Reprinted from the Jan/Feb 1997 issue of Handheld Systems. ©1997 by Creative Digital Publishing Inc. All rights reserved.

UNIX and Pilots

Kevin L. Flynn
Kodachi Systems Group
flynn@kodachi.com

have a SPARCstation and a Macintosh, and they generally do a much

better job of meeting my needs than Windows ever has a chance of
doing. The most notable exception, of late, is U.S. Robotics’s Pilot.

When | saw my first Pilot, synchronization software was available
only for (you guessed it) Windows. After agonizing for a while and
checking out all the specifications I could find, | decided that the Pilot
was a worthwhile machine, and that | would simply write my own
software to let my UNIX machine talk to my Pilot.

This article is the first of a series talking about that software, and
more generally about what’s under the hood of HotSync, and what it
takes to get some other systems talking to a Pilot. | take a fairly detailed
look at some of the guts of PalmQOS, and at some of the issues sur-
rounding the design and implementation of the UNIX side. This first
article covers some of the background issues.

Note that I'm not the only person working on a Pilot communica-
tions package for UNIX. As it happens, I'm not even the one with the
most functional package right now. If you're simply looking to down-
load software that can talk to your Pilot from UNIX, check out ftp://
ns1.pfnet.com/pub/PalmOS/ for the pilot-link software, maintained by
Jeff Dionne and Kenneth Albanowski. If you're interested in learning
about how it's done, though, read on.

I don’t have a Windows machine. Never have, probably never will. |

An Overview of HotSync
The main purpose of getting a desktop machine — UNIX or otherwise —
to talk to the Pilot is so the desktop machine can exchange data with the
Pilot. The major hook available for doing this is the HotSync mechan-
ism built into the Pilot.

HotSync has three major components: its architecture, its protocols,
and its data structures.

Architecture
It should come as no surprise that HotSync is designed with one ma-
chine acting as a client and the other machine acting as a server. (The
client initiates an action by making requests, the server completes that
action by responding to the requests.) However, it’s interesting to note
that the current implementation puts the server on the Pilot and the
client on the desktop (see “Client or Server?" on the next page). This is
oddly counter-intuitive in some respects, but it works.

Since the Pilot acts as the server during a HotSync, my UNIX appli-
cation has to be constructed to act like a HotSync client.

Protocols

I spend quite a lot of time looking at the HotSync protocol stack later in
this series of articles. For now, let’s just take a brief look at DLP, the
protocol at the top of the stack.

DLP stands for Desktop Link Protocol. It defines a set of requests,
each with a specific meaning, and provides a way for the client to issue
those requests to the server and get responses back. Requests can carry
argument data to the server; likewise, responses can carry result data
back to the client. All DLP operations consist of a request followed by a
response. All DLP operations are initiated by the client.

The primitive operations going on during the Pilot synchronization
process map very directly to DLP requests and responses (this is what it
means to be at the top of the protocol stack). There are about 30 DLP
requests, with corresponding responses, defined at present, though not
all of these are used in every synchronization.

Data Structures
Synchronization mechanisms in general (including HotSync) operate
by assuming that the client and the server agree on the broad structure

of the data they’re handing back and forth. If they don't, either the
client or the server (or both) need to convert the data into a format that
the other understands.

Since the Pilot is much more limited in storage space and CPU
cycles than the desktop, U.S. Robotics wisely chose to make the desktop
convert to and from the Pilot’s native formats. This makes the Pilot’s life
easier, but it makes our lives as HotSync client developers harder, since
we need to understand the Pilot’s internal structures.

The first big thing to bear in mind here is that the Pilot doesn’t have
disks, so it doesn’t use a file paradigm (see “Disks or No Disks?” on page
35). PalmOS applications keep their persistent data in PalmOS databas-
es. Since the databases live in RAM, the applications can and do modify
them in place.

