
Rateless Codes and Big Downloads

Petar Maymounkov and David Mazières, NYU

Abstract

This paper presents a new algorithm for download-
ing big files from multiple sources in peer-to-peer
networks. The algorithm is compelling with the sim-
plicity of its implementation and the novel properties
it offers. It ensures low hand-shaking cost between
peers who intend to download a file (or parts of a
file) from each other. Furthermore, it achieves maxi-
mal file availability, meaning that any two peers with
partial knowledge of a given file will almost always
be able to fully benefit from each other’s knowledge–
i.e., overlapping knowledge will rarely occur. Our al-
gorithm is made possible by the recent introduction
of linear-time rateless erasure codes.

1 Introduction

One of the most prominent functions of peer-to-peer
systems is the download of files. More often than
not, people tend to download big popular files (like
movies) that are available in full or in part at more
than one node on the network. This observation has
inspired a number of different algorithms for multi-
source file download. Some are already in use [1].
Some are in the form of proposals [3].

The basic multi-source download setting is sim-
ple. A set of nodes, calledsource nodes, of the un-
derlying peer-to-peer system, have complete knowl-
edge of a certain file, which is being requested by an-
other set of nodes on the system. The effective goal
is to devise an algorithm that allows the requesting
nodes to obtain the file in a timely and bandwidth-
efficient manner. The realistic setting, however, is
much more elaborate. Nodes can join or leave the
system at any point, and new requests for files may
be issued while older requests are being serviced. As
a result, a download algorithm can make almost no
assumptions about the uptime of nodes, their avail-
able bandwidth, and so on.

Most previous multi-source download algorithms
have taken the same approach. When a node needs
a file, it looks up contact information for other peers
who have partial or full knowledge of the file and
contacts as many of them as necessary. For each peer
it contacts, the node must reconcile the differences
in its knowledge of the file with that of the peer,
then download or exchange the non-overlapping in-
formation. This common approach poses two main
challenges to the algorithm designer. First, the al-
gorithm needs to ensure that whenever a node con-
tacts another to download a file, the two are useful
to each other. This is the case when the amount
of overlapping information they are likely to have
is minimized. We call this property theavailabil-
ity aspect of the algorithm, because it ensures that
nodes complete their downloads in a more timely
manner. Second, the reconciliation phase should
be as bandwidth-efficient as possible. This rec-
onciliation is an instance of the more general set
reconciliation problem, which does not yet have a
practical solution. Existing set reconciliation algo-
rithms [8, 4, 9, 2] suffer from one of two drawbacks
in the context of practical usage. They are either
too complicated to implement, or are not optimal in
terms of message complexity.

In this paper, we propose an algorithm that com-
bines near-optimal availability with a simple yet
practical reconciliation phase not based on general
set reconciliation. Our approach is based on the
way file content is dispersed over a set of requesting
peers. Our algorithm is made possible by the recent
introduction of locally-encodable, linear-time decod-
able, rateless erasure codes. This paper is written in
terms of a new algorithm called on-line codes [7].
Luby has recently published an algorithm called LT-
codes, which is similar to on-line codes, but suffers
from O(n log n) running time, as compared to linear
time for on-line codes.

Section 2 gives an overview of erasure codes, and

1



their use in multi-source downloads, and introduces
on-line codes. Section 3 details on-line codes and
their implementation. Section 4 describes our multi-
source download algorithm. Section 5 discusses as-
pects of the algorithm and open questions.

2 Loss-resilient codes

Like most erasure codes, on-line codes encode a
message ofn blocks into an encoding of more than
n blocks, so that any subset ofn or slightly more
than n encoded blocks is sufficient to recover the
original message. A block is the smallest logical
unit of information depending on the context. It can
be any fixed-length bit-string, e.g. a bit, a byte, a
word, or even a 512-byte array for use with UDP.
Conventional erasure codes have arate R, which
means that the encoding they generate is fit to suf-
fer losses of up to1 − R fraction of the encoding
blocks, while still ensuring that the remainingR frac-
tion of the blocks will be enough to recover the orig-
inal message. The term “rate” comes from the fact
that codes are most commonly used to transfer infor-
mation across a lossy communication channel with a
given rate, where the rate of the channel is defined
to be the fraction of packets transfered through the
channel that actually get received on the other end.
An erasure code of rateR takes a message of size
n blocks and produces an encoding of sizen/R, so
another way of looking at it is to think of the code as
expanding the message by a factor of1/R.

We can subdivide erasure codes into optimal and
near-optimal. Optimal codes can recover the origi-
nal message from any subset of the encoding that is
of sizen blocks – the message size. Near-optimal
codes can recover the message from any subset of
size(1 + ε)n blocks, for any fixedε > 0 – slightly
more than the message size. A big open problem
of coding theory is whether optimal codes with lin-
ear time to encode and decode exist. However, near-
optimal codes that achieve linear-time encodability
and decodability have been devised.

