Rateless Codes and Big Downloads

Petar Maymounkov and David Mazes, NYU

Abstract Most previous multi-source download algorithms
have taken the same approach. When a node needs
This paper presents a new algorithm for downloag-ile, it looks up contact information for other peers
ing big files from multiple sources in peer-to-peagho have partial or full knowledge of the file and
networks. The algorithm is compelling with the simeontacts as many of them as necessary. For each peer
plicity of its implementation and the novel propertieis contacts, the node must reconcile the differences
it offers. It ensures low hand-shaking cost betwe@n its knowledge of the file with that of the peer,
peers who intend to download a file (or parts of then download or exchange the non-overlapping in-
file) from each other. Furthermore, it achieves maxormation. This common approach poses two main
mal file availability, meaning that any two peers withallenges to the algorithm designer. First, the al-
partial knowledge of a given file will almost alwaygjorithm needs to ensure that whenever a node con-
be able to fully benefit from each other’s knowledgeacts another to download a file, the two are useful
i.e., overlapping knowledge will rarely occur. Our alto each other. This is the case when the amount
gorithm is made possible by the recent introducti@i overlapping information they are likely to have
of linear-time rateless erasure codes. is minimized. We call this property thavailabil-
ity aspect of the algorithm, because it ensures that
nodes complete their downloads in a more timely
manner. Second, the reconciliation phase should

One of the most prominent functions of peer-to-peg? as .banQWldth_-effluent as possible. This rec-
onciliation is an instance of the more general set

systems is the download of files. More often than e .
. . . reconciliation problem, which does not yet have a

not, people tend to download big popular files (like ™" . . S b2
ractical solution. Existing set reconciliation algo-

movies) that are available in full or in part at mor
than one node on the network. This observation hrétgms [8, 4, 9, 2] suffer from one of two drawbacks

o . . .In the context of practical usage. They are either
inspired a number of different algorithms for multi:) . .)
o complicated to implement, or are not optimal in

source file download. Some are already in use [ii .
Some are in the form of proposals [3]. térms of message complexity.

The basic multi-source download setting is sim- In this paper, we propose an algorithm that com-
ple. A set of nodes, callesource nodesof the un- bines near-optimal availability with a simple yet
derlying peer-to-peer system, have complete knowractical reconciliation phase not based on general
edge of a certain file, which is being requested by a#ft reconciliation. Our approach is based on the
other set of nodes on the system. The effective g¥¢dY file content is dispersed over a set of requesting
is to devise an algorithm that allows the requestif§ers. Our algorithm is made possible by the recent
nodes to obtain the file in a timely and bandwidtfotroduction of locally-encodable, linear-time decod-
efficient manner. The realistic setting, however, fble, rateless erasure codes. This paper is written in
much more elaborate. Nodes can join or leave tif§ms of a new algorithm called on-line codes [7].
system at any point, and new requests for files mbyby has recently published an algorithm called LT-
be issued while older requests are being serviced. 3§les, which is similar to on-line codes, but suffers
a result, a download algorithm can make almost #®M O(nlog n) running time, as compared to linear
assumptions about the uptime of nodes, their avdime for on-line codes.
able bandwidth, and so on. Section 2 gives an overview of erasure codes, and

1 Introduction

their use in multi-source downloads, and introducése. big expansion factor) encoding of the file. This
on-line codes. Section 3 details on-line codes apdrmutation is chosen in some way dependent on
their implementation. Section 4 describes our multhe node’s ID. Using this technique, two nodes that
source download algorithm. Section 5 discusses aach downloaded.6n blocks of a file's encoding
pects of the algorithm and open questions. from some source nodes will be very likely, albeit
not entirely likely, to recover the file on their own
by exchanging each other’s knowledge of the file’'s
encoding. This way, even if the source nodes for

