algorithms.

A raster image, or more simply image, is an infinite two-dimensional array, each of whose
elements is a bit, or pixel. When indexing pixels it will prove convenient to assume that their
centers occupy a square lattice in the plane and are located at half-integer coordinates. The axes
themselves we will label with the letters x and y, where x grows to the right and y downwards.
A point (x, y) is a pair of integers and denotes the Euclidean point located x units to the right
and y units down from the origin (0, 0). This is unfortunately a left-handed coordinate system,
but is consistent with all existing implementations we know (the orientation of the y axis was
inherited from the way in which text is addressed on paper and hence on terminals). If we
think of the pixels as unit squares centered at the half-integer lattice points, then a point is a
common corner of four adjacent pixels. All these concepts are illustrated in Figure 3.

° . ° ° ° 'y . ' ° ° ° ° ° . °
° ° . ' ° . ' ° . .
b >
. . ° ° . ° ° ° ° ° ° X
° ° ° REC n.l ° . . ° I
. ° ° Oro]g ° .
. ° . . -)rﬁe N
vy

Figure 3. Pixels, points and rectangles. x increases to the right, and y downwards.
The squares are pixels, and the dots their centers. The point (x, y) labels the pixel cen-
tered at (x+%, y+%). A rectangle is specified by two points, its origin and corner, and
includes those pixels whose centers it contains.

If p is the point (k, I), then X[p] and Y[p] denote respectively the x and y components of p,
that is, k and I. For brevity, we will sometimes write p, and p, for X[p] and Y[p]. A rectangle r
is defined by a pair of points r=(o, c), the origin o and corner ¢, as shown in Figure 3. We
assume that o, =<c, and oy=c,. We also write o =origin[r] and c =corner{r]. A non-empty rec-
tangle is said to contain those pixels whose centers it contains. Since rectangles have sides posi-
tioned at integer coordinates and pixels are centered at half-integer coordinates, this notion is
unambiguous. Another useful attribute of a rectangle is its extent, defined by

8 Bitmap Graphics

extent|r]=(corner, [r]—origin,[r], corner,[r]-origin,[r]), which is a point corresponding to
what the corner of the rectangle would be if its origin was translated to (0, 0).

We will overload the normal arithmetic operations and allow the operations of addition and
multiplication between scalars, points and rectangles when it is obvious what they mean. Thus,
for example, if p and g are points, then p+q denotes the point (p; +4,, p, +4y). If p is a point
and r is a rectangle, then p+r means the rectangle (p +origin[r], p +corner|r]), etc.

Since we intend to display raster images, they must have finite descriptions. This is
achieved by assuming that the values of all pixels of an image m are fully specified by the
values of all pixels lying inside a certain rectangle r, the bounding rectangle of m, denoted by
bounds[m]. There are two kinds of images. A bitmap is an image where the value of each pixel
falling outside the bounding rectangle is defined to be 0. A texture is an image where the value
of pixels outside the bounding rectangle is defined by replicating the bounding rectangle so it
tiles the plane. Note that the bounding rectangle for a texture need not correspond to the
minimum tile whose repetition produces the given image.

Mew Mail
sent by Ing

e’

COp¥ing
intersect: ;
“Answe
overiar

+Rectar

For brevity, we will write, given an image m, origin[m] to denote origin[bounds{m]],
extent[m] for extent[bounds[m]}, etc.

The Bitblt Instruction.

Our manipulations on images will be done with a single primitive, the bitblt command. This
command has the form

D {cut r} {clip c} {op} <= {not} S {with T {shift sh}} {from p}

Here, D, S, and T are images, that is, bitmaps or textures, r and c are rectangles, sh and p are
points, op is a member of the enumerated type {and, or, xor}, and each syntactic element within
{}’s may be omitted. The operands have the following names:

destination
destination rectangle
clipping rectangle
operation

source

texture

shift

source point

Waqug Oty

The bitblt command modifies the image D as follows. The type of D (bitmap or texture) is
unaffected and the result has the same bounding box. Only pixels that lie within

bounds[D]NrNc

can change. Define a pair of pixelsd in D and s in S to be corresponding if

1. d lies within the above intersection; and

2. d has the same position relative to origin[r] as s has with respect to p.
See Figure 5 for an illustration. For every pair of corresponding pixels d and s in the above
sense, the bitblt command does the simultaneous assignment

d - d {op} {not}(s {and t})

in which the bracketed strings are omitted if the corresponding strings in the bitblt command
are omitted, and ¢ denotes the pixels of T with the same coordinates as s in S. If a shift point
sh is spedcified, the texture in T is translated by sh before being applied to the source bitmap. If
r or ¢ are omitted then they default to bounds[D]; if p is omitted then it defaults to origin(S].

Usually the bitblt command is used with D and S being bitmaps, and T, if present, a tex-
ture. Two images are called conformable if they have bounding boxes with the same extent. A
frequent use of bitblt is to store an image into another conformable one. With our notation this
can simply be denoted as

D <= S.

A number of textures are commonly used and therefore have special names. The textures
ALLO and ALL1 have bounding box ((0,0), (1,1)) and yield the value 0 or 1 everywhere, respec-
tively. The textures XBIT [k] and YBIT [k] have bounding boxes ((0,0), (2*,1)) and ((0,0), (1,2"))
and yield at the pixel (x +%, y +%) values corresponding to the k-th bit of x and y respectively.

Note that if T, and T, are two textures, then T+T,, for any Boolean operation #, is also a
texture. To see this, we argue as follows. If T is a texture, then there is an equivalent texture
T', in the sense of having pixel values equal to those of T everywhere, such that
bounds[T ']=((0,0), extent[T]). Now if T,’ and T,’ are equivalent to T; and T, respectively in
exactly this sense, then T T, is equivalent to Ty'+T;’, which is clearly a texture since r =((0,0),
extent[T]-extent[T,]) can serve as a bounding rectangle. Of course the minimum rectangle
whose repetition yields T;'#T,’ may actually be a subrectangle of r.

The bitblt command never modifies the bounding rectangle of the destination. Thus, for
example, the assignment

10 Bitmap Graphics

R
T

L
|

R
I

I e e

Figure 5. Bitblt parameters. Pixel correspondence between S and D is established by
adjusting the coordinate system inside S so p and origin{r] are coincident; this maps the
point s onto the point d. Those pixels in S inside the intersection of r, ¢, bounds[D]
and the (translated) bounds[S] are then masked with the replicated, translated texture T
and copied to D according to op (not shown).

Dxor <= S

for textures D and S might not set D to the texture corresponding to the expression D xor S,
whose smallest possible bounding rectangle might be larger than bounds[D]: if D =XBIT [1] and
S=YBIT[1], then D xor <= § is simply no operation.

It is worth describing how line segments (or rather approximations to line segments) fit into
the formalism. The primitive line is defined as follows:

line pt1 pt2 {in B}

or's into the bitmap B the pixels approximating the line segment from ptl to pt2. How this
approximation is made is described in a later section. If B is omitted, a bitmap of the minimum.
size required to hold the line is created and filled with 0’s before the line is drawn. In either
case, the line primitive acts as a function and returns the bitmap as its result, so it can be used
in a bitblt invocation.

For the creation of new bitmaps or textures we will use the command

B~ NewIm|[r]

which yields a new bitmap or texture, according to the type of B, with bounding rectangle r
and all pixels equal to zero.

Figures 6 and 7 show a couple of representative applications of bitblt: drawing a character
and drawing menu.

Some familiarity with the laws of Boolean algebra is essential to understand bitmap algo-
rithms. The operators and and or, as well as the major identities they satisfy, are probably fam-
iliar to most readers from set theory where they correspond to the operations of intersection
and union. The operation xor is less familiar and it will be useful for us to review some of its
properties. The first important one states that

Definitions 11

0 10 20 30 40 50 60 70 80
0
Destination:
destX = 67 10 =s san -
destY = 10 s H = = :
s » E.J H 4 |
20 — : et :
30
40 I 11
width = 7
height = 13
0 10 240 pso 260 270 400
0 lnuu IRE SRS
Font: ma
fontX = 248 10—- Inmnn 11111% :l IRBENI :

fontY = 0

Figure 6. Drawing a character. The rectangle surrounding the image in the font bitmap
is copied to the destination bitmap, typically the display. (Figure Copyright © Xerox
Corp. Reprinted by permission.)

(x xor y) xor x = y;

in other words, that xor is commutative and its own inverse. If any two of x, y and x xor y are
given, the third can be found. A second useful identity states that

(x xor y) and z = (x and z) xor (y and z);

in other words, and distributes over xor.

As an example of the use of these laws, suppose that we are given two bitmaps A and B, a
rectangle r in A and a point p in B, and we wish to exchange the contents of r in A and
(p, p +extent[r]) in B, as shown in Figures 7 and 8. The following program accomplishes this:

Bitmap Graphics

W AVICUL Vi 1%
nt by Ingalls May 14
nt to Ingalls

llene]actuve.mail

ate: Monday, 14 May 1984, 1:21:55 pm

jven a calendar date in month&day &y
Julian days -- the astronomer’s date s
pctions) since noon, November 24th, 4

two uses will let you compute the inft

4VIidl VI 1%

t by Ingalls May 14
t 10 In g Jera—

read mail file | ~-~"""""1

update mail file
A te: Mon phardcopy all 2 1:21:55 pm
jven a ca] remove all th&day &3]
Julian d4 rewrite er’s date s
) forget
pctions) s recover ber 24th, 4

two uses will let you compute the int

ate: Monday, 14 May 1984, 1:21:55 pm

jven a calendar date in month &day &V
Julian days -- the astronomer’s date s
Bctions) since noon, November 24th, 4

two uses will let you compute the inft

Figure 7. Drawing a menu. An off-screen bitmap is allocated and the menu drawn
there. The off-screen bitmap and the screen storage at the position of the menu are
then exchanged. When the selection is made, they are exchanged back and the menu

bitmap deallocated.

Exchange[A, B, r, p]
modifies Bitmap A, B
Rectangle r

Point p

A cut r xor <= B from p

get new mail

read mail file
update mall files
hardcopy all
remove all
rewrite
forget
recover

Els ’

day, 14 May 1984

lendar date in moj
pys -- the astrono
ince noon, Novexq

get new mail

read mail file
update mall files
hardcopy all
remove all
rewrite
forget
recover

Definitions 13

B cut (p, p+extent[r]) xor <= A from origin[r]
A cut r xor <= B from p

}

An interesting exercise is to write the procedure that performs the same exchange, but only
where allowed by a mask M. Note that this algorithm fails if the source and destination share
pixels, because x xor x is zero.

Figure 8. Exchanging images between two bitmaps.

14 Bitmap Graphics

BITBLT ALGORITHMS

Using the bitblt formalism, a number of image processing and graphics algorithms are easily
expressible. Some of these, such as Levialdi’s transform, are well-known image processing
algorithms that are elegantly expressed using bitblt; others, such as the area fill algorithms,
show how bitblt can be used to implement efficiently a number of traditional graphics operators
that might normally be supplied as separate primitives in a library. This section is a catalogue
of interesting algorithms, and the authors would appreciate hearing of other algorithms that
readers know or discover.

Levialdi’s transform

The Levialdi transform,!4 when repeatedly applied to a bitmap, slowly degrades the image.
In particular, king-wise connected components of black pixels (1’s) map to connected com-
ponents of black pixels, and distinct components remain distinct. (Two pixels are king-wise con-
nected if they share a corner.) Each component loses exactly one pixel after an application of
the transform. Thus by counting the number of isolated black pixels that disappear as the
transform is repeatedly applied, we can count the number of connected components of our bit-
map. If p denotes a pixel and r, d, and x denote respectively the right, down and diagonally
right-down neighbors of p, then the Levialdi transform sets

p'= (pA(rvdvx))V(rAd)

uniformly throughout the bitmap.
The following program executes the Levialdi transform on the bitmap Bd.

LevialdiTransform[Bd]
modifies Bitmap Bd
{

"Executes Levialdi transform on Bd"
Bitmap T1, T2

T1 - NewIm[bounds[Bd]]
T2 -~ NewIlm[bounds(Bd]]
T1 <= Bd from (0,1)

T1 or <= Bd from (1,0)
T1 or <= Bd from (1,1)
T2 <= Bd from (0,1)

T2 and <= Bd from (1,0)
Bd and <= T1

Bd or <= T2

}

Notice that although the algorithm is expressed in terms of pixel operations, the bitblt-based
implementation applies the same operations to the entire image.

Figure 9 shows the result of applying this transformation repeatedly to our standard image.
It is interesting to watch the image decay by this process: it gradually becomes unintelligible
and collapses into the upper left corner. (Actually, the image needs a one-pixel-wide white
border for the Levialdi transform to count isolated components near the edge.)

Figure 9. Levialdi’s Transform

16 Bitmap Graphics

Picture clean-up

Inverse scan conversion is the process of taking scanned-in shapes and finding higher-level
continuous representations for them, such as polygons or characters. Algorithms for doing so
work better if the bitmaps they are given satisfy certain regularity conditions that avoid ‘stray’
pixels. Define the closure of a bitmap P to be the smallest bitmap containing P (in the sense of
having a superset of the black pixels) and such that every white pixel is part of a 3x3 square of
white pixels. Similarly, define the interior of a bitmap as the largest bitmap contained in P so
that every black pixel is part of a 3x3 square of black pixels. The algorithm below implements a
picture ‘clean up’ operation by replacing P by the interior of its closure.

clean[Bd]
modifies Bitmap Bd
{

"Cleans Bd to lines of thickness at least 3"
Bitmap T, S

S ~ NewIm[bounds[Bd]]
T - NewIm[bounds[Bd]]
A[Bd, S, T]

B[Bd, S, T]

B[Bd, S, T]

A[Bd, S, T]

Bd <= S

A[Bd, S, T]
Bitmap Bd
modifies Bitmap S, T

T < Bd
T or <= Bd from (0,-1)
T or <= Bd from (0,1)
S<T
S or <= T from (-1,0)
Sor < T from (1,0)

}

B[Bd, S, T]
modifies Bitmap Bd, T
Bitmap S

T<S

T and <= S from (0,-1)

T and <= S from (0,1)

Bd<=T

Bd and <= T from (-1,0)

Bd and <= T from (1,0)
}

The ABBA pattern of the algorithm reflects the antisymmetry of the white and black operations.
AB generates the white regions by or'ing and then and’ing, whereupon BA thickens the black
regions by and’ing and finally or'ing. Figure 10 shows the results of successive applications to
an image, this time a (roughly) rook-wise connected outline derived (by hand) from our original
bitmap. (Two pixels are rook-wise connected when they share an edge.)

