
Handheld Systems 5.3 • May/June 1997

Reprinted from the May/June 1997 issue of Handheld Systems. ©1997 by Creative Digital Publishing Inc. All rights reserved.

II

UNIX and Pilots Part III:
The Minimal HotSync
Kevin L. Flynn
Kodachi Systems Group
flynn@kodachi.com

n the last issue of Handheld Systems, I focused on the protocol
stack and, specifically, the interaction between a Pilot and a
desktop system, plus ways to convince a UNIX machine to speak

SLP. This time around, I extend that system to perform the most basic
synchronization operation possible, the Minimal HotSync. This
HotSync operation doesn’t actually synchronize any data. Rather, it
establishes communications between the Pilot and the desktop, then
immediately shuts the link down.

The Minimal HotSync may sound like a very odd thing to imple-
ment, but it’s actually an extremely useful part of developing any com-
munications system. Successful execution of the Minimal HotSync
indicates that the SLP communications framework is functional all the
way from the Pilot to the desktop and back again. Until that is deter-
mined, debugging and development is pointless, since the framework
must be functional before anything else can work.

I implement the Minimal HotSync directly on top of the SLP layer;
the PADP and DLP layers are not implemented first. This isn’t desirable
for a real HotSync, but it is appropriate for testing purposes.

HotSync can be divided into three phases: Establishment, Synchro-
nization, and Termination.

• During Establishment, the Pilot and the desktop go through a
handshake sequence to negotiate the particulars of the actual serial
connection. The Establishment phase uses the Connection Manage-
ment Protocol (CMP).

• During Synchronization, the Pilot and the desktop actually
exchange data, using the Desktop Link Protocol (DLP). Most of the
activity of a real HotSync occurs in this phase.

• Finally, during Termination, the Pilot and the desktop go through
another handshake sequence to halt synchronization activity. The
Termination phase, like the Synchronization phase, uses DLP.

The Minimal HotSync goes through the complete Establishment phase,
skips the Synchronization phase entirely, and goes through the complete
Termination phase. To that end, a detailed look at the Establishment
and Termination phases is in order.

Establishment
In the initial stage of the Establishment phase, the Pilot spews a stack of
about ten Loopback test packets:

Pilot: SLP: 3 -> 3 Loopback length 0 XID 0x5E

These packets can be ignored since current implementations of
HotSync disregard them. After that, the Pilot settles down a bit and
sends a CMP Wakeup packet:

Pilot: SLP: 3 -> 3 PADP length 14 XID 0xFF
0000 01 C0 00 0A 01 00 01 00 00 00 00 00 E1 00
..............

Breaking down this dump in more detail, the following emerges:

SLP: This is a SLP packet.
3 -> 3 It was sent from SLP socket 3 to SLP socket 3,

which the Pilot manual calls the Desktop Link
Server socket.

PADP The data in this SLP packet is actually a PADP
packet.

length 14 The PADP packet is 14 bytes long.
XID 0xFF The transaction ID of this SLP packet is 0xFF .

The hex dump actually shows the bytes of the PADP packet. In
order to decipher it, first look at the format of a PADP packet. A PADP
packet consists of a PADP header followed by some data:

[PADP header][Packet body (user data)]

Since PADP packets are encapsulated in SLP packets, and SLP already
provides a CRC error check, PADP doesn’t provide any error checking.

The PADP header is very simple:

typedef struct PadHeaderType {
Byte type; // Packet type
Byte flags; // Flags

 Word sizeOrOffset; // Size of data, or fragment offset
} PadHeaderType;

The type field identifies what kind of PADP packet we’re dealing
with:

#define padData 1 // PADP data packet
#define padAck 2 // PADP ACKnowledgement packet
#define padTickle 4 // PADP Tickle packet

padData identifies packets carrying ordinary data. padAck pack-
ets are used to acknowledge receipt of padData packets (remember,
PADP provides reliability). padTickle packets are used for time-
out prevention.

The flags field and the sizeOrOffset field are very im-
portant for dealing with PADP’s fragmentation feature. I’ll discuss these
in a later article. For now, simply note that the flags field must
always be set to 0xC0 , in which case the sizeOrOffset field
contains the size in bytes of the PADP packet body.