Conceptually, a PalImOS database consists of some data describing
the database itself (the metadata) and a collection of records. Each
record contains some data; exactly what the data is, and how it's format-
ted, is application-specific. For example, the Memo Pad creates a data-
base where each record stores a single memao. Likewise, each To Do item
gets a record in the To Do Items database.

So far, so good, but there’s more. Remember, this is all stored in the
Pilot’s native format, and applications modify database records in place.
This means that the bits in the records coming over the wire to the
client are the raw binary representation of the data as they’re actually
stored in the Pilot’s RAM. This means big-endian byte ordering and
data aligned on 16-bit boundaries. My UNIX application has to be
prepared to do byte-swapping and proper packing and unpacking if it's
going to work.

One more important detail is that PalmOS organizes its memory
according to the physical card that the memory is installed on. The Pilot
has only one memory card, but PalmOS appears to be able to cope with
up to 15 cards of up to 256 MB each. Cards are identified by integers
beginning with zero (so only card #0 is present in the Pilot). Although
the user never has to care about which card holds any given database,
the HotSync process does.

PalmOS Database Internals

Since PalmOS databases are at the core of the synchronization process,
it's worth taking a more detailed look at them. Unfortunately, the con-
ceptual model above is a gross oversimplification — the real world is
rather more complex.

The biggest complicating factor is that PalmOS supports two differ-
ent flavors of databases. One flavor is called a resource database; the
other isn’t consistently called anything, but it’s a database that isn’'t a
resource database. | call it a data database (horrible term though that
is). Data databases are the normal databases that applications use to
store their data. Resource databases store binary code, user interface
elements, and other things that make up PalmOS programs (much the
same as a Macintosh resource fork). Data databases and resource data-
bases share the same metadata structure, but differ in almost every
other respect.

A second complication is PalmOS’s category support. Everyone who
uses a Pilot is familiar with the category pulldown. Rather than being
entirely the application’s responsibility, this has operating system sup-
port. However, it’s only available for data databases, not resource data-
bases, and it’s implemented in a rather strange fashion.

Finally, it's important to remember that the data structures are
native to the Pilot. As such, they all behave according to the Pilot’s rules:

+ Byte isan unsigned 8-bit byte.

Word is an unsigned 16-bit integer.

DWord is an unsigned 32-bit integer.

Structure members are aligned on 16-bit, not 32-bit boundaries.
Everything uses big-endian byte ordering.

The last two, in particular, can give UNIX fits.

Handheld Systems 5.1 « Jan/Feb 1997

Reprinted from the Jan/Feb 1997 issue of Handheld Systems. ©1997 by Creative Digital Publishing Inc. All rights reserved.

Metadata
The metadata that describes the contents of a data database is divided
into three sections: the database information (dbinfo) block, the
application information (appinfo) block, and the sort information
(sortinfo) block. The appinfo and sortinfo blocks are
optional, and are treated as simple bytestrings by the DLP requests that
deal with them. Unfortunately, PalmOS has co-opted the appinfo
block to hold category names, so that my synchronization application
has some more work to do there. | discuss these blocks in later articles.
The dbinfo block is required. It contains information that
PalmOS needs to keep track of to deal with the databases. The dbin-
fo block contains the following information (gleaned from SYSTEM/
DLCOMMON.H):

Byte name[J;

Every database has a name. No two databases on the same system
should have the same name (although it appears that PalmOS allow two
databases on different cards to have the same name). It’s a variable-
length, zero-terminated (C-style) string.

Word dbFlags;
This is a bitmask of the following flags:

dipDBFlagReadOnly Set if the database is read-only.

dipDBFlagResDB Set if the database is a resource database.

dipDBFlagApp- Set if the appinfo block has been

InfoDirty Modified since the last time the database
was backed up.

dipDBFlagOpen Set if the database is open (it shouldn’t be,
by the time the synchronization process is
running).

dipDBFlagBackup Set if the database should be copied to the
desktop if no conduit is defined.