Bitblt Algorithms 17

Figure 10. Picture clean-up

18 Bitmap Graphics

4 -

Area-filling by xor’ing scan lines

In this algorithm we are given a simple (non self-intersecting) rook-wise connected closed
pixel path in the plane. The path is specified as a bitmap with 1’s on the path and 0’s else-
where. The algorithm fills in (makes 1’s) all pixels interior to the path, essentially by replacing
each scan line with the xor of all scan lines up to and including that one. To avoid some boun-
dary problems, the rightmost 1 of each run of 1’s in a scan line is removed before this operation
is applied. At the end, the path is or'ed back in to restore any rightmost pixels that might have
been missed from a run.

fillByXorScanlines{Bd}
modifies Bitmap Bd
{

"Fills with 1’s the connected contours in Bd"
integer o, ¢

Rectangle r

Bitmap TB1, TB2

o ~ X[origin[Bd]]
¢ « X[corner[Bd]]
I~ ((oro)r (c-oll))
TB1 ~ NewIm]r]
TB2 «~ NewIm|r]
for i - Y[origin[Bd]] to Y[corner[Bd]]—1 {
TB2 <= Bd from (o,i)
TB2 and <= TB2 from (1,0)
TB1 xor <= TB2
Bd cut ((0,i), (c,i+1)) or <= TB1

}

Figure 11 shows the intermediate results at each execution of the loop. The image used is not
perfectly rook-wise connected — the lower part of the face is not a closed curve — and the
result is therefore incorrect. The error is easy to characterize, however: because of its basis on
the xor function, this algorithm essentially colors each region of the picture with its parity,
white for even and black for odd. The ‘beard’ hanging from our subject therefore indicates an
odd number of pixels in those vertical slices through the image. For comparison, the picture in
the lower right shows the result of applying the algorithm horizontally instead of vertically: a
different style of beard.

clelelelsls

20 Bitmap Graphics

Area filling by growing seed

Area filling can also be accomplished by putting a single black pixel inside the path and then
growing the black around the pixel, but stopping the growth from escaping outside the pixel
path. This works for simple closed pixel paths that are only king-wise connected, unlike the
xor'ing scan line method that requires rook-wise connectivity. A drawback, however, is that a
particularly sinuous path in a bitmap of size mxn may require almost mn/2 iterations for the
seed to reach from one end of the path to the other. This is a pathological case, though, and a
more realistic termination criterion is to stop when the image stops changing. For simplicity,
this version of the algorithm picks an incorrect limit, but it is a worthwhile exercise to write a
safe version.

fillBySeed[Bd, seed]
modifies Bitmap Bd
Point seed

"Fills with 1’s the pixel path surrounding seed in Bd"
Bitmap T, F

T ~ NewIm[bounds[Bd]]

F - NewIm[bounds[Bd]]

Fseed] ~ 1

for k - 1 to max[X[extent[Bd]], Y[extent[Bd]]] { "see text"
T<F
T or <= F from (0,1)
T or <= F from (0,—1)
T or <= F from (—1,0)
T or <= F from (1,0)
F<T
F and <= not Bd

}

Bd or <= F

}

Figure 12 shows the intermediate values of F for each iteration of the loop, starting from a seed
pixel inside the hair contour.

Bitblt Algorithms 21

& (46 6 4 | f

¢ e

Figure 12. Area filling by growing seed.

ArErararar

22 Bitmap Graphics

Rotation of a bitmap by shearing

This method rotates an nxn bitmap clockwise by 90 degrees in 4n+5 bitblts, each of O(n)
bits. It is essentially a discrete implementation of the transformation identity

b e

that expresses the rotation {y’'~x; x'~—y} as the composition of three shearing maps. Similar
techniques can be used for bitmap transposition. The program below makes the simplifying
assumption that Bd is a square bitmap with bounding box ((0, 0), (1, n)).

rotateByShear{Bd]

{

}

modifies Bitmap Bd

"Rotates Bd 90 degrees clockwise by multiple shearing”
Bitmap M, A
integer n

n - Y[corner[Bd]]
assert n = X[corner[Bd]]
M ~ NewIm{((0,0), (2*°n,2*n))]
M cut ((0,0), (n,n)) <= Bd '
A - NewlIm([((0,0), (2*n,2*n))]
fori-0ton-1
A cut ((i,0), (i+1,2*n)) <= M from (i,—i)
M< A
forj - 0to 2*n—1
A cut ((0,j), (2*n,j+1)) < M from (j+1-2"n,j)
M<A
fori~nto2'n-1
A cut ((i,0) (i+1,2*n)) < M from (i,n—i—1)
M<= A
Bd <= M from (n,n)

Figure 13 shows the intermediate values of M after executing each loop. An interesting exercise i
is to reconstruct the image after each shear, so it is always contained in the upper left quadrant
of M, albeit folded over on itself. This method requires only 3n+6 bitblts.

Bitblt Algorithms 23

Figure 13. Rotation of a bitmap by shearing.

24 Bitmap Graphics

Rotation of a bitmap by parallel recursive subdivision

The following rotation algorithm uses a ‘binary mask’ technique based on the work of
Floyd.” The bitmap size is assumed to be m xm = 2" x2", and the rotation is accomplished in n
steps. After k steps, the current picture is the original picture except that it has been divided
into square subarrays of size 2* 2% and each subarray has been rotated in place. (Of course,
the zeroth iteration is trivial: a rotated single pixel is identical to an unrotated one.) The next
step will assemble each four of these subarrays into a single rotated subarray of size 2k +1x 2K+,
All groups are operated upon simultaneously; the subarrays to be moved in each group are
selected by a mask containing squares of ones of size 2¢x2* in the appropriate places. The
advantage of this method is that it requires only 7log;m bitbits to accomplish its task. This is
less than 4m+5 when m>4 (which is true even for characters). However, if m is not a power of
two, the implementation of this rotation technique becomes considerably more complicated.

rotateByMasks[Bd]
modifies Bitmap Bd
{

"Rotates Bd 90 degrees clockwise by recursive subdivision”
integer j, m, n

Bitmap T

Texture M

m - corner[Bd].y

assert m = X[corner[Bd]]

assert origin[Bd] = (0,0)

n «~ floor{log2[m]]

assert m = 2'n

T « NewIm([bounds[Bd]]

M - NewIm([bounds[Bd]]

fork - 0ton—1{
j-2k
M <= XBIT[k]
M and <= YBIT[K]
T < Bd with (M shift (=j,—j)) from (=j,0)
T or <= Bd with (M shift (—j,0)) from (0,j)
T or <= Bd with M from (j,0)
T or <= Bd with (M shift (0,—j)) from (0,—j)
Bd<T

}

}

Figure 14 shows intermediate values of T and M (the mask) in the loop.

Bitblt Algorithms 25

Figure 14. Rotation of a bitmap by parallel recursive subdivision

26 Bitmap Graphics

Magnification

Visually, one of the most striking applications of bitblt is the speedy ‘magnification’ of an
image: the process of replacing each pixel by a larger rectangle of pixels of the same value as the
source. In the procedure below we specify a rectangle r containing the image we want to mag-
nify and the scale of the magnification (this is a point, to allow independent magnification fac-
tors in the x and y directions). The algorithm involves two invocations of the procedure spread,
the first to accomplish horizontal and the second vertical magnification. Each invocation of
spread first copies the appropriate entities (rows or columns) into the result bitmap, spacing
them apart as it does so, and then smears them by or'ing the bitmap with itself.

Bitmap magnify[Bd, r, scale]

}

Bitmap Bd
Rectangle r
Point scale

"Returns a copy of the portion of Bd contained in r, magnified by p (an (x,y) pair)."

Bitmap Wide, Big

Wide ~ NewIm[((0,0), (extent[r] * (X[scale],1)))]
Big ~ NewlIm:[((0,0), (extent[r] * scale))]
spread[Bd, Wide, r, X[scale], (1,0)]
spread[Wide, Big, bounds[Wide], Y[scale], (0,1)]
return Big

smear(T, scale, d]

}

modifies Bitmap T
Point scale, d

"Smears pixels in T to size d.[xy] in specified direction”

fori -~ 1 to (scale . d)-1 "Smear out the slices”
T or <= T from —d

spread(F, T, r, scale, d]

}

Figure 15 shows the values of Wide and Big, after calling spread and smear, with scale (4, 3).

Bitmap F

modifies Bitmap T
Rectangle r
integer scale
Point d

"Spread out in specified direction the image contained by r in F
by factor d.[xyl, placing result in T."

Rectangle slice

Point spt

slice - ((0,0), (corer{T] * (Y[d], X[d]))+d)

spt - origin[r]

fori - 1 to (extent[r] . d) { "slice up original area”
T cut (slice + origin[T]) <= F from spt
spt - spt + d
slice - slice + d*scale

}

Bd

Wide

Wide

Big

Big

":.'.'.'.':::f!.'!mm

- -—

S ————— ————————— e

—————

e ————— ——————
S —— ————
S——— —————
S—— ——————

E————
————

—— es—

—————— ctm— - -
p———— — — —— amn e com—
r——— —— — - - - ee—
[re— Ld —————— — -
p———— — ———————
p——— - - c—
—————— ——— -

————— — -

—— -

— —— -

———— - ————— SESe———
- . -
- w—— ———
- -
— -
i —— -

Figure 15. Magnification of a bitmap

Bitbit Algorithms

27

Bitblt Algorithms 29

IMAGING HARDWARE

Before discussing the software and hardware issues of bitblt implementation, it is worth
describing how a CRT creates the final, dynamic display.

A raster display scans an electron beam across the front face of its tube. The inside of the
face is coated with a phosphor — a polycrystalline substance that emits light when excited by the
electron beam. The refresh rate is defined as the inverse of the time it takes for the beam to
touch all pixels once, and is typically between 30Hz and 100Hz. In order to reduce the memory
bandwidth exacted by high refresh rates, some displays interlace the refresh: they scan the tube
twice vertically during a refresh cycle, touching even- or odd-numbered horizontal scan lines on
alternate half-cycles.

Although conventional wisdom holds that phosphors have two forms of emission — fluores-
cent (short duration) and phosphorescent (long duration) — they are actually identical physical
processes. For ‘fast’ phosphors (those designed for refresh from about 60Hz up) most of the
light is emitted while the electron beam is touching the crystal, while slow phosphors emit light
long after the beam has moved on.)

A glowing phosphor is in a state of dynamic equilibrium. The electron beam excites elec-
trons in the crystals, which decay to lower energy states through emission of light, and are
excited again. If a pixel’s value is constant, the light output integrated over the refresh rate will
be constant. But when the value changes, the phosphor may respond slowly to the change. If
the phosphor is slow, it may take several ‘hits’ from the electron beam to raise the phosphor to
equilibrium brightness. Similarly, if the decay rate is higher than the refresh rate, the intensity
will drop appreciably between refreshings, which can lead to visible flicker if the refresh rate is
lower than the eye’s flicker threshold.

The speed of phosphor is defined as the time for the light to decay to 10% of its original
value after the excitation is removed. The properties of the standard Joint Electron Device
Engineering Council JEDEC) phosphors are listed in Table 1.

gEC/ Description CIE nC‘;‘oarld Refresh
inton omi
Phosphor | Steady Decay Decay o) Rate Comments
Number State Color Time X I Y
P-1 YG YG 15ms | 218 712 60 Oscillography, radar
P4 \ud w 24ps .270 .300 60 TV
P-6 W w .8ms .338 .347 60 v
P-11 B B 30us .149 144 60 Photography
P-22R R R .7ms .653 .343 50 60
P-2G YG YG 60 346 604 60 Projection
P-22B B B 60 146 .061 60 Projection
P-31 YG YG 70 261 549 60 Oscillography
P-39 YG YG 520ms .218 .720 30 Radar, display
P-40 w YG 400ms | .270 .316 50 Display
P45 w W 1.5ms | .255 .292 60 Single comp. white
PC-164 \ad YG .265 .290 601 Long white
PC-171 w YG .365 .400 601 Soft white

Table 1. Properties of selected JEDEC (those labeled ‘P') and Clinton ('PC’) phosphors.
Abbreviations: R: red, G: green, B: blue, Y: yellow, O: orange, V: violet, W: white, P:
purple. I interlaced.

P4 is the standard ‘white’ phosphor for screens refreshed at or above about 50Hz. It flickers
badly at 50Hz to 60Hz, however, as discussed below. P39 is a slow, ugly green, usually
refreshed around 30Hz. P40 is sometimes called ‘slow P4.” It's a mixture of a blue and a yellow
phosphor; the blue component is a bright phosphor that decays quickly, while the yellow com-
ponent is slow. The color of a static P40 display is almost white, but when pixels change from
white to black the decay is through strange purples and greens. P40 is usually refreshed

30 Bitmap Graphics

around 30Hz to 40Hz, but, again, flickers noticeably at 30Hz.

Flicker is a multi-faceted problem. Most screens are refreshed at either about 60Hz or inter-
laced 30Hz. Interlacing reduces the required memory bandwidth, but if an insufficiently slow
phosphor is used, or if the alternate fields are very different (that is, if there is large contrast
between adjacent scan lines), the eye is confused by the image and the flicker is highly visible.
(This is an important consideration when designing textures.) For fast phosphors such as P4,
even if the refresh rate is high, a person can subliminally detect the blackness between the brief
fluorescent peaks. Sensitivity to flicker of any form is increased when the display is viewed
peripherally, when the eye is moving (such as when reading text on the display), if ambient
flickering light such as fluorescent illumination is present, if the display background is dim, if
the image is bright, or if the ambient light is low. Usually when the ambient light level is low,
the display brightness is turned down, which more than compensates. Also, a light source that
is mostly off, with intermittent light (such as a fast-refresh low-persistence display), flickers
more than a light source that is mostly on, with intermittent blackness (such as cinema, which
is at 48Hz). Finally, of course, people’s individual sensitivity to flicker is highly variable,
although the eye can be fatigued by flickering light even when the flicker is invisible. The main
physiological symptom of exposure to flickering light is a loss of adaptation, the ability to adjust
to varying levels of illumination. The eye’s response to flicker is the same as to glare.

There are too many factors to allow a bald assessment such as “above 60Hz, flicker is invisi-
ble.” P4 is so fast that it must be refreshed at 90Hz or greater to render flicker invisible under
all conditions (but even then, the eye can be stressed by the non-uniformity of the light). Even
P39, the slowest phosphor commonly used, flickers at 30Hz if the interlace fields are wildly dif-
ferent.

The hardware designer would like to use a low refresh rate because it keeps the hardware
cost down, so P39 might be considered a good choice for a phosphor. P39 has another advan-
tage: the green color is near the center of the optical spectrum, where chromatic aberration is
minimal, brightness sensitivity is good and the eye focuses most easily. But the green color is
ugly, and some people react badly to it — they see a pink afterimage. Also, the phosphor is so
slow that the display takes about a second to change in response to a change in the refresh pat-
tern. This makes moving images such as animation and scrolling text hard to look at. One sim-
ple improvement is to reverse the sense of the image, so the background is light and the image
(such as characters) dark. Because contrast is expressed as

L-L,
L,

where L is the image brightness and L, the background brightness, the exponential tail is less
noticeable on a bright background: erasing an image with light rather than dark is much more
effective. Nonetheless, the image still changes slowly, and the color is ugly. Unfortunately,
phosphor designer’s best attempt at a slow white phosphor, P40, is not slow enough and is
only white when at equilibrium. (Some proprietary phosphors, such as Clinton PC-171, may be
better but are not registered by JEDEC and are not widely available.) Creating a truly white
phosphor is hard, of course: it requires three colored phosphors with identical persistences.

