LP DECODING WITH BOUNDED-WIDTH MATRICES

NOTES BY PETAR MAYMOUNKOV

1. The width property

DEFINITION 1.1 — A subspace I' C R™ of dimension m — n, where n < m, is said to
have the width property iff all x € I" are such that

w
) lll2 < —75 [l
where w = O(In(em/n)'/?).

DEFINITION 1.2 — A linear transformation A € R™*™, where n < m, of rank n has the
width property iff ker(A) has the width property.

Matrices with the width property exist (See [I] for references), e.g. a random matrix has
this property with high probability. Explicit constructions with slightly bigger w are found
in [2]. It is convenient to think of w as being “small” compared to m.

Remark 1.1 — The subspace T provides a distortion-w(m/n)"/? embedding of £3'~™ into
/7" by the map
(1.1) z—m'?. U,

where U € R™*(m=1) ig a column-wise orthonormal basis for I'. To verify the distortion
properties, use

1 w
m”fﬂﬂl < zl2 < WH«’UHL

Let S = n/w?. The following two lemmas show that (in this order):

(a) Vectors in T" have large support, and
(b) Their mass is evenly distributed across their support

LEMMA 1.1 — Let 0 # x € I, then ||z]jo > S.

Proof. — Set k = ||z]|o

w
Izl < K2|z])2 < kmm\\wlh
The first inequality is Cauchy-Schwarz, the second follows from @ 1

LEMMA 1.2 — Let 0 # x € T, then for any index set A C [m] with |A| < S/4 one has
lzally <[l /2.
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Proof. — Set k = |A]

|lzalll < k‘l/2||$AH2 (using Cauchy—Schwarz)
< K2z
12, Nzl .
< kY W iz (using ()
< ||x|l1/2 (using k< S/4)

2. LP decoding

Note that all results in this section are more or less obvious when thinking of § € ker(A)
as an evenly spread out vector.

LEMMA 2.1 — Ifu € R™ with ||ullo < S/4, then for all 0 # x € I' we have |u + z||; >
[l

Proof. —
lu+zl1 = [lua + zallr + 2zl
2 [lually = llzally + llzxl
= [lully + [|#]ly — 2[|zalls
> Jlullx
In the last derivation we use that |z||; — 2||zall1 > 0, which follows from Lemma[I.2] |
Remark 2.1 — Recall that for a signal u the Basis Pursuit algorithm computes an
approximation ua of u
(2.1) u4 = u+ argmin |ju + §1
d€ker(A)

by solving the Linear Program (LP)
minimize |[u*||; subject to Au* = Au

Here u* = u + 0. Lemma [2.1] thus ensures that when |lul|o < S/4 we can recover the signal
exactly, i.e. u = ua, when A is a matrix with the width property. The next theorem provides
recovery guarantees for the case when the signal is not necessarily sparse.

THEOREM 2.1 — For any u and u* such that ||u*||; < ||u|1, v* —u € T and k < S/16
we have

(2.2) |u* —ully < 4-Brrf(u), and

(2.3) ' — ulls < k7Y% Bref(u)
Remark 2.2 — Recall that

(2.4) Err];(u) = min [lw—ul,
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and
(2.5) up = argmin [|w — ul[p,
lwllo<k

where up is the restriction of u to the index set A, and A is the index set of u’s k heaviest
(in absolute value) coordinates.

Proof. — (2.3)) follows directly from (2.2)) and . We now show (2.2). Let o = Errf(u).
(2.6) lu = w*lly = flua — uill + lug — wilh

Consider the tail error first:

(2.7) Jug — wiclly < Jlugll +lluglh
e
Just using ||u*||; < [Jull1 we bound
luglls < lluglls + llualls = flurlls (rewriting [lu”l1 < [[ul1)
(2.8) < lugll + flua — ui |l (triangular inequality)
Combine , and
(2.9) lu = u*lln < 2flua = wjll + 20
Let’s examine the head error now:
lua — ui |y < kY2 lua — uil2 (Cauchy-Schwarz)
<K lu — w2
< kY2872 |lu — ut|; (width property)
(2.10) <1/4- Hu —u ||1 (using k < S/16)

Combine and ( - ) to obtain |

3. Relation to RIP

Here we pursue the connection between RIP and width property of matrices.

DEFINITION 3.1 — A matrix A € R™ ™ has the (k,d)-Restricted Isometry Property
(RIP) iff for all x € R™ so that ||z|jo < k

(3.1) (1 =0)lzfla < [[Azlla < (1 +9)[|l]]2.

It will be helpful to keep the following RIP theorems in mind:

THEOREM 3.1 — A random (with independent Gaussian entries) A € R"*™ with n =
©(kIn(m/k)) has the (k,1/3)-RIP with high probability.

COROLLARY 3.1 — A random A € R™™ has the (n/Inm,1/3)-RIP w.h.p.
THEOREM 3.2 — If A € R"™™ is (O(k),1/3)-RIP then for all u € R™

O(Erri(u) _ O(lul)
Lk1/2 =12
where u 4 is the recovered signal using Basis Pursuit, defined in .

(3.2) lu—uall2 <
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The next lemma shows that if a matrix is good enough for LP decoding (e.g. if it is
RIP), then it must have the width property.

LEMMA 3.1 (LP implies WP) — Let A € R™*"™ and k be so that
(3.3) ‘

arg min ||u + 5”1” <E 2y,
dcker(A) 2

then A has the width property with ||z||s < k~/?||z||; for all = € ker(A).

Remark 3.1 — Corollary asserts the existence of matrices A € R"™™ with
(O(n/lnm),1/3)-RIP, which then have the width property with £ = O(n/Ilnm) accord-
ing to Lemma Note that this is slightly weaker than (%), where k¥ = O(n/In(m/n)) is
required.

Proof. — Set I' = ker(A) and let u € I'. Then

argmin ||u + d[|; = —u
dcker(A)

and (3.3)) gives

lullz < &=2ul]1.

4. Unresolved: Decoding with noise

When recovering v € R™ “in the presence of noise” (See [3]), it is assumed that an error
e € R™ occurs in the measurement process in which event the measured signal is Au + e. In
this event, [3] consider a relaxed decoding procedure

minimize ||u*||; subject to ||[Au™ — (Au + e)||2 <€,

where € is the size of the error term e. In this event, a decoding error guarantee linear in €
is obtained when A is RIP. It is unresolved whether a similar noise-resilience can be derived
for matrices with the width property only.
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