Here are the CMP Wakeup packet contents:

01 Type: padData
C0 flags
00 0A size: the payload is 10 bytes long.

That leaves the following for the packet data:

01 00 01 00 00 00 00 E1 00

This must, in turn, be broken down according to the CMP specification.
It should come as no surprise that the CMP protocol specifies a header
and a body:

[CMP header][Packet body (user data)]

Since all the CMP packets have the same header and body structure,
PalmOS wraps up the header and body in a single typedef :

typedef struct CmpBodyType {
Byte type; // CMP packet type (header)
Byte flags; // flags (body)
DWord commVersion; // comm software version (body)
DWord baudRate; // serial line speed (body)

} CmpBodyType;

Handheld Systems 5.3 • May/June 1997

Reprinted from the May/June 1997 issue of Handheld Systems. ©1997 by Creative Digital Publishing Inc. All rights reserved.

type defines the type of the packet:

#define cmpWakeup 1 // CMP Wakeup packet sent from
// server to client

#define cmpInit 2 // CMP Init packet sent from
// client to server

#define cmpAbort 3 // CMP Abort packet sent from
// client to server

The first byte of the CMP packet identifies it as a CMP Wakeup
packet. In a Wakeup:

flags Always zero.
commVersion The server software version.
baudRate The maximum rate the server supports.

The complete breakdown for the CMP Wakeup packet body is:

01 type : CMP Wakeup
00 flags : always zero in Wakeup
01 00 00 00 commVersion : we’ll call this 1.0.0.0
00 00 E1 00 baudRate : 0x0000E100 == 57600 bps

This indicates that the Pilot is announcing its intention to HotSync
using version 1.0.0.0 of the HotSync protocol at up to 57600 bits per
second.

It’s instructive to look back over all the data that actually had to be
transmitted for this little bit of information:

0000 BE EF ED 03 03 02 00 0E FF AF 01 C0 00 0A 01 00
................
0010 01 00 00 00 00 00 E1 00 82 D7
..........

BE EF ED SLP: signature
03 SLP: destination port
03 SLP: source port
02 SLP: next higher protocol
00 0E SLP: body size
FF SLP: transaction ID
AF SLP: header checksum

01 PADP: packet type
C0 PADP: flags
00 0A PADP: body size

01 CMP: packet type
00 CMP Wakeup: flags
01 00 00 00 CMP Wakeup: protocol version
00 00 E1 00 CMP Wakeup: maximum speed

82 D7 SLP: CRC

Note the way the different protocols nest inside each other. This is why
it is called a protocol stack.

Back to the Establishment phase. After receiving a valid PADP
packet, the desktop must acknowledge it with a padAck packet:

Desktop: SLP: 3 -> 3 PADP length 14 XID 0xFF
0000 02 C0 00 0A

If you break down the PADP packet in the SLP body, you find:

02 type : padAck
C0 flags
00 0A size: the payload is 10 bytes long

However, there aren’t ten bytes of payload here. At first glance, this
seems to be an error. It’s all right though because in a padAck packet,
the PADP sizeOrOffset and the SLP transaction ID must be the

same as they are in the packet being acknowledged. A packet with ten
bytes of acknowledged payload translates into ten bytes of received
payload.

After acknowledging receipt of the CMP Wakeup, send either a
CMP Init or a CMP Abort. In an Init:

flags A bitmask identifying changes from the Wakeup.
commVersion identifies the client software version.
baudRate specifies the rate the client is going to use.

The defined bit values for flags are:

#define cmpInitFlagChangeBaudRate 0x80
// client changed speed

Note that the client may send values of 0x00000000 for com-
mVersion and baudRate to indicate “whatever the server is
using right now.” Note also that the initial negotiation in the Establish-
ment phase happens at 9600 bps and, if the client requests a baud -
Rate other than 9600 bps, it has to set the cmpInitFlag -
ChangeBaudRate bit in flags .

The cmpInit packet used for the Minimal HotSync looks like
this:

Desktop: SLP: 3 -> 3 PADP length 14 XID 0xFF
0000 01 C0 00 0A 02 00 00 00 00 00 00 00 00 00
..............

01 PADP: packet type
C0 PADP: flags
00 0A PADP: body size

02 CMP: packet type
00 CMP Init: flags
00 00 00 00 CMP Init: client protocol version
00 00 00 00 CMP Init: client desired speed

To simplify matters, follow the server’s recommendations.
The client is allowed to refuse to speak to the server by sending a

CMP Abort packet. In an Abort:

flags specifies the reason for the abort.
commVersion is always zero.
baudRate is always zero.