Linear-time near-optimal erasure codes have al-
ready found an application in multi-source down-
loads [3]. The main idea is that whenever a source
node is asked to initiate a download of a file’s con-
tents to a requesting node, the source node starts
sending a random permutation of a rateR < 0.5

(i.e. big expansion factor) encoding of the file. This
permutation is chosen in some way dependent on
the node’s ID. Using this technique, two nodes that
each downloaded0.6n blocks of a file’s encoding
from some source nodes will be very likely, albeit
not entirely likely, to recover the file on their own
by exchanging each other’s knowledge of the file’s
encoding. This way, even if the source nodes for
a given file disappear from the network, there still
will be sufficient information available in the net-
work to recover the file. This is why we say that
this technique provides higher file availability. This
fails to be true as the number of nodes with partial
knowledge grows larger, unless1/R (the expansion
factor) grows proportionally with it. Unfortunately,
even state-of-the-art near-optimal linear-time erasure
codes become extremely expensive and impractically
memory-intensive as for very low code rates.

A new kind of erasure code, on-line codes [7],
addresses the problem. On-line codes are near-
optimal, “rateless,” linear-time decodable, “locally-
encodable” and very simple to implement. The two
novel properties of these codes – rateless-ness and
local encodability, go hand by hand. Rateless-ness
means that each messagen has practically infinite
encoding. Whereas local-encodability means that
any one encoding block can be computed quickly
and independently of the others. Replacing con-
ventional fixed-rate codes with on-line codes in the
above scenario and making some additional use of
the unique properties that rateless codes offer leads
to the algorithm that we propose in section 4 of this
paper. The next section describes the implementation
of on-line codes in greater detail.

3 On-line codes

Here we explain how to implement a variant of on-
line codes, presented in [7], and shortly explain how
they work. The code consists of two parts. Part one
is a near-optimal, rateless code which can recover a
fixed, arbitrarily large fraction1− δ of the message,
but not the whole message. This is why we refer to it
as theincomplete code. Part two is a recipe for how
to add a small fraction of ”auxiliary blocks” to the
original message to produce a new composite mes-
sage. Any1 − δ fraction of the composite message
will be enough to recover the entire original message

2



with fixed, arbitrarily high probability.

3.1 Part one

We now proceed to describe how to generate the en-
coding blocks (we call themcheck blocksfrom now
on) of the incomplete code, and how to decode most
of the underlying message using a sufficient num-
ber of these blocks. Given a message of sizen,
every check block is generated randomly and inde-
pendently as follows. A check block is the XOR
of d randomly chosen message blocks. The degree
d is chosen first according to a given distribution
ρ(ε, δ) = (ρ1, ρ2, . . . , ρF ), such that the degree is
d with probabilityρd and the maximum degreeF is
a constant (independent ofn). Knowledge of any
(1 + ε)n check blocks generated according to the
above procedure will recover1 − δ fraction of the
original message. The distributionρ is a function of
ε andδ as follows:F = (ln δ + ln(ε/2))/ ln(1− δ),
ρ1 = 1 − (1 + 1/F )/(1 + ε), and ρi = (1 −
ρ1)F/((F − 1)i(i− 1)) for 2 5 i 5 F . The price to
pay for a smallerε andδ is an increase in the constant
factor in the decoding time. Specifically, the decod-
ing time is proportional ton lnF ≈ n ln(1/ε) (when
ε ∼ δ are small).

The decoding process is no more difficult than the
encoding. We call the message blocks that comprise
a check block itsadjacentmessage blocks. Decoding
consists of one basic step: Find a check block, all of
whose adjacent message blocks have been recovered
except for one, and solve for it. Repeat this step un-
til the entire message has been recovered. The main
idea is that initially only a few check blocks will be
useful to decode some message blocks. Namely this
will be the check blocks of degree 1, which are in
effect direct copies of message blocks. After the
degree-1 check blocks have been processed, more
check blocks will become useful, and so forth. This
way most of the message will be recovered in a cas-
cading fashion. To see that this process takes linear
time, following the appraoch of [5, 6], we think of the
n message blocks and the(1 + ε)n check blocks as
the left and right vertices, respectively, of a bipartite
graphG. A check block has edges to and only to the
message blocks that comprise it in terms of the XOR.
We say that an edge hasleft (respectivelyright) de-
gree d if the left-end node (respectively right-end

node) of this edge is of degreed. Using the graph
language, the decoding step is: find an edge of right
degree 1 and remove all edges incident to its left-
end node. In the graph context, decoding completes
when all edges are removed. Since the total number
of edges is bounded by(1 + ε)Fn (specifically it is
roughly equal ton lnF ), the decoding process runs
in linear-time. We would also like to make a point of
the fact that using the above decoding procedure one
can easily decode on-line, i.e. as the check blocks
arrive.