DWord type;

DWord creator;

Like the resource/data distinction, PalmOS borrows these two data
items from the Macintosh. They identify the application that owns the
database. Despite being stored as DWord s, they're always presented to
users as four ASCII characters. For example, the Memo Pad uses type
“DATA’ creator “memo”. StingerSoft’s PilotMoney uses type “MoDT”
creator “Mony” It's important to note that these two items are case
sensitive, and that creator names in all lowercase are reserved for Palm.

Word version;

This is an integral version number that applies to the database as a
whole. Its primary purpose is to provide applications a way to recognize
databases created by older versions of themselves.

DWord modNum;
This is a count of the number of times that the database has been modi-
fied. It's initialized to one when the database is created.

DipDateTimeType crDate;

DipDateTimeType modDate;

DipDateTimeType backupDate;

These are time stamps of when the database was (respectively) first
created, last modified, and last backed up by some synchronization
process. DlpDateTimeType is a structure:

typedef struct DipDateTimeType {

Word year; Il'year, including century
Byte month; /' month: 1-12
Byte day; Il day: 1-31
Byte hour; I hour; 0-23
Byte minute; /' minute: 0-59
Byte second; Il second: 0-59
Byte unused; /I unused — set to null!
} DipDateTimeType;

Note that the Pilot has no concept of time zone (unfortunate for those
of us who travel fairly often). Also, UNIX stores time stamps as seconds
past the epoch; the conversion from the Pilot’s format to UNIX's is a bit
annoying.

Data Databases and Records
In addition to the metadata, data databases contain a set of records.
Each record contains some application data, which PalmOS treats as a
bytestring. Additionally, PalmOS associates a record ID, a category, and
some flags with each record. PalmOS also maintains a record list with
each database, allowing an application to sort the database relatively
easily by shuffling records around in the list.

Internally, PalmOS maintains the following information for each
record:

DWord recordID;

This is a three-byte value (the high-order byte isn't used) that must
uniquely identify the record within its database. No record may have an
ID of zero.

Client or Server?
I can't speak for U.S. Robotics, of course, but it’s interesting to speculate on why they chose to make the Pilot the HotSync server.
Here are three pet theories I've come up with, and my own rebuttals to them:

» Maybe they simply made a design decision, early on, that the Pilot was to be the authoritative repository for all data and the
desktop was to be the backup. In that case, why let the desktop do so much data manipulation? It seems like that’s exactly the

sort of thing they’d want to avoid.

* Perhaps they felt that it was easier to make sure that the server was always present on the Pilot than on the desktop, given that
the desktops are running Windows. However, the HotSync Manager itself seems to be always present, and PalmOS isn’t exactly
designed to make this sort of thing easy. (Amusingly enough, UNIX is designed to make creating persistent daemons easy,

unlike the other operating systems involved.)

* Perhaps they simply decided that, since the Pilot is always turned on (and it really is, even though it doesn’t seem like it is) and
the desktop presumably isn’t, the Pilot should be the server. However, the fact that the desktop is persistent in location, and
you bring the Pilot to the desktop, suggests that the Pilot should be the client. Also, a lot of desktops (especially in the UNIX

world) are left on all the time.

We may never know, and | seriously doubt that this will ever change. But I still have to wonder. If anyone from U.S. Robotics

reads this and knows the answer, I'd love to hear it. [

Handheld Systems 5.1 « Jan/Feb 1997

Reprinted from the Jan/Feb 1997 issue of Handheld Systems. ©1997 by Creative Digital Publishing Inc. All rights reserved.