A bright background helps animation but increases the flicker. The Ferry-Porter law states
that (in the brightness range of interest) the highest frequency at which flicker is seen increases
10Hz for every factor of 10 increase in brightness. Therefore, if a bright background is used (at
least on a fast display), the brightness knob should be kept turned down.

Overall, however, a bright background is superior. Experiments with data entry clerks have
shown that people can work significantly more effectively with a bright background, even peo-
ple that claim they prefer dark backgrounds. Because the image is bright, glare (ambient light
reflecting off the screen) is less of a problem. The higher average light reaching the eye allows
the eye to perform better, especially regarding visual acuity, distortion, and depth of field,
which is particularly important if the eye is looking alternately at the display and something
else, such as paper. The screen brightness can be matched, in fact, to that of the paper,

Imaging Hardware 31

provided the room lights are adjusted properly.
Summing up, here are some guidelines for design and use of raster displays:

e Refresh the display beyond the flicker frequency of the phosphor.

¢ Keep contrast high on display (avoid glare, perhaps by using anti-reflection coatings rather
than diffuse surfaces on the glass). When the contrast gets too low, reading ability is
impaired by the loss of parafoveal vision.

e Keep room lights low, and the brightness knob turned down. The ideal lighting should
have brightnesses about

task:surround:background :: 9:3:1

The room lighting should be somewhat lower than that typical for reading paper.
e Use a bright background on the display.
¢ Use incandescent room light, not fluorescent.

A couple of other display technologies deserve mention: plasma panels and liquid crystal
displays (LCDs).

Plasma panels are quite old. They emit the same light as the glow in the back of a TV tube:
the orange emission around the cathode of a 100V or so drop in a near vacuum. Plasma panels
have two perpendicular arrays of wires, forming a grid, with about a 1mm separation between
the planes of horizontal and vertical wires. The basic idea is to apply about * half the required
voltage to the x and y wires of the pixel to be lit; together, these provide a voltage difference
large enough to induce the glow. In practice, an AC voltage on the wires is always present,
and the peak voltage is increased or decreased when the value of a pixel is to be changed; the
AC and a small metal plate cause each pixel to otherwise maintain its value. Plasma panels can
be quite large and, because they do not require deflection magnets like a CRT, are flat rather
than funnel-shaped. But they are complicated to drive and expensive because of the large vol-
tages required, so it seems unlikely that a bitblt-based plasma panel will be built.

Liquid crystals are composed of large, cigar-shaped molecules that tend to align along static
electric fields. A liquid crystal display has capacitive plates forming the image pattern under a
very thin layer of liquid crystal. Small static voltages applied to the plates align the molecules
and affect how light is reflected immediately above the plates. The crystals react fairly slowly to
the voltage (time constants of order a second), so they produce a steady image. For reasons
beyond the scope of these notes, black pixels must be refreshed by a 10ms or so voltage pulse
before they decay, which limits the size of a single liquid crystal display to about (refresh
time/10ms). The technology is improving, however, and some recently developed LCDs are
arrays of pixels capable of displaying 24 lines by 80 columns of bitmap characters. Because
liquid crystals reflect light, rather than emit it, and because the voltages are low and static,
LCDs consume very little power. Also, like plasma panels, they are flat displays. Before too
long, LCDs may make portable high-resolution bitmap displays possible.

Most of the material in this section has been accumulated from two references: Grandjean
and Vigliani® and the JEDEC phosphor catalogue.!!

32 Bitmap Graphics

IMPLEMENTATION

To implement a bitblt graphics library, several things must be assembled: a set of data types,
a way to specify the Boolean operations provided by the graphics primitives, and the primitives
themselves. In choosing the data representations and implementing the primitives, some sim-
plifications of our formalism will be necessary or at least desirable; the full generality of the for-
mal definition of bitblt is difficult to provide in an efficient implementation, and efficiency is a
vital issue. For concreteness, this discussion will assume that the destination machine is a
Motorola MC68000 microprocessor,17 although the next section will describe briefly the imple-
mentations on other machines.

Our implementation language is C, which is widely known, high enough level to be con-
venient, but with low-level operators that allow a complete, portable bitblt to be written entirely
in C. Nonetheless, we will rely on a couple of relatively recent changes to the language (they
are in all the UNIX C compilers from the UNIX Seventh Edition onwards): enumerated types
and structure assignment. Their names and their use in the example programs should be an
adequate explanation.

The MC68000 is a 16-bit machine with 32-bit addresses, 8 32-bit wide data registers and 8 32-
bit address registers. Although there are some 32-bit instructions, the microprocessor fetches
data 16 bits at a time, so the types used for bitblt graphics will be built around 16-bit integers.
More specifically, we will assume the C compiler interprets the built-in integer type int as 16-
bit numbers. The first data type is a word of memory:

typedef unsigned int Word;

A word is a 16-bit integer without sign. The bitmap memory, including the display, is a single
one-dimensional array of Words.
Pixels are addressed by the data type Point:

typedef struct {
int x, y;
} Point;

x increases to the right, y increases down the display. Note that coordinates can be negative,
and are integers, not reals. The bitblt graphics primitives are strongly oriented towards the
hardware. Points label pixels in the plane; as in our formal definition, the Point (x, y) labels
the pixel centered at (x+%, y+%).

A Rectangle defines a region in a bitmap, and is specified by two Points:

typedef struct {
Point origin; /+ minimum x, y; upper left «/
Point corner; /» maximum x, y; lower right «/
} Rectangle;

Because pixels lie between lattice points, two horizontally adjacent rectangles r, and r; share no
pixels when rq.corner.x = ry.origin.x, which simplifies subdivision of rectangular regions.
The Bitmap data type describes the storage for a rectangular image:

typedef struct {
Word sbase; /# pointer to word that includes
the Point rect.origin s/
Rectangle rect; /# coordinates and size &/
} Bitmap;

Bitmap.base points to the storage itself; we will return later to the details of how the image is
held in memory. Bitmap.rect, related to the bounds operator in the formalism, serves two
purposes. First, and more obvious, it defines the size of the image by marking its two-
dimensional extent in rect.origin and rect.corner. It also provides a coordinate system
inside the Bitmap by specifying a clipping region inside the storage containing the image.
Since all the graphics primitives take an argument Bitmap to describe where to draw the image

Implementation 33

— the display is not the default — they dlip to the region defined by Bitmap.rect. Note that
because a Bitmap may have arbitrary width, the clipping edges might not lie on Word boun-
daries; see Figure 16.

Word Boundaries

Bitmap.base
Bitmap.rect

Figure 16. The Bitmap data structure associates a coordinate system, defined by
Bitmap.rect, with the contiguous storage beginning at the Word pointed to by
Bitmap.base. The vertical edges of the Bitmap need not lie on Word boundaries.

The final data type is a Texture:

typedef struct {
wWord bita{16];
} Texture;

Although our formal definition allows arbitrary sizes for textures, most implementations, includ-
ing this one, define a texture to be a square of size the width of a word. Since the word size on
the MC68000 is 16 bits, Textures are an array of 16 16-bit words, or a 16X 16 array of bits. A
Texture is replicated across a bitmap by aligning its upper left corner with the points (0, 0)
mod 16, regardless of clipping. This guarantees that an area can be textured with results
independent of any partitioning.

Most of the graphics primitives are, at least implicitly, two-argument operators. For exam-
ple, a line-drawing primitive can be regarded as having two Bitmap operands: the Bitmap in
which the line is to be drawn, and an imaginary Bitmap set to 0's except for those pixels
approximating the line segment being drawn. To draw the line in the image, we must specify
the Boolean combination of the source and (original) destination that will result. In our formal-
ism, this is expressed as

image op <= line pointl point2

Given two operands, the truth table of the Boolean operator is two by two, so there are 2*2 or
16 possible Boolean operators, which can be numbered by the 4 bits of the truth table. Some of
these functions are degenerate, of course: 0 sets the destination to all zeroes, and 15 to all ones,
independent of the source (in our example, the bitmap with the line segment). Although all 16
functions are meaningful, only a few are commonly used in practice, and the degenerate ones
can be subsumed using textures such as ALLO and ALL1. The common ones are given

34 PBitmap Graphics

mnemonic names, and are easily expressed (at the int level) in most conventional computers’
instruction sets and in C:

typedef enum {STORE, OR, AND, CLR, XOR} Code;

STORE: dest = source
OR: dest |= source
AND: dest &= source
XOR: dest “= source
CLR: dest &= ~source

The C syntax aop =b is equivalent to a =aop b but evaluates a only once. STORE mode assigns
the source to the destination. OR, AND and XOR perform the simple Boolean operation on the
source and destination and place the result in the destination. CLR is the same as AND with the
source bitwise complemented.

Although bitblt is the most important bitmap operator, it is worth introducing a few other
low-level operators for drawing in bitmaps. The first is the simplest:

point(b, p, c)
Bitmap b;
Point p;
Code c;

changes, according to the Boolean code c, the pixel at point p in the Bitmap b. For example,
point(display, pt, XOR);

would flip the state of the pixel at x=pt.x, y=pt.y on the display. Not all the Boolean codes
are meaningful for this operator; STORE, for example, yields an undefined result. Although it is
possible to decree some meaning, it is not important enough to define here.

This example introduces a few conventions. First, the globally defined Bitmap display is
the descriptor for that portion of memory visible on the screen. Second, all structures are
passed by value, not by reference. Although the data structures Bitmaps and Textures are
large and seldom change value, for consistency and simplicity we will pass all arguments by
value in the examples (this does not mean passing the Bitmap’s pixels, of course, just its
descriptor). In practice, Bitmaps and Textures might be passed by reference, but geometric
data structures such as Point and Rectangle would always be passed by value to the primi-
tives, because they are much more easily used that way. The programs below illustrate this.

A more interesting primitive draws approximate line segments:

line(b, p1, p2, c)
Bitmap b;
Point p1, p2;
Code c;

draws the line segment from p1 to p2 according to Boolean code c. The line includes p1 but
excludes p2, to simplify the drawing of curves built from contiguous line segments. Again, we
will not define what STORE mode means for line drawing, although it should be the same as for
point. The implementation of line is discussed in a later section.

Finally, we come to the most important operator: bitblt. Our definition for it is:

bitblt(src, pt, txt, dest, rect, c)
Bitmap src, dest;
Point pt;
Texture txt;
Rectangle rect;
Code c;

copies the rectangle in src conformable to rect, with origin pt, to the rectangle rect in dest
according to the Boolean code c. The texture txt is aligned with the coordinate system of the
source and and’ed with the source data before being applied to the destination. In our formal
notation, this may be written

Implementation 35

dest cut rect ¢ <= src with txt from pt

dest and src are Bitmaps; txt is a Texture. This is a reasonable, practical subset. The
problems of default operands will not be discussed here, as C provides no syntax for defaulting.

Here are the factors that make bitblt difficult and expensive to implement: First, and most
important, it must move an enormous amount of data. To scroll a window half a screen high on
a typical display, almost a million pixels must be moved. Even if the inner loop moves a word
at a time, it must move tens of thousands of words to scroll the screen once, yet it might be
called to do so several times a second. Very few computer programs have loops that typically
execute as many times.

Second, bitblt must check its operands, and clip the source and destination rectangles if
required. We take it as a tenet that bitblt clips: if it does, no other software need think about
clipping. Although clipping the source is easy, clipping to the destination Bitmap is slightly
harder because the rectangle is translated to a different coordinate system; the clipping must be
done in a coordinate system different from that in which the rectangle is defined. (This’is just
an offset, but it adds to the complexity).

The source and destination Bitmaps may contain the same storage, or even be the same
Bitmap. bitblt must therefore copy the data in any of four directions to avoid overwriting
the source information before it is copied.

The multiplicity of Boolean codes can complicate the program, although it depends greatly
on the CPU and display hardware. For example, OR and the other ordinary Boolean operators
are usually available as single instructions in the CPU, but STORE must be handled carefully if
the operand is not a full word long; more on this below.

Finally, the texturing capability introduces another level of complexity. Each of these compli-
cations causes a factor of two or more in the number of distinct cases bitblt must handle, all
of which must be executed with utmost speed. But before worrying about speed, let's examine
a simple, very slow, but correct implementation of bitblt that illustrates the complexity of the
operator even without concerns of performance.

The data declarations for this bitblt are slightly extended from our simple ones above:

36 Bitmap Graphics

#define WS 16 /+ Word size in bits «/
#define HIBIT ((unsigned) 1<<(WS-1))

typedef unsigned int Word;

typedef struct Point {
int x;
int y;

} Point;

typedef struct Rectangle {
Point origin;
Point cormer;

} Rectangle;

typedef struct Bitmap {
Word sbase;
int width; /% bits across Bitmap, word edge to word edge &/
Rectangle rect;

} Bitmap;

typedef struct Texture {
Word bits([WS];
} Texture;

typedef enum {STORE, OR, AND, CLR, XOR} Code;

typedef struct Bitptr {
Word sword;
int bit;

} Bitptr;

#define 1ltptr(p, q) (p.word<q.word ii{ (p.word==q.word && p.bit<qg.bit))
#define rot(w, n) (((w)<<(n)) | ((w)>>(WS-(n))))

int tmp;
#define mod(m, n) ((tmp={(m)%(n))>=0? tmp: (n)-tmp) /# in case X is not mod */

The main addition is the width field to the Bitmap structure: the number of bits in a scan line
of the bitmap, rounded up to Word boundaries. This simplifies line-to-line addressing, and has
a couple of other advantages discussed later. The Bitptr data type describes a bit address: a
word address and a bit number within the word (on the 68000, bit 0 is the most significant
(leftmost) bit). Bitptrs are used within bitblt, but are unknown to its clients. The last few
lines of the declarations define a couple of macros that are basically simple operators that are
best done in-line. 1ltptr compares two Bitptrs and returns true if the first Bitptr is a lower
address than the second. (In C, |! is Boolean OR and && is Boolean AND; the bitwise operators
are | and &.) rot rotates its first argument left by the number of bits specified by its second
argument, which must be positive. It uses the shift operators >> and <<; C has no built-in bit
rotate operator. The mod operator is defined because C’'s % operator may yield negative results
when given negative operands.

The procedure incptr (decptr) advances (retards) the Bitptr addressed by its first argu-
ment by the number of bits specified by its second argument, which must be a long integer
because there may be more than 2% bits in a Bitmap.

