Reprinted from the July/August 1997 issue of Handheld Systems. ©1997 by Creative Digital Publishing Inc. All rights reserved.

UNIX and Pilots Part IV: The PADP Layer

Kevin L. Flynn
Kodachi Systems Group
flynn@kodachi.com

n the last issue of Handheld Systems, | described the Minimal
HotSync, a simple test program that does a synchronization that
doesn’t actually transfer any data between the Pilot and the desk-

top. The Minimal HotSync was built from hand-constructed packets
layered directly on top of SLP, which is useful for testing, but completely
useless in the real world. This time, | return to the protocol stack and
add a PADP layer complete with its own implementation of the Mini-
mal HotSync.

PADP Revisited

It’s been a while since | looked at PADP, so a brief introduction is in
order before | take a closer look at how it acts on the wire. PADP is the
Packet Assembly/Dissassembly Protocol, which rides immediately above
SLP in the protocol stack. SLP is a best-effort datagram protocol that
provides checksums and a port space. PADP adds reliability to the mix
by specifying a positive acknowledgment mechanism with retransmis-
sions and timeouts.

PADP also breaks large packets into smaller fragments, each of
which must be acknowledged independently. This has the effect of im-
proving reliability (and performance) by reducing the amount of data
that must be retransmitted in the event of an error. Instead of retrans-
mitting the entire packet, you only retransmit the fragment in error.

The fragmentation idea is central to PADP. It's a major part of its
functionality and important enough to be reflected in the name of the
protocol. Reflecting this underlying design concept, this series of articles
uses the term packet to refer to the set of data originally handed to
PADP by a higher-level protocol, and the term fragment to refer to the
individual transmission units sent over the wire. Fragments are limited
to 1024 bytes of user data. A PADP packet may fit into a single fragment
or it may require multiple fragments.

PADP Structure

I described the basic structure of PADP fragments last issue, so this
should look familiar until I get into the guts of the protocol. PADP frag-
ments consist of a PADP header and some body data, both riding in the
body of an SLP packet:

[PADP header][Fragment body (user data) |

At this level, PADP is really simpler than SLP. After all, it doesn’t need to
duplicate information or functionality already provided by SLP, so
there’s no PADP CRC, because SLP’s CRC is enough to detect errors.
Likewise, there are no port numbers or transaction IDs here.

There are only a few things in the PADP header:

typedef struct PadHeaderType {

Byte type; Il Fragment type
Byte flags; Il Flags
Word sizeOrOffset; // Size of packet, or offset of
Il fragment
} PadHeaderType;
The type field defines the kind PADP fragment type:
#define padDatal ~ // User data
#define padAck 2 Il ACKnowledgement

#define padTickle 4 // Tickle

(Type 3 used to be a negative acknowledgment, but it’s no longer
used.) padData fragments carry real user data. padAck fragments
acknowledge successful receipt of padData fragments. padTickle
fragments prevent timeouts during slow operations. The flags ~ and

sizeOrOffset fields behave somewhat differently, depending on the
fragment type.
InapadData fragment, the flags field is a bitmask with the

following values:

#define padHdrFlagFirst 0x80 // first fragment
#define padHdrFlagLast 0x40 // last fragment

padHdrFlagFirst must be set on the first fragment of a given pack-

et, to identify that the fragment starts a packet. padHdrFlagLast

must be set on the last fragment of a given packet. If the packet fits into

a single fragment, that fragment must have both padHdrFlagFirst

and padHdrFlagLast set, since it’s both the first fragment and the

last fragment of the packet.

The sizeOrOffset field is overloaded to serve two functions:

o If padHdrFlagFirst contains the size
of the packet.

 If padHdrFlagFirst is not set, sizeOrOffset
offset of this fragment within the entire packet.

is set, sizeOrOffset

contains the

The first fragment contains the size of the entire packet, while subse-
quent fragments identify their location within the packet.

Ina padAck fragment, flags and sizeOrOffset are nor-
mally set identical to those in the padData fragment being acknowl-
edged. There is one exception —a new flag bit:

#define padHdrFlagErrMemory 0x20
Il receiver out of memory

padHdrFlagErrMemory is setin the padAck to the first pad -
Data fragment of a packet if the receiver doesn’t have enough memory
to receive the whole packet. If the sender gets such a padAck , it cannot
send the packet.

Note that although the sizeOrOffset field of a padAck frag-
ment might indicate that some data should accompany the header, data
is never sent with a padAck . The SLP packet size is sufficient to detect
this unambiguously.

padTickle fragments are always marked as both the first and last
segment, with a sizeOrOffset of zero. They never have any ac-
companying data and they are not acknowledged. Their only purpose is
to prevent a timeout from occurring.

Timeouts and Other Issues

PADP is based on the idea that a correct fragment is acknowledged with
a padAck fragment. What happens if a fragment is incorrect or cor-
rupted in transit? There used to be a negative acknowledgment frag-
ment type, but that was removed. Now, the system simply has to realize
that the fragment wasn’t acknowledged in time and retransmit the frag-
ment in question.