Since the receiving party needs to know how the
received check blocks were created in order to use
them properly, each check block needs to have an
ID (or a sequential index) which could be the seed
of the pseudo-random function used to generate it.
We are going to use 160-bit check block ID’s, which
will mean that the effective number of conceivable
unique check blocks is2160, given that the message
is reasonably big.

3.2 Part two

To make sure that we recover the whole message, in-
stead of applying the above code to the actual mes-
sage that we want to encode, we apply it to a com-
posite message. The composite message will consist
of the actual message followed by a small number
of auxiliary blocks which, just like the check blocks
from the previous section, will act as a kind of par-
ity check blocks. Like check blocks, every auxil-
iary block will be the XOR of some number of mes-
sage blocks. Only this time, each message block ran-
domly chooses whichq auxiliary blocks will be ad-
jacent to it. To ensure that knowledge of any1 − δ
fraction of the composite message will recover the
entire original message with probability1− δq+1, at
least1.1qδn auxiliary blocks should be used.

By picking a good configuration ofε, δ and q,
one can practically alleviate the probability of fail-
ing to recover the whole message. Since these codes
are proven to be good asymptotically (inn), there is
some lower limit on how small the encoded messages
could be. Using this two-part code design, we have
achieved codes that recover messages of as few as
1000 blocks, with only 3% overhead and probability
of failure 10−8. Our non-optimized, 150-line Java
implementation encoded and decoded a message of

3



size 1 million blocks in roughly 10 seconds. For the
experiment, we used blocks of size 0, so that we can
measure the intrinsic time of encoding and decoding
without factoring in disk access and XOR-ing costs
(which depend on the block size).

4 The algorithm

We start by defining astreamwith ID s∗ ∈ {0, 1}160

to be the infinite sequence of 160-bit numbers
a0, a2, . . . , whereai = SHA1(s∗ · i). Consequently,
we use “a stream with IDs∗ of a file’s encoding”
to mean the sequence of check blocks of this file’s
encoding with ID’s taken from the above infinite se-
quence.

Each peer node, which is in the process of down-
loading a file, will keep a small amount of state in-
formation represented by a table of pairs of the form
(stream ID, last position). If the pair(s∗, p) is in the
list, it will mean that the node has the firstp check
block of the stream with IDs∗ of the file’s encoding.
The pair(q∗, r), whereq∗ is the node’s peer-to-peer
ID, will always be in this table, even ifr = 0.

We are going to assume that each requesting node
v has some external way of finding out which other
nodes are source nodes for the requested file, and
which other nodes are in the process of download-
ing the file, i.e. have partial knowledge. Of all these
other nodes,v will choose one or more, according to
some open-ended choice procedure, and will initiate
an interaction with each of them. Each interaction
will proceed as follows.

If v is interacting with a source node, then firstv
sends its(v∗, r) pair to that node, wherev∗ is v’s
node ID. Then the source node starts sending tov
all check blocks from the stream with IDv∗ starting
from positionr. For the sake of simplicity of exposi-
tion, we are going to assume that the recipient knows
the stream ID and position of each check block. One
can achieve this, e.g., by sending the stream ID, start-
ing position and length of the stream before they start
transferring the stream. The interaction terminates
whenever one of the two parties disconnects or when
v has collected the required number of blocks to re-
cover the file. In case the interaction terminates be-
fore v is able to recover the file,v updates its state
information table appropriately.

On the other hand, ifv is interacting with a nodew

that has partial knowledge of the file,v first proceeds
to sendw its entire state information table. This
allows w to get a complete picture of what check
blocks v has. Thenw proceeds to sendv check
blocks thatv doesn’t have, while making sure that
for each encoding stream the check blocks are sent
in consecutive order (different streams could be in-
terleaved), starting from the position after the last
position in the stream for whichv has a check block.
We note that there is a lot of freedom in the ordering
of the check blocks that are sent tov. This freedom
allows for a variety of optimizations that we discuss
later. This completes the definition of the algorithm.

5 Discussion

Rateless codes seem to be a promising new tool for
the peer-to-peer world. They offer improved file
availability and simplified reconciliation protocols.
Already in plain vanilla form, we expect the above
algorithm to outperform most currently implemented
or proposed multi-source download schemes. When
it comes to availability, i.e. guarantees that peers
with partial file knowledge have as little overlap in
their knowledge of the file as possible, the use of
rateless codes achieves most of what one could hope
for. Two nodes can have overlapping information
only if earlier down the line this information came
from the same one node that had partial information
of the file. The possibility of such occurances are
low. They can be reduced even further by carefully
designing the way in which nodes with partial file
knowledge choose the ordering of the check blocks
that they exchange among each other. To properly
understand the implications of rateless codes and fur-
ther optimize their use, we emphasize a few open
questions.