Implementation 37

incptr(p, n)
Bitptr ep;
long n;

p->word += n/WS;
1f((p->bit+=nXwWS) >= WS)
p->bit -= WS, p->word += 1;
}
decptr(p, n)
Bitptr ep;
long n;

p->word -= n/WS;
p->bit -= nXWS;
if(p->bit < 0)
p->bit += WS, p->word -= 1;
}

The declaration
Bitptr »p;

declares p as a pointer to a Bitptr, which is dereferenced as #p. The notation p->word is
equivalent to (+p).word.
Here is bitblt; clip, rowbltneg and rowbltpos are described below :

38 Bitmap Graphics

bitblt(map1, point1, text, map2, rect2, code)

}

Bitmap map1, map2;
Point point1i;
Texture text;
Rectangle rect2;
Code code;

Bitptr p1, p2;
int width, height;

clip(map1.rect.origin.x, mapi.rect.corner.x,

&point1.x,
map2.rect.origin.x, map2.rect.corner.x,
&rect2.origin.x, &rect2.corner.x);

clip(map1.rect.origin.y, mapi.rect.corner.y,

&point1i.y,
map2.rect.origin.y, map2.rect.corner.y,
&rect2.origin.y, &rect2.corner.y);

width = rect2.corner.x - rect2.origin.x;
height = rect2.corner.y - rectz.origin.y;.
if(width<=0 {! height<=0)

pl.word = mapi.base, p1.bit = mod(mapi.rect.origin.x, WS);
incptr(&p1, pointi.x - mapi.rect.origin.x +

map1.widths(long)(point1.y - mapi.rect.origin.y));

p2.word = map2.base;
p2.bit = mod(map2.rect.origin.x, WS);
incptr(&p2, rect2.origin.x - map2.rect.origin.x +

map2.widthes (long)(rect2.origin.y -~ map2.rect.origin.y));

if(1ltptr(p1, p2)) |

} else {

ineptr(&p1, heights(long)mapi.width ¢ width);
incptr(&p2, heights(long)map2.width + width);
if(ltptx(p2, p1)) return; /s overlap, unequal widths =/
point1.x += width;

point1.y += height;

while(~-~height >= 0) {

decptr(&p1, (long)map1.width);
decptr(&p2, (long)map2.width);
pointl.y -= 1;
rowbltneg(p1, p2, width,
rot(text.bits(mod(point1.y,Ws)], mod(point1.x,WS)), code);

while(--height >= 0) {

rowbltpos(p1, p2, width,
rot(text.bits[mod(point1.y,WS)], mod(point1.x,WS)}), code);
incptr(&p1, (long)map1.width);
incptr(&p2, (long)map2.width);
pointi.y += 1;

The calls to clip dip x and then y so the source and destination rectangles are both contained
in their respective Bitmaps. clip deals with one coordinate at a time, and takes into account
the implicit change in coordinate system between the source and destination:

Implementation 39

clip(mapio, mapic, ppoint1, map2o, map2c, prect2o, prect2c)
int sppoint1, sprect2o, sprectac;
{
int t;
t = sppoint1 - map1io;
1£(t<0)
sppoint1 -= t, sprect2o -= t;
t = sprect2o - map20o;
1£(t<0)
sppoint1 -= t, sprect2o -= t;
t = aprect2c - mapac;
if(t>0)
sprect2c -= t;
t = sppoint1 + (sprect2c - sprect2o) - mapic;
if(t>0)
sprect2c -= t€;
}

After dlipping, bitblt determines the size of the rectangle to be copied; if the rectangle is
degenerate, bitblt returns immediately. The Bitptrs p1 and p2 are initialized to point to the
upper left (origin) bit in each Bitmap. The large if statement checks the direction of copy; if
p1<p2 (the destination address is greater than the source), it may be necessary to copy the rec-
tangles starting from the lower right. Notice that only one test is needed for the two dimen-
sions, not one for each dimension, since memory is really a one-dimensional bit string. The
simplest way to characterize the direction of copy is that the inner loops must traverse the bit-
maps in the direction defined from the origin of the destination rectangle to the origin of the
source rectangle.

The while loops, one for each direction of copy, then call rowbltpos (or rowbltneg) to
bitblt a single scan line, adjusting the Bitptrs one scan line each time through the loop.

The loop in rowbltpos runs across the scan line:

rowbltpos(pi1, p2, n, tword, code)
Bitptr p1, p2;
Word tword;
Code code;

while(--n >= 0) {
if(tword & HIBIT)
movbit(p1, p2, code);
incptr(&p1, (long)1);
incptr(&p2, (long)1);
tword = rot(tword, 1);

}

If the high bit of the Texture word, tword, is set, movbit is called to execute the appropriate
bit copy, otherwise, the destination bit is unaffected.
Here is movbit:

40 Bitmap Graphics

movbit(p1, p2, code)
Bitptr p1, p2;
Code code;

Word t = ((sp1.word<<p1.bit)&HIBIT)>>p2.bit;
switch(code) {
case STORE:
sp2.word &= ~(HIBIT>>p2.bit);
sp2.word i= t;
break;
case OR:
sp2.word i= t;
break;
case XOR:
sp2.word "= t;
break;
case AND:
ap2.word &= t;
break;
case CLR:
«p2.word &= -t;

}
The mysterious assignment
t = ((¢p1.word<<p1.bit)&BIBIT)>>p2.bit

does two things. (#p1.word<<p1.bit)SHIBIT selects the source bit by shifting it into the 0'th
bit of the word and masking out the bottom 15 bits. >>p2.bit then shifts the bit into the
correct position in the destination word. Therefore, t is either all zeroes or a single bit at the
destination bit position. The switch statement is then straightforward: it simply executes the
correct Boolean operation between t and the destination bit.

This version of bitblt is as slow as it looks (maybe slower!): scrolling an 800x1024 pixel
Bitmap — a typical display — horizontally takes about 8 minutes using an 8MHz MC68000.
The obvious first optimization is versions of rowbltpos and rowbltneg that work internally,
without calling movbit, and operate a word at a time:

Implementation 41

#define mask(n) (~(unsigned)0 << (WS-(n)))
rowbltpos(p1, p2, n, tword, code)

Bitptr p1, p2;

Word tword;

Code code;

{
Word t;
int w;

while(n > 0) {
t = ((pt.word[0})}<<pi1.bit) ! (p1.word[1]>>(WS-p1.bit))) & tword;
w = p2.bit + n;
if(w < WS) { /# right end &/
t = (t&mask(n)) >> p2.bit;
if(code == STORE)
#p2.word &= mask(p2.bit) | -mask(w) |
~rot(tword, p1.bit);
} else if(p2.bit > 0) { /# left end «/
t >>= p2.bit;
if(code == STORE)
#p2.word &= mask(p2.bit) | ~rot(tword, p1.bit);
} else if(code == STORE)
sp2.word &= ~tword;
switch(code) {
case STORE:
case OR:
sp2.word = t;
break;
case XOR:
sp2.word “= t;
break;
case AND:
#+p2.word &= t;
break;
case CLR:
sp2.word &= -t;
}
w s WS - p2.bit;
incptr(&p1, (long)w); -
incptr(&p2, (long)w);
tword = rot(tword, w);
n -= w;

}

The operation of the inner loop is to construct the source word aligned with the destination (in
general, this will be made from two source words), and then the switch statement is like that
in movbit, but operates on a complete word.

This code has a couple of problems, typical of the sorts of architectural dependencies bitblt
excites. First, it assumes that shifting by Ws bits works, but on some machines (not the
MC68000), shifts are interpreted modulo the word size. Also, the program may access the first
word after the destination bitmap, which may not exist.

Performance is better; scrolling the big Bitmap takes about 30 seconds, 16 times less than the
pixel-at-a-time version. There is still much to be gained, though: the Blit bitblt implementa-
tion described in the next section, running on the same hardware, scrolls the screen horizon-
tally in 0.36 seconds. The next section exposes the remaining factor of 100.

42 Bitmap Graphics

PERFORMANCE ISSUES

In this section, we will discuss how to make bitblt as fast as possible. Offhand, this might
be addressed as two main subtopics: improvements to.the software and improvements to the
hardware. Although there is certainly speed to be gained by improving both hardware and
software, the main lesson is that ultimate performance comes through cooperating hardware
and software. Software that doesn’t take advantage of the hardware is clearly weak, but
hardware designed without the eventual software in mind can be just as ineffectual.

Before getting involved, we must ask the question: what must be fast? The heart of bitblt-
style bitmapped graphics is bitblt, so obviously it must be fast. It may be possible, however, to
optimize special cases appropriate to the intended use of the display. Tradeoffs will arise, and
they should be resolved to optimize dynamic (actual) rather than static (benchmark) perfor-
mance. If the display is to be used largely for textual work, bitblt might be designed to optim-
ize character drawing and related processes such as scrolling. If instead the display is to be part
of a CAD system, line-drawing and area-filling performance might be critical. For some sys-
tems, small-area bitblts might be enormously more common, while another window-based ter-
minal might do many large copies.

These tradeoffs do not compromise the idea of bitblt itself. Although particular cases of
bitblt might perform better than others, the conceptual simplicity is the same. Bitblt gives us a
focus for implementation issues, and therefore is the place to concentrate design and tradeoff
decisions. In what follows, we will examine various techniques that can be applied to the
optimization of bitmap graphics, then see how the tradeoffs interact by describing a few com-
mercial systems and their implementations of bitblt.

As the pedagogical implementation of bitblt above showed, it is advantageous to process as
many bits as possible in the inner loop. Since the video memory is usually organized into hor-
izontal scan lines, this means operating a word at a time, and making the word as wide as pos-
sible. For example, although the MC68000 is a 16-bit machine, it is possible to address 32 bits of
memory in a single instruction, and the simple bitblt could gain a factor of two in some cases
were it to exploit this feature (provided that the cost of determining that the feature can be used
does not outweigh the gains achieved by exploiting it).

Hardware features can have great influence on performance. Memory speed is clearly
important; to scroll the screen of a typical bitmap display requires reading and writing about
one quarter megabyte, which takes a significant fraction of a second on medium-sized comput-
ers, so faster memory will result in visibly faster display update. For bitblts in which the source
and destination are not bit-aligned, considerable time may be spent rotating the source words
into alignment. The MC68000 takes time proportional to the shift amount to align the bits;
other machines have a barrel shifter and execute all shifts in the same small time. Still others
are bit-addressable in some way, so that the issue of alignment has no bearing on the instruc-
tions in the inner loop.

Another obvious improvement is simply speeding up the CPU. This is usually outside the
direct control of even the hardware designer, but system-level decisions can influence the effec-
tive speed: bus bandwidth, memory latency, cachingt and the like will all influence the speed
of bitblt by increasing the ‘picture bandwidth’ through the processor.

One technique of speeding up the CPU is to implement special instructions such as bitblt or
a one scan line version of it in micro-code. The machines developed at Xerox make good use of
their micro-code for bitmap graphics and other resource-intensive applications.

Many calls to bitblt move relatively large amounts of memory, and therefore execute the
inner loop thousands of times, in fact, many times compared to almost all loops in computer
programs. If the inner loop is executed 100,000 times on a microsecond-per-instruction
machine, each instruction in the inner loop will consume 0.1 seconds of real time. It is there-
fore worthwhile to execute the tightest loop possible, even at the expense of increased setup

+ Bitblt wreaks havoc on a cache. The short shrift given the issue here is disproportionate to its importance.

Performance 43

time. One rarely-used but highly successful technique is to compile high-quality code for the
loop on the fly when bitbit is called. Bitblt on the Blit actually generates optimal code, and is
discussed in detail below. This technique can also work very well for lines and other curve-
drawing primitives.

At the other extreme, small bitblt calls, such as to draw characters, are dominated by setup
rather than by moving the data: drawing a typical character on a 16-bit machine probably
requires changing fewer than 10 words of memory. This is one of bitblt's problems, in fact: the
great unification in programming is at the expense of an operator that must perform well over
an astonishingly large domain. The complexity of the operator itself may be a controlling issue
in its design and implementation. The nature of the operator requires considerable complexity
and difficulty of a good implementation, and it is therefore advantageous to design the
hardware and software around bitblt so as to minimize or even reduce the complexity.

There are sometimes special cases that can be applied to simplify bitblt and perhaps improve
performance without seriously reducing its generality. For example, most implementations, like
ours, assume a fixed size for textures — the word size of the machine. Although a dynamic
size might be more useful, the functionality is not in practice reduced significantly by decreeing
a convenient size. ..

A more interesting example is a special case exploited, without loss of generality, in the Blit
implementation. Many bitmaps are dynamically allocated to hold a piece of the display memory
temporarily, while something like a window or menu covers it up. By observing that the rec-
tangle the bitmap is copied from is often the rectangle it will copied fo later, the bitmap can be
allocated so the word boundaries are aligned with those in the source bitmap (and therefore the
later destination) (see Figure 17). This allows bitblt to copy the temporary bitmap without shifts
or rotates, which can save considerable time on a machine without a barrel shifter, such as the
MC68000. This trick saves a factor of two or more on a Blit, and also simplifies the software
somewhat. By demanding that all bitmaps be aligned so pixels at x=0 mod 16 are on word
boundaries, bitblt can exploit that fact to convert bit addresses into word/bit pairs easily, and it
is straightforward to arrange that textures (which are 16 bits wide) are also aligned with the
coordinate system in the bitmap.

Hardware can have an overwhelming influence on the complexity of bitblt. Perhaps the sin-
gle greatest factor is the uniformity of the address space and memory. Even if all memory is
directly addressable by the CPU, and all behaves the same way, bitblt must deal with thousands
of distinct cases for the two-dimensional copy loop, and the problem in implementing it is keep-
ing the case analysis manageable without degrading performance. If some piece of memory is
different — some machines have special properties such as bit addressability— the case analysis"
increases combinatorially with the number of variations. Also, as will be explained below, the
well-meaning designers of hardware sometimes add features intended for performance that
actually cause more problems than they resolve. One of the most common is that of making
memory two-dimensional (after all, it's two-dimensional on the screen) which makes memory
allocation a 2-D bin-packing problem, and makes it impossible to allocate a bitmap that is wider
than the display (see Figure 18).

The Blit: A Case Study

Our first analysis is of the Blit experimental bitmap terminal, which is discussed in consider-
able detail because it was designed primarily as a graphics system to execute bitblt, and because
it is well understood (one of the authors (Pike) was half of the design team). Also, it is a very
simple, low cost frame buffer with good performance, and it is interesting to see why. Finally,
it is an excellent illustration of the main point of this section: if the hardware is cleanly
designed, a software implementation of bitblt may be good enough that special purpose
hardware is unjustified and unnecessary. Much of this material is excerpted from Pike,
Locanthi and Reiser.2!

The Blit has an 8MHz MC68000 and 256 Kbytes of contiguously addressable dual-ported

Display \
=

Off Screen

Figure 17. Alignment of allocated bitmaps. Bitmaps created to back up pieces of the
display bitmap can be allocated so the word boundaries are aligned, so saving and res-
toring the display pixels does not involve bit rotates in bitblt.

On the Screen In a 2D Memory
display
leftover
memory
In a 1D Memory
display leftover memory

Figure 18. Two-dimensional memory introduces severe problems when trying to use
those portions of memory not used by the display — memory allocation requires 2-D bin
packing.