Normally, this is straightforward. However, there are some situations
that can confuse matters. The most problematic issue is that the Pilot
can take a long time to carry out certain tasks for quite legitimate rea-
sons. For example, the Pilot has to compact its heap to reduce fragmen-
tation on occasion. This is important, but it can easily take longer than
the inter-fragment timeout allows.

This is what padTickle fragments are for. When the Pilot is in
the middle of a long-running operation, it periodically sends pad -
Tickle fragments to the desktop. The padTickle packets carry
no data and are not acknowledged. However, they cause the desktop to
reset its inter-fragment timer so its PADP receiver never times out.

Another issue is the possibility that a padAck fragment can get
dropped due to transmission errors. In this situation, the fragment be-
ing acknowledged arrives successfully but the sender doesn’t know it.
This can cause problems at times.

From the desktop side, there are four distinct scenarios here:

1. You send a fragment of a padData packet. It’s not the last
fragment, and the padAck from the Pilot is lost. This isn't a

Handheld Systems 5.4 « July/August 1997

Reprinted from the July/August 1997 issue of Handheld Systems. ©1997 by Creative Digital Publishing Inc. All rights reserved.

problem. Timeout, resend the fragment, and the Pilot sends a new
padAck . If the line is so bad that this always fails, reach your retry
limit and give up.

2. You send the last fragment of a padData packet, and the pad -
Ack from the Pilot is lost. Realizing that any padData packet
sent to the Pilot is going to be a request of some kind, for which you
expect some kind of response (remember, you're the client), there
are two subcases:

2a.The Pilot sends the first fragment of a response before the waiting-
for-acknowledgment-timer expires. If this happens, you see a
padData fragment carried in an SLP packet with a transaction ID
that matches your request. You can treat that as an implicit acknowl-
edgment of the last fragment of your request, so that’s OK.

2b.The Pilot doesn’t send the first response fragment in time, and you
timeout. This is not a problem. Resend the last fragment and the
Pilot just ignores it. Eventually the Pilot sends a fragment back, and
you land in case 2a, above.

3. You receive a padData packet from the Pilot, and your padAck
to a fragment that isn’t the last fragment is lost. This isn’t a problem.
The Pilot resends a fragment that you already have; just send a new
padAck.

4. You receive the last fragment of a padData packet and your
padAck is lost. This is also not a problem. The Pilot might send a
duplicate last fragment, which you see as a fragment belonging to a
transaction 1D, and ignore it. When you send your next request, the
Pilot treats that as implicitly acknowledging the previous response
(like our case 2a, earlier).

Pseudocode
Putting it all together, we arrive at pseudocode that looks like this:

PAD_receive {
try to receive a first fragment with the XID
we're looking for;

if (timed out) {
abort, lost connection;

}

remember size;

if (we can't allocate space to hold the whole fragment

N

ack "memory error";
return, no memory;

}

mark this fragment as having offset 0
initialize expected offset to 0

[* Fall through into stash/ack/next fragment loop */

while (1){
if (fragment has correct offset) {
stash fragment;
bump expected offset;

ack;

if (padHdrFlagLast) {
break;

}

try to get another fragment with the XID
we're looking for;

if (timed out) {
abort, lost connection;
}
}
}

PAD_send {
fragment_offset = 0;

while (fragment_offset < packet_size) {
determine fragment_size;
construct fragment header & data;

try to send the fragment;
try to receive an acknowledgement;

if (it's a response fragment with our XID) {
push it back on the input stream and
treat it as an ack;

}

if (memory error) {
abort;

}

bump fragment_offset;

}
}

UNIX Implementation
After all the hassles of building SLP, the implementation of PADP is
almost simple. It’s just a few more functions on top of the SLP layer
with appropriate hooks into the psock_Send and psock_Recv
functions. You also implement MinSyncPad, a version of MinSync that
uses the new PADP layer to perform the Minimal HotSync. As usual, the
source code can be found at http://www.kodachi.com and on the source
code disk for this issue of Handheld Systems.

Next time, | move up the protocol stack into DLP.

Side Notes

Doubtless, you've heard of the new PalmPilots (Handheld Systems had
an article about them in the last issue). | bought a PalmPilot Profession-
al recently and have been using both it and my original Pilot 5000 to test
the code | write here. The only difference between the two that the Min-
imal HotSync exposes is in the CMP Wakeup packet: the Pilot 5000
reports protocol version 1.0.0.0 (0x01000000), the PalmPilot reports
version 1.1.0.0 (0x01010000). Minimal HotSync has been modified to
handle this. I'll keep you posted on other differences as I find them.

On another note, in my previous article in Handheld Systems 5.3, |
stated that SLP packets are limited to 1024 bytes of user data. As far as |
can tell, this is an error. SLP packets have no such limit (though PADP
fragments do.) Sorry about that. [

Handheld Systems 5.4 « July/August 1997