5.1 Open questions

We speculate that the reconciliation costs upon ini-
tiation of interaction between two nodes are min-
imal. The message cost of reconciliation between
two nodes is no bigger than the cost of sending the
state information table, whose size is directly propor-
tional to the number of different streams from which
a node has check blocks. This number is generously
upper-bounded by the total number of nodes that had

4



partial knowledge of the file within the life-span of
the download. In our experience, this number has
actually never exceeded 20. As a result, the recon-
ciliation data sent upon initiation of interaction be-
tween two nodes will in practice always fit in one IP
packet. This is likely to be more cost effective com-
pared to algorithms using compact summary data
structures [2] for set reconciliation.

To prove that this algorithm scales, though, one
needs to consider the case when the number of nodes
with partial file knowledge increases dramatically. In
this case, we believe that one can improve the above
algorithm to make peers form small but sufficiently
big clusters within which they will help each other
with the download. Then the size of the state infor-
mation table will be proportional to the size of these
clusters. How big these clusters need to be, and how
to design the algorithms for forming these clusters
poses an open question.

Another open question asks whether availability
guarantees can be improved even further. The spec-
ification of our algorithm in Section 4 leaves some
freedom of interpretation. When a nodev requests
help from a nodew with partial knowledge,w can
choose the order in which it sends blocks tov. For
example,w could send blocks from one stream un-
til the stream is exhausted, or it could interleave
blocks from different streams. The choice of ap-
proach becomes important if the connection between
the two nodes is unexpectedly interrupted. By choos-
ing what specific approach to use, one can pick a fa-
vorable trade-off between higher reconciliation costs
and higher file availability in the presence of unex-
pected disconnects. It is an open problem to find
good strategies and understand the nature of this
trade-off.

Finally, the consistency of our algorithm is based
on a common, unspoken assumption that nodes
communicate over TCP. This ensures that receiv-
ing nodes won’t have holes in their knowledge of
the streams, because packets don’t get dropped un-
til the connection is open. It is an interesting ques-
tion whether there is an equivalent of this algorithm
that works just as well over a lossy UDP channel.
There is, of course, a handful of hacks that can get
around this problem, however most of them will in-
crease the number of rounds in the protocol which
is undesirable. We believe that possible solutions to

this problem may make use of global properties of
the flow of information in the peer-to-peer network.

6 Conclusion

We hope that this paper will motivate further studies
of applications of rateless codes to peer-to-peer prob-
lems. Our experiments show that due to their sim-
plicity of implementation and speed, on-line codes
are a good candidate for practical solutions.

The download algorithm that we propose shows
that rateless codes offer increased file availability
and decreased reconciliation costs. Interestingly, the
decrease of reconciliation costs is due to the limit
on how many streams a cluster of nodes may need.
This shows that one can avoid difficult information-
theoretical problems, like set reconciliation, by mak-
ing use of a wider range of properties of the under-
lying peer-to-peer system. Moreover, since the limit
on the number of streams is, in some sense, a global
property of the multi-source setting, further research
should be done to better use other such global prop-
erties.

References
[1] EDonkey2000. http://www.edonkey2000.com/.

[2] J. Byers, J. Considine, and M. Mitzenmacher. Fast Approx-
imate Reconciliation of Set Differences. InDraft paper,
available as BU Computer Science TR 2002-019, 2002.

[3] J. Byers, J. Considine, M. Mitzenmacher, and S. Rost. In-
formed Content Delivery Across Adaptive Overlay Net-
works. InSIGCOMM, 2002.

[4] M. Karpovsky, L. Levitin, and A. Trachtenberg. Data ver-
ification and reconciliation with generalized error-control
codes. In39th Annual Allerton Conference on Communi-
cation, Control, and Computing, 2001.

[5] M. Luby, M. Mitzenmacher, A. Shokrollahi, D. Spielman,
and V. Stemann. Practical Loss-Resilient Codes. InSTOC,
1997.

[6] M. Luby, M. Mitzenmacher, and A. Shokrollahi. Analy-
sis of Random Processes via And-Or Tree Evaluation. In
SODA, 1998.

[7] Petar Maymounkov. Online Codes. Technical Report
TR2002-833, New York University, October 2002.

[8] Y. Minsky, A. Trachtenberg, and R. Zippel. Set Reconcili-
ation with Nearly Optimal Communication Complexity. In
International Symposium on Information Theory, 2001.

[9] Y. Minsky and A. Trachtenberg. Practical Set Reconcilia-
tion. In 40th Annual Allerton Conference on Communica-
tion, Control, and Computing, 2002.

5