-

Performance 45

RAM, a connected 100 Kbytes of which is scanned to the display to form the 800%1024 pixel
image. The remaining 156 Kbytes are used for program and data, but the division of the
address space is imposed entirely by software: there is only one region of RAM, shared by the
processor and the display.

The center of the Blit is the dual-ported memory: 256 Kbytes of 32-bit wide RAM built from
thirty-two 64K by one bit dynamic RAMs. A video processor fetches 32-bit words from the
memory and copies them to the display, refreshing the display at 30Hz (60Hz interlaced), and
has the side effect of refreshing the dynamic memory chips. Video refresh takes approximately
a third of the RAMs’ bandwidth. The other memory port is connected to the MC68000 data
bus, which is 16 bits wide. An asynchronous arbiter controls access to the memory: if the
memory is busy, the requesting entity is suspended until it is freed; otherwise the request is
serviced immediately. In practice, the MC68000 usually does no waiting, but when it does it
must wait about 500ns. The fraction of memory cycles lost to the video depends greatly on the
application, varying from about 10% for CPU-intensive tasks to perhaps 50% for memory-
intensive tasks, because the 16-bit data bus must execute two fetches to retrieve a 32-bit quan-
tity.

The memory is one-dimensional and contiguously addressable, so the display is a Bitmap as
discussed above: the video controller copies an arbitrary connected 100 Kbytes to the 800 pixel
wide by 1024 high display. The remaining 156 Kbytes are used for program and data, including
auxiliary bitmaps. Since the graphics library puts the display at the last 100 Kbytes of memory,
the display structure is initialized as:

Bitmap display = {
15641024, /+ Bize of memory less 100K for display #/
{o, o, 800, 1024} /% 800X 1024 screen «/

}s

The single address in display.base and the coordinates in display.rect are all that is
needed for the software to address the bitmap. (One other field, width, the number of words
across a scan line, is provided for the window system so bitmaps may share storage.) Memory
is one dimensional, and any two-dimensionality of interpretation is enforced by software, not
hardware.

The Blit is a terminal used largely for character-oriented applications, so it has three cases of
bitblt that dominate: drawing characters, scrolling windows, and window-window operations
such as exchanging off-screen data with the display. These cases also cover the most common
graphics operations on personal computers.

Drawing a character requires decoding a font structure to find the location of the character in
the font bitmap and calling bitblt to draw the character on the display. For a general font for-
mat and typical character sizes, over half the total time to draw a character on the Blit goes into
overhead: at least one subroutine call and setup, opening the font, building the argument list
for bitblt, calling bitblt, and having bitblt in turn decode and clip its arguments and decide how
to draw the image. Because the characters are small — drawing the letter ‘a’ in XOR mode
touches 7 words of memory — actually changing the pixels in the destination bitmap is rela-
tively unimportant. Our overhead is not unreasonable; the Blit draws about 2500 characters per
second in the standard font, whose characters are 9 pixels wide and 14 high. An experimental
version with eight-bit wide characters drawn only on byte boundaries, that avoided the over-
head of calling bitblt and used a special font format that was easy to decode (the current for-
mat is somewhat compressed for economy of memory), was only a factor of two faster. This is
insufficient speedup for so great a loss of generality.

The second common case of bitblt is scrolling a rectangular region of a bitmap, usually the
display. Since the word boundaries in the scan lines of a bitmap are at the same place in each
line, the speed of scrolling depends primarily on the speed of the MC68000 instruction!”

mov.l %Xa0@+, Xa1@+

or, in C,

46 Bitmap Graphics

register long +#p, +#q;
#p+s = BQ++;

For typical rectangles, the edges, which must be handled with more complicated code, do not
dominate the performance. There is nothing hardware can do to accelerate this loop except pro-
vide faster memory access. If the display were accessed through a narrower or clumsier inter-
face, it would take longer to move the data.

The last common case is shuffling on- and off-screen rectangles, which can be made fast by
the alignment trick discussed above. Of course, there is also the wide, non-aligned case of
bitblt to be supported, but almost by construction it occurs rarely, and the memory and
software are clean enough to make it acceptably fast when it is executed.

Bitblt runs two, nested, loops: an outer loop over scan lines and an inner loop across words
in a scan line. Although the inner loop has the greater effect on performance, the outer loop
must set up the registers for the inner loop. This initialization is probably the most error-prone
part of the coding, because it is rich in possibilities for off-by-one errors.

In the general case, separate code in the inner loop must deal with the partial word at the
left edge, the partial word at the right edge and the words between, which can be moved 16 or
32 bits at a time. If the source and destination are not bit-aligned (for example, when scrolling
horizontally one pixel), the code is complicated further, as in Figure 20. In fact, Figure 20 does
not present the most complicated case, because the source and destination can span a different
number of words. (The Blit’s bitblt does not have a texture operand; texturning is provided by
a separate primitive. This is for historical reasons, and could easily be changed.)

There have been five implementations of bitblt for the Blit. Version 1, by Pike, did STORE
operations only and treated characters (source width less than 17 bits) with a separate charblt
primitive. Locanthi wrote Version 2, which implemented all the Codes, and was significantly
faster, but still treated characters specially. This uncomfortable distinction was removed in a
third version, also by Locanthi. All these implementations did case analysis in static code and
were written in C, although the inner loops of the various cases were liberally sprinkled with
in-line assembly language. Reiser next wrote Version 4, in assembler, that used coroutines to
process the various portions of each scan line, but this version was slower in some cases such
as scrolling.

The latest bitblt, Version 5, also written in assembler by Reiser, is the topic of this section.
It compiles optimal code on-the-fly for each invocation, then jumps to the generated code. The
code is optimal in the following sense: any faster correct sequence of instructions has its loops
unrolled to more than 2x’ (the loop has been duplicated in-line more than once), or depends
on the values of the bits inside the rectangles involved. (For example, if the destination rectan-
gle already contains the correct answer, a null sequence of instructions would be faster than the
sequence generated by bitblt.)

Finding the optimal sequence of instructions takes time, of course. And actually, characters
are hopeless. The strategy is to detect when width is less than 17 and jump immediately to
static code that always does 32-bit operations although 16-bit operations might suffice in some
cases. Characters are so small that there is no time to plan.

In the worst case, bitblt executes 400 instructions to generate the optimal sequence. Cases
requiring no shift, or which are all edges (inner loop is empty; width as much as 64 pixels), take
significantly fewer instructions.

The number of cases depends on the rules for counting. Table 2 gives a lower bound on the
essentially distinct cases. OR and XOR are certainly different operations and result in different
instructions, but they behave the same way as far as compiling code is concerned. CLR is dif-
ferent because it requires two instructions (a not and an and) instead of one; STORE is different
because a zero bit is not an identity for partial-word operations. The magnitude of a rotate
ranges from 1 to 8 positions and is an immediate constant in the rotate instructions, but the
value is otherwise immaterial. Whether the rotation is to the right or to the left is important,
however. The table does not count some tricky cases where the inner loop is small (0, 1, or 2
words) and interacts intimately with the edge cases.

Performance 47

2

reason

Code: STORE, CLR, other

adjust source pointer at end of line or not
adjust destination pointer at end of line or not
scan: left-to-right, right-to-left

rotation: left, right, no shift

left edge: full, partial word, partial long

right edge: full, partial word, partial long
inner loop: small, big and odd, big and even

lower bound on cases

E WWWWwNDNDNW

—

Table 2. Cases in generated code for the inner loop for Blit bitblt.

The size of the generated code ranges from 16 to 72 bytes. If all the cases were written out
(including all the shifts and Codes) then the total size would approach one megabyte. Thus it is
impractical to expand all the cases ahead of time and merely jump to the right one; the genera-
tion process is useful because it saves space. The generated code resides in a local array on the
stack.

Figure 19 gives the generated code for scrolling the whole display. The display is 800/16 =
50 words wide. This case requires no shifting for alignment; each instruction can process 2
words at a time. The left and right edges coincide with word boundaries, so partial-word
operations are not necessary. Autoincrement processes each scan line left-to-right, and the side
effects leave the pointers ready for the next scan line without further adjustment. The inner
loop is unrolled to 2X, and control enters at the middle since the operation count of 50/2 = 25
is odd. Except for the odd inner loop, this code is the shortest and fastest of all the generated
cases.

br.b L20 initial entry for odd inner loop
L10: mov.l %a2@+,%a0@®+ 32 bits moved here
L20: mov.l %a2@+,%a0@+ and 32 more here
dbr %d6,L10 until scan line finished
mov.w %a4,%dé6 reload inner counter with 12
dbr %d47,L20 until no more scan lines
jmp %Xa5@ return to fixed control

Figure 19. Generated code for scrolling the whole display.

Figure 20 shows the relative alignment of source and destination words for a complicated
case. Figure 21 gives the code generated for XOR with this alignment and an overlap requiring
right-to-left scan. The code processes each scan line right-to-left using autodecrement, compen-
sates for a three-bit difference between the source and destination in the location within a word
of the edges, handles a partial word at the right edge and a partial long word at the left edge
with appropriate masks, uses additive correction constants to move from one scan line to the
next, and falls through into an even inner loop.

Version 5 of bitblt is written in assembler for efficiency. The overhead of starting bitblt
dominates for small areas. By writing in assembler, the on-the-fly compile time can be minim-
ized, primarily because all the variables required for the compilation can be held in registers,
avoiding memory fetches for data.

The generator itself consists of three sections. The first section analyzes the rectangles, sets
up masks and the rotate instruction, and determines which special cases apply. The last section
lays down instructions to process one word or long word. The middle section supervises gen-
eration. It calls the last section four times, using flags and parameters to distinguish the first
word, two inner words, and last word.

Version 5 performs slightly better than the coroutine-based Version 4; everything, including

- -l

48 Bitmap Graphics

source

| !

dest

source |

dest |

Figure 20. Right edge and left edge for a complicated case.

L40:
mov.l %a2@-,%d0
mov.l %d40,%d1
ror.l &3,%40
and.w %d4,%d0
eor.w %d0,%a0@-
L50:

mov.w %a22@-,%Xd1
swap.w %d1
mov.l %d1,%d0
ror.l &3,%d41
eor.w %d1,%a0@-

mov.w %az2®-,%Xd0
swap.w %40
mov.l %d0,%d1
ror.l &3,%d0
eor.w %40,Xa0@-
dbr %d46,L50

mov.w Xa22@-,%d1
swap.w %d1
ror.l &3,%d41
and.l %d5,%d1
eor.l %d1,%Xa0@-

add.w %a3,%Xa2
add.w %a1,%a0
mov.w %a4,%dé6
dbr %47,L40
jmp XaS5@

top of outer loop; partial word at right edge
first fetch always 2 words
prime the pump for inner loop
rotate right 3 bits
mask might be 0xf£c0
exclusive-or with destination
top of inner loop
fetch next source word
proper order with previous word
prepare for other side of loop
align
exclusive-or with destination
second half of inner loop
fetch next source word
proper order with previous word
prepare for other side of loop
align
exclusive-or with destination
until scan line finished
partial long word at left edge
fetch next source word
proper order with previous word
align
mask might be 0x007£££££
exclusive-or with destination
move to next scan line
adjust source
adjust destination
initialize inner count
until no more scan lines
return to fixed control

Figure 21. Code for a complicated XOR.

cases requiring no shift, is some 20% faster than Version 3, the best of the C implementations.
The structure of the generator makes it fairly easy to add new function Codes or to extend the
definition by masking the data with a texture; the versions in C would need more complicated
analysis and more inner loops written in-line.

bitblt recovers the time spent compiling by amortizing the cost of generation over the left
and right edges of the rectangles. On the average, one edge can use 32-bit operations (the left
edge in Figures 20 and 21), saving 5.5 instructions per scan line. Destination edges coinciding

. . Performance 49

with word boundaries omit the and. The generator similarly elides add instructions when pos-
sible. These savings completely recover the cost of generation after 70 scan lines, and after that
the generated code starts winning. Narrow rectangles and ones requiring no shift (by construc-
tion, the most common case) start winning sooner because generation is shorter.

The code STORE requires special attention because the MC68000 has no partial-word bit-field
operations for handling fragmentation at the left and right edges of a bitmap. Standard compu-
tation uses AND and OR in the formula d=(s&m)!(d&-m) for combining source and destination
under mask. The formula d*=((s~d)&m) uses XOR and AND to compute the same answer in
less time and fewer registers (depending on the instruction set).

Simplicity of design leads to efficiency of execution. In this case, ‘design’ is in hardware and ‘exe-
cution’ is in software. The complete bitblt subroutine is 1524 bytes of code, and can scroll the
screen one pixel vertically in 0.13 seconds, and horizontally in 0.38 seconds. (A comparison of
bitblt implementations and systems appears in Table 3.) These are appreciable times, but the
vertical case is near the bandwidth limit of the memory, the horizontal case is essentially never
executed, and most bitblt calls are at most the size of a window, not the entire display, and
so are proportionately faster. Despite the lack of direct hardware support, the implementation
of bitblt on the Blit is entirely satisfactory, and in fact outperforms some systems with
hardware assist. A related point is that the Blit's performance is predictable: there are no
anomalously fast or slow cases of bitblt.

Apollo

The Apollo DN400° is an MC68000-based personal computer with an integral 800%1024 pixel
bitmap display, refreshed at 60Hz. The display memory is separate, although accessible directly
from the CPU, and has a hardware ‘bit mover that executes bitblt directly, and very quickly, for
a subset of the possible cases. The main restrictions of the bit mover are that it is STORE mode
only, and only works on the display memory. Bitbit on the Apollo therefore runs at very dif-
ferent speeds depending on its arguments; XOR mode, for example, must be executed by the
CPU and is therefore considerably slower than STORE mode. The speed of the bit mover is so
high that the invisible portion of the 1024x 1024 memory is used to store fonts, so that charac-
ters can be drawn very quickly.

The lack of generality of the bit mover on the DN400 has been corrected in more recent
Apollo systems, which have bit movers that support all Boolean operations and are not res-_
tricted to the display memory. Unfortunately, we were not able to run our benchmarks on
these newer systems.

Dorado

The Xerox D machines are a set of three heavily micro-programmed personal computers with
a range of performances. Although they are different in detail, they are similar in concept,
varying mainly in performance. For our purposes, therefore, we will consider them a single
class of computer. The Dorado!? and the Dolphin are benchmarked below; the intermediate
performance machine, the Dandelion, was not measured.

The processors are based on the idea of micro-tasks: at the start of each micro-instruction,
control switches to the highest priority process, in micro-code, that is ready to run. These con-
text switches are essentially instantaneous, and are used to allow each /O device on the com-
puter to have the full programmability of the CPU at its disposal. For example, one of the
higher priority micro-tasks fetches the memory to update the display, which means the memory
need not be dual-ported. The lowest priority micro-task executes the user instruction stream, as
on a traditional processor.