Currently, a mismatch between commVersions is the only support-
ed reason for an Abort:

#define cmpAbortFlagVersionError 0x80

After the Pilot receives the CMP Init (or CMP Abort), it has to acknowl-
edge receipt with a padAck packet. Once the desktop receives the
padAck packet, the Establishment phase is over.

Synchronization
The Synchronization phase, which will be covered in detail in a later
article, consists of a series of DLP requests and responses. The Minimal
HotSync skips it entirely.

Termination
The Termination phase consists of a single DLP request, dlpEndOf -
Sync , sent from the client to the server.

DLP packets ride inside PADP packets, just like CMP packets, and
have a header and a body, like CMP packets. However, DLP is a bit more
complex than CMP. First, DLP requests have a slightly different header
format than DLP responses. Second, the body of a DLP packet is broken
down into zero or more arguments:

Handheld Systems 5.3 • May/June 1997

Reprinted from the May/June 1997 issue of Handheld Systems. ©1997 by Creative Digital Publishing Inc. All rights reserved.

[DLP header][DLP arg 1][...]

Here’s what the DLP request and response headers look like:

typedef struct DlpReqHeaderType {
Byte id; // request function ID
Byte argc; // count of args that follow this header

} DlpReqHeaderType;

typedef struct DlpRespHeaderType {
Byte id; // response function ID
Byte argc; // # of arguments that follow this header
Word errorCode; // error code

} DlpRespHeaderType;

The high-order (0x80) bit of the id differentiates between a request
packet (clear) or a response packet (set). The low-order seven bits
identify the particular DLP transaction involved. Additionally, the id
is the way to distinguish between DLP and CMP. DLP request ids start
with 0x10 , where CMP uses 0x01 , 0x02 , and 0x03 .

argc specifies how many arguments the request or response
carries with it. For a response, errorCode carries out-of-band
status information. 0 is defined to mean no error; non-zero values all
indicate different error codes. Error codes less than 128 are reserved by
Palm.

Arguments consist of an argument header followed by data. There
are two different types of arguments, small and big (really, I’m not
making this up). Hence, there are two different types of argument
headers. Each header gives an ID and a size for the argument.

In the PalmOS headers, the argument headers and argument data
are wrapped up in a fairly ugly set of unions, because of the way all the
packing and alignment issues fall out. In this case, a couple of simpler
structures that illustrate how the serial stream should be interpreted are
defined.

typedef struct {
Byte id; // Argument ID
Byte size; // Argument data size

} DlpSmallArgHeader;

typedef struct {
Byte id; // Argument ID
Byte unused; // Always zero
Word size; // Argument data size

} DlpBigArgHeader;

Small arguments can be 0 - 255 bytes long, while big arguments can go
up to 64 KB. The high bit (0x80) of the argument id indicates the
difference; it’s clear for small arguments and set for big arguments.

The dlpEndOfSync packet appears as follows:

Desktop: SLP: 3 -> 3 PADP length 4 XID 0xFF
0000 01 C0 00 06 2F 01 20 02 00 00 /. ...

01 PADP: packet type
C0 PADP: flags
00 06 PADP: body size

2F DLP: request 0x2F
01 DLP: argc

20 DLP: small arg #1 ID 0x20
02 DLP: small arg 0x20 size
00 00 DLP: small arg 0x20 data

Request ID 0x2F is dlpEndOfSync . For dlpEndOfSync ,
argument ID 0x20 is called termCode and identifies the reason
for ending the synchronization. termCode 0 is dlpTermCode-
Normal , meaning all’s well.

After receiving the dlpEndOfSync request, the Pilot must
acknowledge receipt with a PadAck packet. After acknowledging, it’s
must also send a dlpEndOfSync response packet:

Pilot: SLP: 3 -> 3 PADP length 8 XID 0xFF
0000 01 C0 00 04 AF 00 00 00

01 PADP: packet type
C0 PADP: flags
00 04 PADP: body size

AF DLP: response to 0x2F
00 DLP: argc
00 00 DLP: errorCode

This is a response to id 0x2F , dlpEndOfSync , carrying no argu-
ments, reporting a status code of 0, all’s well. This is precisely the
outcome desired. Once observed, send a PadAck , and you’re finished.