Byte attributes; Word resSize;
This is a bitmask of the following flags (from SYSTEM/DATAMGR.H): This is the total size of the resource, in bytes.
dmRecAttrDelete Set if the record is slated for deletion. Byte resDatal];
dmRecAttrDirty Set if the record has changed since it This is the actual resource data.
was last backed up.
dmRecAttrBusy Set if the record is currently in use (it The HotSync Process
shouldn’t be, by the time the synchroni- Given all that, we can finally take a quick look at what HotSync looks
zation process gets to it). like at the DLP level. The first thing that happens during a HotSync is a
dmRecAttrSecret Set if the record is marked “secret,” lot of handshaking between the client and the server. Once that’s all
which means that it should be password done, the client starts throwing around a lot of DLP requests that deal
protected. with PalmOS databases. Here’s the general sequence:
Byte category; 1. The client finds out which memory cards the server knows about,
This is an integer, ranging from zero to dmRecNumCategories using the dlpReadStoragelnfo request. It's interesting to
that identifies which category this record is part of. note that the current version of the HotSync Manager seems to skip
this stuff, presumably because it only supports the current Pilot,
Word recSize; which has only one card.
This is the total size of the record in bytes. 2. For each card, the client finds out which databases are stored on that
card, using one or more dipReadDBList requests. Note that
Byte data[]; this is a per-card operation. Internally, PaAlmOS maintains separate
This is the actual application data. information for each memory card.
3. If the card contains a database that the client is interested in, it
Resource Databases and Resources opens the database, using the dipOpenDB request.
Where data databases contain records, resource databases contain 4. The client reads data from (or writes data to) the database it just
resources. PalmOS maintains a resource list for each resource database, opened, using any of several DLP requests.
much like it maintains a record list for each data database. However, 5. The client closes the database, using the dipCloseDB request.
where data records have a single three-byte 1D, resources have a four- 6. If there are more databases on this card that the client is interested
character type and an additional numeric ID. (Not surprisingly, this in, it repeats from step 3.
scheme is also borrowed from the Macintosh.) 7. If there are more cards in the system, the client repeats from step 2.
Internally, PalmOS maintains the following information for each
resource: That’s all there is to HotSync. The details | gloss over in this quick
overview are enough to keep us busy for some time to come.
DWord type;
Word id; Next Issue: Into the Protocol Stack

The type and 1D of the resource. Like the database type and creator, the ~ Next issug, | discuss the protocol stack, and see about writing some code
resource type is stored as a DWord , but is always presented to users as to actually talk to a Pilot. Happy hacking till then. O

four characters (like “code” or “MENU). Usually, the type and ID are

presented together, like “code #0” or “MENU #1000.”

Disks or No Disks?

PalmOS’s database paradigm is a significant departure from the file system paradigm that most other machines use.
Machines with disks tend to keep persistent data in files on disk and treat their RAM as pure scratchpad. This
state of affairs came about because, historically speaking, desktop machines haven’t done 1/0 very well. Since it was
expensive to pull data off disk into RAM, computing evolved a paradigm of reading data from disk into RAM, modi-
fying them in RAM, then writing them out to disk. Since this read-modify-write cycle necessarily involves 1/0 (and

hence overhead), desktop machines tend to have one format for data on disk, and a separate format for the same
data in RAM.

On the Pilot, with no disks, PalmOS applications have to keep their persistent data in RAM. There’s no reason for
the read-modify-write cycle — where would you read from and write to? — so PalmOS applications just modify their
persistent data in place. This also implies that there’s only one format for the data.

Additionally, applications need some way of organizing their persistent data. Disk-based systems usually organize
data into files, which map well to the read-modify-write paradigm: they open a file, read a whole file into memory
(since 1/0 is expensive, you may as well do a lot of it once, and get it over with), process the data, and write the
whole file back out. PalImOS applications don’t use the read-modify-write paradigm, so they don’t use files. Instead,
they use a construct called a PalmOS database that’s designed to allow direct access to the data in memory.

It’s interesting to note that the read-modify-write file paradigm didn’t always exist. Some 35 years ago, the MUL-
TICS operating system was based entirely on the idea that the disk could be mapped directly into memory, giving a
disk-based system a set of paradigms that probably wasn’t that dissimilar to the PalmOS. However, the hardware of
the day wasn’t up to it, the simpler file-based idea found its way into CP/M and UNIX, and only recently has the
idea of memory-mapped disk found its way back into any modern operating systems. [

Handheld Systems 5.1 « Jan/Feb 1997