Bitblt is written in about 300400 instructions (depending on the machine) in micro-code, and
is interpreted as a user instruction by the lowest-priority micro-task. The micro-instruction

50 Bitmap Graphics

words are 32 to 48 bits wide, and can (in a single instruction on the Dorado, two or three on the
Dolphin) encode a move, shift offset (through a barrel shifter), test and branch address. This
allows the inner loop of most cases of bitblt to be one or two micro-instructions. To all the D
machines, the display is simply a part of memory; although the hardware supports more com-
plicated display addressing, all current Xerox software sets the display control blocks so the
display is a single connected block of memory.

The Dorado is the highest performance D machine, and in fact the highest performance bitbit
processor, largely because of a complex, very high bandwidth memory architecture. Some
Dorados have a 512x512 pixel 24-bit deep color frame buffer, refreshed out of main memory by
a CPU micro-task that degrades overall performance only about 30%!

Note that although the D machines were designed to execute bitblt efficiently, this was done
largely by optimizing CPU and memory performance, rather than changing the processor or
memory specifically for bitblt itself. Nonetheless some features, such as a pre-loadable shift and
mask unit on the Dolphin and Dorado, were installed specifically for bitblt.

Ridge

The Ridge 326 is a high-performance pipelined RISC processor with virtual memory and an
interesting bitmap display architecture. The computer can support up to four bitmap displays
simultaneously because of a shadow memory scheme that off-loads the memory bandwidth
required for refreshing the displays (about 10MHz per display).

Each display is a DMA device on the /O bus, with 128K bytes of local memory, from which
the 1024x800 pixel display is refreshed. A program running in the Ridge does not access the
display directly, but instead changes the contents of a 128K bitmap (using bitblt) in main
memory. Because the Ridge has virtual memory, the “page modified” bit can be used by the
hardware to detect when a part of memory has been touched. For ordinary data, this may
require copying the page to disk in order to swap the process out. For the display pages, how-
ever, the backup device is the shadow memory in the display controller. The page tables for
the user's main memory copy of the display bitmap are examined at 30Hz, and any modified
4Kbyte pages are then asynchronously copied to the display controller by a DMA request,
which moves a 32-bit word every 750ns. Although this requires memory bandwidth, main
memory is used to update the display only when the image changes, and only to retrieve those
pages that have been touched. In fact, if the display bitmap is not accessed for a while, it may
be paged out!

Bitblt on the Ridge is written in assembly language, and executes quickly because of the uni-
form address space and high performance of the CPU, which can execute up to 8 million
instructions per second. Because of the simple design of the instruction set, however, the inner
loops of bitblt are somewhat longer than on machines with ‘horizontal’ micro-code, such as the
Dorado, especially for those cases of bitblt with non-aligned source and destination.

Sun

There are two implementations of a bitmap display for the SUN, both with a separate
display memory with hardware assistance for shifting, Boolean operations and masking. The
first implementation? uses a 1024x1024 two-dimensional memory on a Multibus card, and
accesses the 1024x 768 display through a 16-bit interface. Through the use of display registers
and the high, unused address bits of the MC68000, a 16-bit word in the display memory can be
picked up, shifted, masked with a 16-bit word and written to an arbitrary bit address in the
display memory by executing a single word copy instruction:

mov.w al1@+, a2@+

There are several problems with this technique. The memory of the display bitmap cannot be

W

Performance 51

accessed directly by the CPU, but must instead be reached through the 16-bit interface on the
Multibus. This means that twice as many instructions must be executed as the MC68000 might
optimally require, because the CPU can move 32 bits in an instruction. Also, the two-
dimensional nature of the display memory makes it awkward to use the invisible portion. Most
important, though, is that a general bitblt implementation must deal with the four separate
cases of display to display, display to memory, memory to display and memory to memory,
each of which is very different code. This makes bitblt unnecessarily complex.

The Sun 216 addresses these problems by providing the same functionality (this time in a
custom LSI chip), but with the display memory on the same card as the CPU and directly in its
address space. This allows the CPU to treat the display as regular memory when that is con-
venient, or to use the hardware assistance when advantageous. Bitblt is therefore reduced to
two main cases — display to display and all else — which are very different but manageable.
To reduce the memory bandwidth required for refreshing the display (22MHz for the 70Hz
refreshed 10241280 display), the tube is refreshed from a shadow memory that watches write
access from the CPU to the display, and copies the data from all writes to memory into the sha-
dow memory.

Symbolics

The Symbolics 360010 is a micro-coded personal computer designed specifically to support
interactive programming in Lisp, and includes an integrated 1150x900 pixel bitmap display
refreshed at 60Hz. The frame buffer architecture is fairly simple. A separate memory, slightly
larger than the display, is dual-ported between the processor and the video refresh to offload
the refresh bandwidth from the main memory. The display memory is, however, regular (but
slower) memory in the address space of the CPU.

Bitblt is written in a mixture of micro-code and Lisp. The inner, horizontal loop is written in
micro-code, and the outer loop and setup is in Lisp. Symbolics bitblt does not clip or automati-
cally determine the direction of copy. There is somewhat more micro-code for bitblt on the 3600
than on comparable machines such as the Dorado, primarily to take advantage (when profitable)
of a special hardware memory access method called ‘streaming mode.” This method uses RAM
chip page mode access and an eight word cache to improve performance for sequential address-
ing.

Benchmarks

Four simple tests of were run on these various machines. The tests were:
Scroll 800wide % 1024high bitmap 1 pixel horizontally
Scroll 800wide x 1024high bitmap 1 pixel vertically
Draw 8wide x 7high character in XOR mode at random bitmap positions
Texturing in XOR mode a 40X 40 square at random bitmap position
Although many systems have special primitives for operations such as character drawing,
the tests were run using bitblt directly for each test. They therefore indicate the approximate
performance of bitblt itself. Most tests were run with source and destination both in regular
memory; where results are significantly different in memory vs. the frame buffer, this is indi-
cated in the table.

A note on costs: a Blit costs about $3,500 and the other machines range from $20,000 to
$100,000.

- -

52 Bitmap Graphics

. Vert. Horiz. 8x7 40x 40 i
Machine Scroll Scroll Character Texture Code size, notes
Apollo 25 27 1.0 2.6 hardware (disp. to disp.)
Apollo 642 656 software (disp. to disp.)
Blit 130 370 0.41 120 1542 bytes instr's®
Dolphin 852 128.1 2.02 2.40 “300 micro-instr’s
Dorado 23.3 23.8 0.051 0.156 "300 micro-instr's
Ridge 39 12 0.244 0.830 5439 bytes instr’s
Sun 1 187 194 1.1 1.89 All separate routines
Sun 2 109 110 0.34 0.82 3344 bytes instr’s(disp. to disp.)
Sun 2 82.2 311 0.74 1.78 3068 bytes (mem._to mem.)
Symbolics __ 30.5 _ 36.8* 0.52 1.64 500 micro-instr’s’

All times are in milliseconds. '

1 0.06ms in STORE mode (done in hardware). Scrolling done by hardware in display; much
slower if source or destination is not display.

2 Texturing is a separate operator

3 67ms scrolling left. The scrolling tests were 1024wide X 800high.

4 This are memory-memory times. The display memory scrolls about 2.5 times slower.

5 No dipping, programmer must specify direction of copy

Table 3. Bitblt benchmarks. Thanks to Luca Cardelli, Ken Church, L. Peter Deutsch, Tom Duff,
Emden R. Gansner, Peter Langston, George Trow and Dave Ungar for testing the various
machines.

Interactive Graphics 53

LINES

The problem of drawing an approximate line segment on a raster device is old but interest-
ing and important. Drawing a line segment is most easily done by the simplest example of a
class of curve-drawing algorithms called Digital Differential Analyzers, or DDAs. Other DDAs
can draw circles, arcs, ellipses, splines and so on.

The basic problem is, for a line segment between two points (xo, yo) and (x;, y;), to
illuminate those pixels that form the best approximation of the true line (henceforth we shall
use the adjective ‘true’ to distinguish the line from its approximation). Certain compromises
must be made, of course. The most obvious is that the line must have thickness at least that of
a pixel. Also, at least for the one-bit pixels we are considering, the true line must be approxi-
mated by a sequence of horizontal or vertical rectangles with visible jumps, or ‘stair steps’,
where adjacent rectangles abut.

The DDA is a simple algorithm that maintains the minimum distance between the real line
and the pixels, measured perpendicular to the axes. The algorithm moves from the start point
of the line to the end point one pixel at a time, tracking the distance between the pixel being
plotted and the true line. When the error becomes greater than half a pixel width, the subse-
quent pixel is moved one unit in the direction to return the error term to near zero. The
behavior of the error is illustrated by Figure 22.

/—— Approximating pix»élls

L] True line

=L
Error (e) \v/\ /\\//\\//\\//

Figure 22. The error term for approximating a line minimizes the distance between the
true line and the approximation.

Formally, assume a true line of positive slope 0=m <1, with (xg, y¢)=(0, 0) and x,=Ax and
y1=A4y integers. The pixel labeled by the point (x, y) is at (x +%, y +%),T so the error at (x, y) is

1 1
y+2 m(x+2)

with
=4y
m Ax
At the origin, the initial error is
=1_Ay
€ 2 2Ax

so0 at (dx, dy) the error is

t Most derivations of this algorithm assume the pixel is centered on (x, y). We have chosen a different convention be-
cause it makes the notion of a rectangle less ambiguous for bitblt graphics. Its only influence on the algorithm is the
initial value of e derived later; for pixel centers at (x, y), ¢, =Ax—2Ay.

¢ =(y +dy+%)—m(x +dx+-;-).

Setting dx =1, the change in the error between the first pixel, at the origin, and the second pixel
is

€ —e=dy-mdx = dy—%
Rearranging,
Axe' = Axe—Ay+dyAx.
Here, dy is either 0 or 1, the choice per pixel determined by the constraint

-%:sse’<:€%.

Next, we scale and offset € to form a computationally more convenient error term, e:
e=2Axe+Ax

that satisfies
0 =<e < 2Ax

Initially, |

ep = 2Axey+Ax = 2Ax—Ay
The loop over pixels in 1ine therefore plots a pixel, increments x, subtracts
2mAx=2Ay

from e, and tests its sign. If e<0, y is incremented and e increased by 2Ax. Simplifying some-
what, e can be tested before it is updated by subtracting 2Ay from the initial value. This yields
the following program to draw a line of shallow positive slope (it is easier to write separate ver-
sions for the other orientations than to fold them into one loop):

line(b, p1, p2, c)
Bitmap b;
Point p1, p2;
Code c;

int e, Ax, Ay;
Point p;
Ax=p2.x-p1.x;
Ay=p2.y-p1.y;
p=p1;
e=2Ax-3Ay;
for(i=1; i<Ax; 1+=1){
point(b, p, ¢);
pP.-Xx+=1;
if(e<0){
pP.y+=1;
e+=2Ax-2Ay;
}else
e-=2Ay;
}
}

This algorithm was first derived by Bresenham.4 The basic idea of a DDA — approximating a
curve by minimizing the error while walking across the display — can be applied to circles,
ellipses, splines and any other curve. These are discussed in Newman and Sproull.1® There is
an extensive literature regarding the algorithms for drawing curves on raster displays, and we

Lines 55

probably needn’t dwell further on it here. On the other hand, the considerations of efficiency
in executing these algorithms are not as widely known, at least in print.

The first observation regarding the efficiency of 1ine is that it is unnecessarily expensive to
call the subroutine point for each pixel to be drawn. But besides the obvious inefficiency of
calling a subroutine, if the line is nearly horizontal this method can waste time by missing the
opportunity to write several pixels in the same word; the word address might not change
between pixels. To address this shortcoming, we would therefore like the DDA to generate
multiple pixels per trip through the loop, so that horizontally adjacent pixels can be written in a
single memory reference.

A simple idea to speed up line drawing is to draw the line as a set of precomputed line seg-
ments of some short, convenient length such as the width of a word. If the segments are
chosen from a short ‘catalogue,’ lines may be drawn very fast, but will not have minimum error
at each pixel. In fact, some lines will not even be monotonic. To draw the correct line, the
catalogue must be indexed by the (rational) slope of the line and the error term at the first point
of the short segment. To precompute this for all lines is prohibitively expensive. Nonetheless,
for some applications the lines need not be perfect, and a short catalogue may suffice.

The imperfections must be reproducible, however; one important property that the lines
must always maintain on a bitmap display is that the same sequence of pixels is generated for
every call to 1ine with the same end points, because a line might later by erased by a call to
line with Code XOR. The implementation of 1ine described by Pike? goes even farther, and
allows an arbitrary subsegment of the line to be correctly regenerated or erased by passing the
initial value of the DDA to the line-drawing primitive.

Considerable work has been done in trying to write a segment-at-a-time line-drawing algo-
rithm that generates the correct sequence of pixels, but so far no practical method has been
found. For more information on these and other algorithmic improvements, see the papers by
Sproull® and Mcllroy.15

Optimizations relating more to implementation than algorithms may also be applied to line
drawing. One trivial optimization is to write special-purpose code for horizontal and vertical
lines. For many applications, these are the most common lines to be drawn, and especially for
horizontal lines, special code can execute much quicker than a DDA. Even for general lines,
careful code design can avoid the unnecessary memory accesses required to write multiple pix-
els in the same word. It is possible to compile code on the fly to avoid tests in the inner loop
(indeed, Mcllroy’s work on Farey series was motivated by a design for a compiler for line draw- ~
ing).

Unfortunately, the speedup to be gained by improving the obvious software for line drawing
is not nearly as great as that for improving the obvious bitblt code. The fundamental optimiza-
tion in bitblt — word at a time processing — does not achieve as much for DDA-driven algo-
rithms, for which most words accessed contain only one pixel of the image (except special cases
such as nearly horizontal lines). Unlike for bitblt, special purpose graphics hardware can make
a tremendous difference in line-drawing performance, however. DDAs are ideal to run in
hardware, and changes to the memory architecture, such as adding cache or making memory
two-dimensionally addressable, can reduce greatly the bandwidth necessary to draw a line.
These ideas focus on the property of line drawing that successive pixels are not at adjacent
addresses, which is not true of bitblt.

56 Bitmap Graphics

BUILDING AN INTERACTIVE GRAPHICS SYSTEM USING BITBLT

Graphics is an essential element of an interactive programming system and any interactive
application. People think with images, so good use of images is an aid to the user. Pictures
make interaction more effective: the normal rate for reading text is less than 100 characters per
second, but the human visual system can process two-dimensional information equivalent to
millions of characters per second.

On a graphics display, many styles of object can be drawn, including charts, graphs,
diagrams, shaded images, and so on. But these are only output on the display; to interact with
a computer, there must be a means for two-dimensional input from the user back to the com-
puter — some form of pointing device to let the user manipulate what the computer draws.
With a device such as a pen or mouse, the process of selecting from graphical objects such as
text displayed on the screen is natural and rapid. By tracking the pointer with a program that
simulates a pen or paintbrush, users can input line drawings and freehand sketches.

A general principle for the design of interactive systems is that

Any object accessible to the user should present itself suitably for observation and manipulation.