Putting it all together, here’s the sequence of packets that’s needed:

Pilot:
SLP: 3 -> 3 Loopback length 0 XID 0x5B

(The above might appear many times or none at all.)

Pilot (CMP Wakeup):
SLP: 3 -> 3 PADP length 14 XID 0xFF
0000 01 C0 00 0A 01 00 01 00 00 00 00 00 E1 00 xx xx
..............

Desktop (ACK):
SLP: 3 -> 3 PADP length 14 XID 0xFF
0000 02 C0 00 0A
....

Desktop (CMP Init):
SLP: 3 -> 3 PADP length 14 XID 0x01
0000 01 C0 00 0A 02 00 00 00 00 00 00 00 00 00
..............

Pilot (ACK):
SLP: 3 -> 3 PADP length 4 XID 0x01
0000 02 C0 00 0A
....

Desktop (dlpEndOfSync request):
SLP: 3 -> 3 PADP length 4 XID 0x02
0000 01 C0 00 06 2F 01 20 02 00 00
..../. ...

Pilot (ACK):
SLP: 3 -> 3 PADP length 4 XID 0x02
0000 02 C0 00 06
....

Pilot (dlpEndOfSync response):
SLP: 3 -> 3 PADP length 8 XID 0x03
0000 01 C0 00 04 AF 00 00 00
........

Desktop (ACK):
SLP: 3 -> 3 PADP length 8 XID 0x03
0000 02 C0 00 04
....

Handheld Systems 5.3 • May/June 1997

Reprinted from the May/June 1997 issue of Handheld Systems. ©1997 by Creative Digital Publishing Inc. All rights reserved.

The Minimal HotSync implementation
Given all that, take a look at the implementation for the Minimal
HotSync program; a simple state machine. The transitions look like this:

Start: WAITING_FOR_WAKEUP

WAITING_FOR_WAKEUP:
receive a packet
CMP Wakeup -> ACK_WAKEUP
anything else -> WAITING_FOR_WAKEUP

ACK_WAKEUP:
send padAck
-> SEND_CMP_INIT

SEND_CMP_INIT:
send CMP Init
-> WAITING_FOR_INIT_ACK

WAITING_FOR_INIT_ACK:
receive a packet
PadAck -> SEND_END_OF_SYNC
anything else -> WAITING_FOR_INIT_ACK

SEND_END_OF_SYNC:
send dlpEndOfSync request
-> WAITING_FOR_END_OF_SYNC_ACK

WAITING_FOR_END_OF_SYNC_ACK:
receive a packet
PadAck -> WAITING_FOR_END_OF_SYNC_RESPONSE
anything else -> WAITING_FOR_END_OF_SYNC_ACK

WAITING_FOR_END_OF_SYNC_RESPONSE:
receive a packet
dlpEndOfSync response
-> ACK_END_OF_SYNC_RESPONSE
anything else -> WAITING_FOR_END_OF_SYNC_RESPONSE

ACK_END_OF_SYNC_RESPONSE:
send PadAck
done!

In the actual Minimal HotSync implementation (called MinSync),
the necessary packets are statically defined to send and receive an array
of Bytes . A send operation in the state machine is a single function
call, since the bytes to send are precomputed. A receive operation is a
function call to receive a SLP packet, then a byte-compare to see if it’s
the right one. Obviously, this is a tremendously inflexible approach, but
it is simple, which makes it ideal for MinSync.

The state machine is primarily implemented with a state variable
and a big switch statement. I collapsed the WAITING_FOR_-
..._ACK states into a single logic block that actually runs before the
switch statement simply to reduce the number of lines of code. This
complicates the state machine somewhat, but it’s still fairly straightfor-
ward. MinSync also needs to allocate a UDP socket and send a Register
packet to the Slpd before it can do any SLP at all. This is only a few lines
of code and it is very straightforward.

If you run MinSync and press the HotSync button on your Pilot,
you should see and hear the Pilot go through a very brief, but correct,
HotSync. A modest beginning, but a very important first step.

The code for MinSync is on the Web at http://www.kodachi.com. It
should also be on the source disk for this issue of Handheld Systems.
Next time, I focus on a real PADP layer. See you then. ✔