The Smalltalk-80 system is a representative display-based interactive computing environ-
ment. Figure 1b shows a typical Smalltalk-80 screen, and illustrates the wide range of graphical
styles possible on a bitmap display. Rectangular areas of arbitrary size are filled with white,
black and various halftone patterns. Text, in various typefaces, is placed on the screen from
stored images of the individual characters. Halftone shades are “brushed” by the user to create
freehand paintings. Moreover, images on the display may be moved or sequenced to provide
animation.

Rectangles

Although it is almost trivial, the simplest bitblt operation — coloring a rectangle black or
white — is frequently used in user interfaces for tasks such as erasing a paragraph of text or
drawing a command button on the display. Another operation frequently associated with rec-
tangular areas is drawing a border. An elegant way to draw a bordered rectangle using bitblt is
first to color a large rectangle black, and then to color an inset rectangle white. It is worth
pointing out, however, that this algorithm may be distracting in some applications. If the area
being cleared is large, the momentary “flash” of dark then light may be obvious.

Rectangular operations in xor mode can indicate selections. A software switch may be
shown to be “active’” by reversing the black/white sense of its label on the display. As a more
interesting example, a block of text may be reversed to indicate that it has been selected for edit-
ing. Dynamic effects can be useful for directing the user’s attention. For instance, an invalid
entry in a table can be flashed several times while a diagnostic message is displayed to indicate
the location of the problem. Such techniques must be used sparingly, though, to avoid creating
a system that behaves like a video game.

Convenient Rectangle Functions

There are several rectangle functions useful in bitmap graphics because they simplify the
expression of geometric operations. The function inset is useful for drawing borders, and for
placing images inside an area but inset from the edge. Inset yields a circumscribing rectangle if
given a negative width argument.

Rectangle inset[rect, width]

Rectangle rect

integer width
{

"Return rect inset by width”

return ((origin[rect]+(width, width)), (corner{rect]—(width, width))
}

The intersect function returns the rectangular intersection of its two arguments. It is particularly
useful for clipping.

Rectang]le intersect(r1, r2]
Rectangle rl, r2

{
"Return the rectangular intersection of r1 and r2"
return ((max[X[origin[r1]], X[origin{r2]]], max[Y[origin[r1]], Y[origin[r2]]]),
((min[X[corner{r1]], X[corner[r2]]], min[Y[corner[r1]], Y[corner[r2]]])
}

The function includes is a similar computation; it returns true if the point lies within the rectan-
gle. It is useful for determining whether the mouse cursor is pointing at a given object.

boolean includes[rect, pt]

Rectangle rect
Point pt
{
"Returns whether pixel at pt is inside rect”
return X[pt]=X[origin[rect]] and Y[pt]=Y[origin[rect]] and
X[ptl<X[corner[rect]] and Y[pt]<Y[corner{rect]]
}

The merge function returns smallest rectangle that includes its two argument rectangles.

boolean merge(r1, r2]
Rectangle r1, r2

{
"Return the rectangular union of r1 and r2"
return ((min[X[origin[r1]], X[origin[r2]]], min[Y[origin(r1]], Y[origin[r2]]]),
((max[X[corner(r1]], X[corner{r2]]], max[Y[corner[r1]], Y[corner{r2]]])
}

The include function returns the smallest rectangle that includes the argument rectangle and
point. This function is useful for computing the bounding box of complex objects.

Rectangle include[rect, pt]

Rectangle rect
Point pt
{
"Returns the smallest rectangle that includes rect and pt"
return merge(rect, (pt, pt)]
}

Minus is useful for drawing borders and for decomposing the problem of displaying an image
occluded by other rectangular areas. It computes a list of rectangles that cover the area inside
its first argument rectangle and outside its second argument rectangle.

58 Bitmap Graphics

RectangleList minus|rl, r2]
Rectangle rl, r2
{

"Returns the list of rectangles inside r1 and outside r2"

RectangleList 1

1 ~ nil

if not (includes(rl, r2.origin] or includes[rl, r2.corner))
return RectangleList(r1]

if X[origin[r1]] < X[origin[r2]] {
1 - consfl, (origin[r1], (X[origin{r2]], Y[corner{r1]]))]
X[originr1]] ~ X[origin[r2]]

}

if Y[origin[r1]] < Y[origin[r2]] {
1 - cons(l, (origin[r1], (X[corner[r1]],Y[origin[r2]]))]
Y[origin[r1]}] - Y[origixy[er]]

}
if X[corner(r1]] > X[corner[r2]] {
1 - cons[l, ((X[corner[r2]],Y[origin[r1]]), corner[r1])]
X[corner{r1]] - X[corner[r2]]
}
if Y[corner[rl]] > Y|[corner|r2]]
1 - cons(l, ((X[origin[r1]],Y[corner[r2]]), corner|r1])]
return 1

}

Note that these functions all depend on geometric objects being data structures that are passed
to and returned from procedures; consider how awkward they would be if a rectangle was
specified by four integers.

Horizontal and Vertical Lines

Horizontal and vertical lines are worthy of special mention because they are very common
and easy to draw with bitblt. The principal use of such lines is probably as rectangle borders,.
but they are also used to underline text, draw axes, and make connections in diagrams. As an
example, the following code uses some of the rectangle functions above to draw a border sur-
rounding a rectangle R in a bitmap B:

for r in minus[inset{r, —2], R]
B cut r <= ALL1

Lines and Curves

Lines and curves can be drawn by the application of a “brush” along a path. (See Figure
23.) The simplest such path is the sequence of points generated by a line-drawing primitive.
The simplest implementation simply draws the brush shape at every point along the path, but
this fails in xor mode if the brush is larger than a single pixel because the overlapping regions
of adjacent instantiations of the brush will interfere with each other. To handle this problem,
differential brush shapes can be precomputed for each possible offset from one brush location to
the next. These differential shapes are the non-overlapping area of two adjacent brushes. The
generalized line-drawing code chooses the appropriate brush shape for each point, depending
on its location relative to the previously drawn location.

Besides lines, DDA’s can also draw circles and other curves such as quadratic and cubic

Figure 23. A curve drawn by dragging a differential brush along a path.

splines. The main issue in choosing which type of spline is control. Some splines are specified
by the points they touch, others by the values of the tangents at their endpoints. Which is
most useful depends on the application. Metafont!? draws curves by dragging brushes along
curved paths, even brushes that change shape along the path. This has proven to be an effec-
tive simulation of drawing graceful characters with pen and ink, independent of the size of the
character. An attractive property of this method is that a family of fonts can be generated by
changing the brush shape between fonts.

Characters and Text

The presentation of text has been a dominant mode of computer communication ever since
the first teletype was connected to a computer. With the advent of electronic displays, the
bandwidth rose from ten characters per second to thousands of characters per second, and it
became possible to make changes to the display incrementally instead of retyping the changed
lines. Because of limitations of the hardware, character sets on early video terminals were very
ugly. This has changed.

Bitblt simplifies computer display of text. Because it handles the bit-alignment and clipping
problems in one place, it makes it as easy to support multiple fonts and bit-aligned justification
as it is to display ugly fixed-width characters.

The basic operation in displaying text with bitblt is to copy a rectangle containing a character
in a font bitmap to a displayed bitmap. This process is illustrated in Figure 6. A font contains a
bitmap with all the character glyphs in it, together with a structure that gives the coordinates
for each character, indexed by their character code. Such a storage format is quite compact, as
the characters can be packed next to one another regardless of their variation in width. Even
more compactness can be achieved by separating characters of different heights, but the added
complexity of decoding is seldom worth the saving.

Text Alignment

Text display is an intricate subject, but there are instructive simple examples. For instance,
consider the problem of drawing text in the four different alignments: flush along the left mar-
gin, flush along the right margin, centered between margins, and padded to be flush along both
left and right margins. Figure 24 illustrates these processes.

The first step is to scan the text, measuring the widths of each character to locate the first
word that will not fit within the margins. Given this position in the text, the line can be ended
at a natural word break, and the amount of extra space, or “padding,” is known. For normal

60 Bitmap Graphics

The four modes of text display are simple enouf measurement

[The four modes of text display are simple | left flush

[The four modes of text display are simpld right flush

| The four modes of text display are simple | centered

The four modes of text display are simpld padded

Figure 24. Text alignment.

left-flush text, it is sufficient to display the text up to the final word break; all padding appears
after the last word. For right-flush display (often used in columns of figures and for labeling
axes), it is sufficient to space over by the padding distance prior to displaying the text. For text
centered between the margins, half the padding is placed at each end of the line. Finally, to
achieve flush margins at both the left and right side, the padding must be distributed evenly
over the internal spaces in the line, as shown in the figure.

There are many other details that crop up when supporting full text formatting. These
include tab stops, handling of double spaces at sentence ends, and especially the ability to use
the mouse to select characters. Pointing at characters, since it is a fairly low-bandwidth opera-
tion, can most simply be done by executing the text display code and checking for the cursor
coordinates at each step.

Text Emphasis

There are some simple tricks using bitblt to derive approximate bold, italic and other fancy
fonts from a simple base font. Figure 25 shows text in five different emphases, all synthetically
derived from the same font. The bold text is made by or'ing the image over itself shifted one
bit horizontally. Italics can be produced by sliding horizontal strips of the text over different
amounts. Underlining is trivial, of course. A line above the baseline can indicate text that has
been struck out but is still a part of a document. Several more decorated versions of a font can
be produced by more use of bitblt — the outlined text shown is produced by or'ing up, down,
left, right, and then and’ing the complement of the original text to leave white bits in the mid-
dle of the smear.

Synthetic emphasis of text is simple to compute and economical of memory but does not pro-
duce high quality fonts. The problem of creating good fonts is aggravated by the combined
filtering of the display tube (the pixels are not perfect squares) and of the eye, so that the best
representation of a character is sometimes a surprising pattern of dots that is unintelligible
when magnified. Finally, bold and italic fonts tend to have character widths different from their
base font. The last sample in Figure 25 shows a true bold font for comparison with its synthetic
counterparts.

In the discussion of brushed line-drawing, we noted that it was sometimes necessary to com-
pute differential brush shapes to produce the desired effect. Emphasized text sometimes
requires the same sort of processing to avoid interaction with any background behind the char-
acters.

EmphaSiS normal

Emphasml bold

Emphasis i

outline

E m p h aS i. S underline

Emphasis| o

Figure 25. Text emphasis.
What You See is What You Get

For accurate layout of text, it is necessary to use character widths that correspond to the
fonts used in printing. Thus the width of a character might be stored both as an integer that is
the width of the display font glyph, and as a real or rational number that is the scaling of the
true printer width to the display resolution. Although information is lost in rounding off the
character positions for display, the loss does not accumulate. The display of small fonts in this
“hardcopy mode” looks uneven because of round-off, but it guarantees that character positions
correspond closely to printer positions. The central panel in Figure 26 shows this compromise
strategy; the crowding of characters compromises legibility as well as ease of pointing. .

True wisdom knows it must comprise some

nonsense as a compromise, lest fools should display spacing. display resolution

True wisdom knows it must comprise some norserse a5

acompromise, lest fools should fail o find it wise, printer spacing, display resolution

True wisdom knows it must comprise some nonsense as

a compromise, lest fools should fail to find it wise. printer spacing, printer resolution

Figure 26. Simulating a high-resolution printer on a bitmap display. The simulation
must show the characters at printer spacing but display resolution.

Polygons, Paragraphs and other Compositions

We have seen how dots can be repeated to form lines, and how characters shapes can be
repeated to form a line of text. Lines in turn may be repeated to form polygons, and lines of
text may be repeated to form paragraphs. The property that must be added to these aggregate

62 Bitmap Graphics

structures is connectivity. With polygons, there is the problem of filling in the interior, recog-
nizing when the cursor is pointing at constituent points and lines, and adjusting adjacent parts
properly when a given point or line is altered. With paragraphs, the connectivity issue involves
locating characters pointed to by the cursor (find which line is being indicated, then which char-
acter within the line), and especially in recomputing the composition of the paragraph when a
change has been made by editing. Such structures call for caching of auxiliary state to assist in
the incremental changes in display or in the processing needed to detect cursor position in the
image. In the case of text, it is common to save an index of character positions at the beginning
of every line.

Other images can be replicated to achieve higher-order graphical units. For instance, a cir-
cuit diagram is built from a vocabulary that includes the symbols for resistors, capacitors,
transistors, and so on. These appear in different locations and orientations, with wire lines,
connection nodes and conventional text. Integrated circuit designs are a natural application for
the basic bitblt operations, since the world being modeled is heavily based on rectangular areas
and spatial replication. Very high speed image generation can be achieved in such applications
by storing the bitmap image of a cell, and using that bitmap to draw later instantiations of the
cell. Applied recursively, this technique can draw a hierarchically-defined circuit of n rectangles
in O(log n) bitblts.

Display Structures

A display structure is a data structure plus support for producing an image and for relating a
pointing event to its components. Design of effective display structures is difficult. Just as in
choosing effective data structures, the basis set must be chosen to cover the most needs with
the fewest, most convenient elements possible. Then the functionality must be arranged to iso-
late implementation issues from the software above. For example, it is often useful to be able to
change the display device (bitmap display, printer, file, etc.) without having to change any of
the code that translates from data structure to image. This requires a procedural specification
for the generation of images. Bitblt is such a specification at a very low level. We will see later
how different interpretations of this specification provide the flexibility to support display in
occluded windows. The higher level specifications that form the basis of complete graphics
languages are beyond the scope of these notes. Instead, we will concentrate on a representative
sample of graphical idioms, and with the mechanics of creating and manipulating such images.

Common Graphical Idioms

If a graphical representation of an object is successful, the images take on features and pro-
perties of the objects they simulate.

Figure 1b shows a Smalltalk display from a Dorado. It is full of information encoded and
presented in different ways. To begin with, the screen is divided into rectangular windows,
each corresponding to a given application program. Several of these not in active use have
been collapsed into more compact stylized representations, or icons. The basic image com-
ponents include text in lists and paragraphs, rectangles, borders, lines, hand-drawn images and
halftone shading. Within each application, these effects work together to provide a natural
model for the user, represented by an idiomatic picture. For example, when a person glances at
a screen wanting to know what time it is, a clock face is instantly recognizable and intelligible.

Mouse input is also idiomatic: one quick motion with a pointing device can make a window
active, or activate a command, or scroll some text, or whatever is natural to the user.

A window on a display may be simple, divided into parts, or collapsed into a representative
icon. Although there may be many types of windows in a system, all windows are accessed (at
least in part) by a common graphical syntax with components such as changing the size and
shape of a window or browsing through its contents.

Lines 63

An enormous amount of communication is possible using text. In the mail reader in Figure
1b, pointing to elements of the top left list allows the user to choose categories of messages.
Within a given category, pointing among the message names in the top right list causes a
specific message to be displayed in the bottom of the window. These lists of choices and their
layout are the elements that make up the mail reading idiom. The window to the left is similar,
but it is used instead for retrieving and modifying programs. The list components are the same,
but they have a different meaning — one chooses functional categories, another chooses pro-
cedures within the category, and the bottom of the window displays the source code for the
procedure selected. The graphical syntax is the same in each case — lists of items to choose
from by pointing — but the semantics are different, depending on the contents of the window.

Management of Space

The designer of a user interface must manage the space on the screen. For example, win-
dows may overlap or simply tile the screen. Overlapping windows use the screen area more
effectively but can be confusing. Occluded portions of a window may be saved as off-screen
bitmaps or regenerated from its display structure when necessary. One approach saves time,
the other space. The layers notion? is a uniform system for managing occluded windows that
takes advantage of the procedural interface provided by bitblt; essentially, it implements win-
dows as generalizations of bitmaps.

Another decision regards elements that are not always visible. Consider the grey rectangle
in a white area to the left of the top left list in the mail reader. This is a scroll bar; it represents
the visible portion of the list of message categories relative to the complete list. This scroll bar
is shown only when the cursor is in the window or sub-window in question. When the cursor
moves elsewhere, the scroll bar disappears and the background behind it is restored. This
allows a cleaner display to be presented; imagine the appearance if scroll bars were shown for
all six scrollable parts of this window at once.

Temporary menus are lists of choices that are visible only when invoked by a spedial button
on the pointing device, or when a button is pressed in a reserved spot on the screen. One such
menu is shown over the mail reader in Figure 1b. The currently highlighted command will
cause new mail to be retrieved if the pointer is released. As with temporary scroll bars, tem-
porary menus offer a cleaner display. In the case of menus that “pop up” at the touch of a but-
ton, the cost is a little user effort to access the intended functions. The lists of messages or pro-
cedure names in Figure 1b are a sort of static menu — they remain visible, and they are thus
easier to use, but they consume screen area all the time. The decision about how to manage
such components must be based on an intuitive sense of what model most users will have of
the overall set of functions provided.

Incremental Change and Redisplay

Drawing complex images brings up the problem of incremental change: how to avoid recreat-
ing an entire image when only one component of it changes. As mentioned above, ad hoc tech-
niques are often used for text. For more general images a simple approach is to allow any node
of the display structure to cache the entire image resulting from the structure below it. For
instance, a fairly complex structure may be needed to represent a fuel gauge or a thermometer
complete with numerical graduations. To regenerate the entire image for each change in value
measured is expensive. Instead, the image can be assembled as an overlay of background
image (meter face) and value-dependent image (meter needle), with the background saved in a
bitmap. To update the display for a new measured value, a single copy operation will restore
the background, after which the value dependent image can be displayed from its new value.

Image caching is frequently motivated by an attempt to reduce computation. However,
dynamic appearance may also be a factor, even when performance is not a problem. For

64 Bitmap Graphics

instance, there may be sufficient computing power to redraw the needle ten times a second, but
the dynamic appearance of frequent update may be distracting. In such cases, further buffering
can be applied to improve the appearance. The new needle can be drawn in an off-screen
buffer, then copied to the display.

There are occasions when even simple copy operations lead to objectionable flashing. This
often shows up with small images, because the image update may beat with display refresh,
leading to a wavering of the image. In such a case, it is necessary to create the entire new
image off-screen. This image can then be copied to the display in a single operation, usually
without causing flicker. A common application that requires this attention is moving small
images across a display while restoring the background underneath. Sometimes, though, it is
even necessary to synchronize the update with the display refresh to eliminate flicker. This is
typically done by triggering the final buffer copy by an interrupt supplied by the hardware that
tracks the vertical display scan. Most display hardware provides such an interrupt.

Pointing, Input Events, Modes and Cursors

Some pointing devices have several buttons, each of which can have a different interpreta-
tion. If used consistently, multiple buttons can greatly simplify some common interactions. It
is also possible to interpret multiple clicks of a button. A common example is for a double click
within text to request selection of a word or line. Some systems require the two dlicks to be
within a certain time interval, others interpret a double click regardless of the interval between
the clicks.

Another element of a user interface is to indicate modes of interaction such as inking style in
a painting program. In some cases it is adequate to highlight a static image representing the
mode, but more often the tracking cursor image is used for feedback. The user’s attention is
always focused on the cursor — it is the one place where feedback is certain to be recognized.

Cursor feedback can be dynamic. One example of this is in editors where the cursor is kept
small to minimize interference with the material being edited. It may be useful to flash or oth-
erwise vary the cursor so that it can be seen easily. Another use for dynamic cursor images is
to indicate ongoing and preemptive processing. Such situations are always to be avoided, but if
some process such as file backup has to complete before other actions can be resumed, then it
may be helpful to explain the situation using an animated cursor. Not only does this alert the
user to the preemptive activity, but it also provides reassurance that the system is still active,.
even if it may be momentarily unresponsive.

Opaque Whites

It is complicated to draw non-rectangular images containing black and white pixels so that
some of the white pixels appear “opaque” rather than transparent. Some of the (s in an image
are white, and some are simply outside the outline of the image, but there is no way to encode
the difference in a one bit deep image. This is the one-bit case of the image compositing dis-
cussed by Porter and Duff.2 To solve this problem, a parallel image, or mask, is constructed
with 0’s at all interesting pixels and 1's outside the image. The display operation is first to and
the mask into the background image, and then to or the original image. Such pictures can be
useful for cursors which must appear clearly over white and black while retaining a non-
rectangular outline. The cursor that appears over the menu in Figure 1b makes use of this
effect.

Example: The Game of Life

Conway’s game of Life is an example of image processing that requires more complex opera-
tions than those specified for bitblt. It is a fairly simple rule for successive populations of a bit-
map. The rule involves the neighbor count for each cell — how many of the eight adjacent cells
are occupied. Each cell will be occupied in the next generation if it has exactly three neighbors,
or if it is now occupied and has exactly two neighbors. Since bitblt supports only single-bit pix-
els, separate bitmaps must be used to store separate bits of the neighbor count. Then, bitblt's
xor (partial sum) and and (carry) modes can be used for the addition. With some ingenuity and
a fair amount of extra storage, the next generation of any size of bitmap can be computed using
a constant number of bitbits.

nbr4
nbr2
Bm 8 neightbor shifts nbri
E % 2 l;-ryd,
| carry?
Bm ne;qhbor counts next Bm
I 11 1111

il

u gl] 5
T e B
‘i11 1

nbr4

INEEE
1

1111

Figure 27. Implementing the game of Life using bitblt. (Figure Copyright © Xerox Corp.
Reprinted by permission.)
As shown in the figure, the number of neighbors is represented using three image planes for
the 1’s bit, 2’s bit and 4’s bit of the count in binary. (See Figure 27.) The 8's bit can be ignored
since the result for 8 neighbors is the same as for 0.

66 Bitmap Graphics

ALTERNATE REPRESENTATIONS AND ARCHITECTURES

The form of bitblt we have presented tries to achieve a balance between generality and ease
of implementation. Other forms are certainly possible. One design decision we have not made
particularly explicit is the rectangular form of bitblt, which is obviously imposed by the inherent
rectilinearity of the raster. Since the sides of the rectangle must be plumb, however, there are
serious limitations on the images bitblt can manipulate. For example, rotating a bitmap other
than by multiples of 90 degrees (however that might be implemented!) results in something that
is no longer a bitmap in our sense of the term. One fruitful variation is a triangular bitblit.
Although it is not as intuitively appealing, rotations of triangles are still triangles, and arbitrary
polygons are easily tiled by triangles, with the tiling transforming as the polygon. Polygons
may also be tiled by trapezoids, but the allowable transformations must then either exclude
rotations or allow retiling. In practice, trapezoidal bitblt is probably easier to implement than
triangular, but less general. Both these variations have specification problems due to the
discrete nature of the raster. Because the edges of an arbitrary triangle are not square to the
raster, it is necessary to define carefully how a triangle is represented. Unfortunately, a
compromise must be made in the definition, because two desirable features of the definition —
connectedness of individual triangles, and having each pixel in a tiling be a member of only one
triangle — are not simultaneously realizable.

There are interesting variations possible for rectangular bitblt, too. The SUN workstation?
implements a three-operand Boolean function D-f(D, S, T). This makes it possible at times to
save on the number of bitblts required compared to our notation. Our decision to use (S and T)
rather than an arbitrary Boolean function was driven by extensive positive experience with this
form, but exactly how the texture is integrated into bitblt is a topic worth exploring further. On
the other hand, in the implementation bitmaps and textures need to be handled differently, so a
less general but still adequate form of bitblt has two variants: D—f(D, S), with D and S bitmaps,
and D~g(D, T), with D a bitmap and T a texture.

It is also worth noting that in practice bitblt is usually used either for very small bitmaps,
such as characters, or for very large bitmaps, such as windows. In the former, set-up time
dominates, while in the latter the main loop execution dominates. So, from a practical point of
view, it makes sense to have two different implementations, each cptimized for one of these
two situations. However, given the loss in conceptual economy, it is debatable whether this
results in an overall gain. The designers of the Blit spent hours debating this topic, but eventu-
ally decided the simplicity was worth the 30% or so performance loss for characters, and threw
away their special-purpose character bitbit.

The operation of setting down a paint-brush, that is, an arbitrary shape filled with a texture,
is sufficiently common that perhaps it should become a single primitive. This will significantly
improve the inner loop for painting wide lines or curves. Another possibility is to allow a class
of operators that modify both the source and destination, such as exchange. This would sim-
plify the operation of saving and restoring off-screen bitmaps.

One of the complications in the implementation of bitblt is deciding in what direction the
loops should run, to avoid destroying source bits before they are moved. A case can be made
that it should be possible in the specification of bitblt to set these directions at will (although the
default would certainly be as we have defined it). For example, the algorithm that does area-fill
by xor-ing scan lines takes only a constant number of bitblts. The trick is to apply the same
algorithm, but on the whole bitmap at once rather than one scan line at a time, and specify that
the outer loop run the ‘wrong’ way. This has the effect of doing the cumulative xor needed.

We would be remiss not to mention how color displays and bitblt might coexist. The follow-
ing brief summary is basically an admission that we don’t understand the problem very well.

There are two basic representations of color images: integer values, in which the intensity of
each pixel is stored directly as an integer; and bit planes, in which each bit in a pixel
corresponds to a color, and the displayed color is the sum of the colors corresponding to the
bits set in the pixel. Intensities are used for image synthesis, while bit planes are common in
CAD/CAM applications.

|

Alternate Representations 67

Bit planes are a simple generalization of single-bit bitmaps. Because the planes are indepen-
dent, the simplest way to generalize bitblt for such displays is to add a couple more operands to
control bit selection and, perhaps, rearrangement. Textures still make sense on such displays,
but might be implemented as one bit deep or many, depending on the application.

Intensities are not as easily handled. Usually, a pixel has (at least conceptually) three dif-
ferent integers associated with it, one for each of the red, green and blue components of the
displayed color. The pictures on RGB displays have a qualitatively different type of processing
applied to them, such as anti-aliasing to remove the discretization artifacts described earlier.
Bitblt as it stands is inappropriate for such displays. One interesting possibility, though, is a
byteblt’ operator with built-in linear interpolation (lerp). The analog of bitblt, at least for
straight assignment, is to merge a picture into a frame buffer, but this must be done with care
at the edges to avoid aliases. The idea is something like using a mask for writing opaque
whites on one-bit bitmaps, but with a fractional mask rather than a Boolean one. Porter and
Duff22 describe the algebra for such an operator.

One possibly confusing element in color displays is the color map: a correspondence table
that converts the pixel value to displayed color (even on regular RGB displays, a color map is
useful for contrast correction and the like). Color maps don’t change the formalism, though:
they are transparent to bit copying in bit planes, and for intensity displays the result of merging
two images with different color maps is undefined. So color maps are probably not an issue
with respect to variations on bitblt.

What does the future hold for bitmap hardware? One of the most interesting possibilities is
two-dimensional memory. Although large bitblts sweep sequentially through memory, smaller
images such as characters and non-rectangular images such as lines and curves are as likely to
access words at adjacent y values as at adjacent x values. Some existing displays support such
‘vertical’ address generation, but a more interesting possibility is to have two-dimensional
words of memory, rather than one dimensional. This would allow small characters to be writ-
ten by touching a single word of memory (depending on word boundaries), and would guaran-
tee that the number of pixels of a line that fit in a word is independent of the orientation of the
line. The 8 by 8 display is an experimental bitmap display built to t,?r the idea using words 8
bits square. The paper by Sproull, Sutherland, Thompson and Minter?4 describes the display in
detail, so here we will just summarize the results. As expected, lines and characters can be
drawn quickly — lines, for example, are about three times faster to draw that on a conventional
frame buffer. Also as expected, the two-dimensional offers no performance advantage large-
bitblts. Unfortunately, the hardware is complex and expensive, and the spedal nature of the
display memory requires more case analysis in bitblt, as discussed earlier. Still, the idea is
appealing, and deserves more development as hardware becomes less expensive.

As was mentioned, one of the reasons for bitblt's success is that many image processing
algorithms can be expressed using only local operations. Bitblt has an inherent parallelism — it
is a form of parallel assignment operator — so it is likely that graphics hardware with parallel
processing capabilities could easily provide very high performance implementations of bitbit.
The extreme of this trend is a system with a processor attached to every pixel, capable of com-
munication with some subset of its neighbors and perhaps some global controller.

Ax;d, of course, no discussion of raster graphics would be complete without mentioning
VLSIL

. ™
MH-11271-RP/LG/DI-unix R Pike ‘
{

L. Guibas

D. Ingalls

Arts.
References (1-26)

68 Bitmap Graphics

REFERENCES

ANSI, “Graphical Kernel System Proposal X3H3/83-25r3,”” Computer Graphics (February 1984).

A. Bechtolsheim and F. Baskett, ““High-Performance Raster Graphics for Microcomputer Sys-

tems,”” Computer Graphics 14(3), pp. 43-47 (July 1980).

Tom Blank, Mark Stefik, and Willem vanCleemput., “Parallel Bitmap Processor,” Proc. First

Design Automation Conference (June 1981).

J. F. Bresenham, “Algorithm for computer control of a digital plotter,” IBM Systems Journal

4(1), pp. 25-30 (1965).

Apollo Computer, Apollo Manual, 1981.

Ridge Computer, Ridge-32 Manual, 1983.

R. W. Floyd, Complexity of Computer Computations, Plenum, New York (1972).

Grandjean and Vigliani, Ergonomic aspects of video display terminals, Taylor and Frands, Lon-

don (1980). :

9. Leo J. Guibas and Jorge Stolfi, “A Language for Bitmap Manipulation,” ACM Transactions on
Graphics 1(3), pp. 191-214 (1982).

10. Symbolics Inc., 3600 Technical Summary, 1983.

11. JEDEC, “Optical characteristics of cathode ray tube screens,” JEDEC Publication 16-B (1971
(a new edition was published in 1981)).

12. Donald E. Knuth, TEX and Metafont, Digital Press, Bedford MA (1979).

13. B. Lampson and K. Pier, “A Processor for a High-Performance Personal Computer,” Proc.
7th Symp. Comp. Arch. SIGARCH/IEEE, La Baule, p. 146 (May 1980).

14. S. Levialdi,