Like most erasure codes. on-line codes encodea%iven file disappear from the network, there still
j |

message of, blocks into an encoding of more thad’ be sufficient information available in the net-
n blocks, so that any subset of or slightly more work to recover the file. This is why we say that

than . encoded blocks is sufficient to recover thg IS technique provides higher file avallabl!lty. Th'.s
ils to be true as the number of nodes with partial

original message. A block is the smallest Iogic? led | les< R (th i
unit of information depending on the context. It ca nowledge grows larger, unless R (the expansion

be any fixed-length bit-string, e.g. a bit, a byte gctor) grows proportionally with it. Unfortunately,
’ - ’lgven state-of-the-art near-optimal linear-time erasure

codes become extremely expensive and impractically
emory-intensive as for very low code rates.
A new kind of erasure code, on-line codes [7],

2 Loss-resilient codes

Conventional erasure codes haveate 1R, which
means that the encoding they generate is fit to st

fer losses of up td — R fraction of the encoding 4d th bl on-li d
blocks, while still ensuring that the remainififrac- 2o co>ses N problem. . Un-iiné codes are near-
optimal, “rateless,” linear-time decodable, “locally-

tion of the blocks will be enough to recover the orig dable” and imole o impl ¢ Thet
inal message. The term “rate” comes from the facp codavler and very simpie fo Impiement. The two

that codes are most commonly used to transfer inf ﬁvel properties of these codes — rateless-ness and

mation across a lossy communication channel wit oé:al encodability, go hand by hand.. Ratglefss_-ness
ans that each messagehas practically infinite

given rate, where the rate of the channel is define. di Wh local dabilit that
to be the fraction of packets transfered through thEcoding. ereas local-encodanility means tha

channel that actually get received on the other ey one encoding block can be computed_ quickly
An erasure code of rat® takes a message of sizg‘nOI independently of the others. Replacing con-
n blocks and produces an encoding of sizéR, so ventional fixed-rate codes with on-line codes in the

another way of looking at it is to think of the code at bove.scenarlo art1_d rr][zkltng tsolme adgltlon?fl uTe gf
expanding the message by a factot 6fz. e unique properties that rateless codes offer leads

We can subdivide erasure codes into optimal a%%lthe algorithm that we propase in section 4 of this

near-optimal. Optimal codes can recover the Ori%_aper. The next section describes the implementation

nal message from any subset of the encoding tha Tson-llne codes in greater detail.

of sizen blocks — the message size. Near-optimal

codes can recover the message from any subseBof On-line codes

size (1 + €)n blocks, for any fixect > 0 — slightly

more than the message size. A big open problétere we explain how to implement a variant of on-

of coding theory is whether optimal codes with liniine codes, presented in [7], and shortly explain how

ear time to encode and decode exist. However, ng@ey work. The code consists of two parts. Part one

optimal codes that achieve linear-time encodability a near-optimal, rateless code which can recover a

and decodability have been devised. fixed, arbitrarily large fraction — § of the message,
Linear-time near-optimal erasure codes have alit not the whole message. This is why we refer to it

ready found an application in multi-source dowras theincomplete codePart two is a recipe for how

loads [3]. The main idea is that whenever a sourtieadd a small fraction of "auxiliary blocks” to the

node is asked to initiate a download of a file’s comriginal message to produce a new composite mes-

tents to a requesting node, the source node stadge. Anyl — ¢ fraction of the composite message

sending a random permutation of a ra&ke< 0.5 will be enough to recover the entire original message

2

with fixed, arbitrarily high probability. node) of this edge is of degrek Using the graph
language, the decoding step is: find an edge of right
degree 1 and remove all edges incident to its left-

3.1 Partone end node. In the graph context, decoding completes

We now proceed to describe how to generate the ¥fien all edges are removed. Since the total number
coding blocks (we call theraheck blocksrom now ©f €dges is bounded byt + ¢) F'n (specifically it is

on) of the incomplete code, and how to decode md@H9nly equal taeIn), the decoding process runs
of the underlying message using a sufficient nurn linear-time. We would also like to.make a point of
ber of these blocks. Given a message of size the fact t'hat using the apovg decoding procedure one
every check block is generated randomly and inde@n €asily decode on-line, i.e. as the check blocks
pendently as follows. A check block is the XOR'VE:

of d randomly chosen message blocks. The degreeNce the receiving party needs to know how the
d is chosen first according to a given distributiofffc€ived check blocks were created in order to use

p(e,8) = (p1,pas ..., pr), such that the degree idhem properly, each check block needs to have an
d with probability p; and the maximum degreg is D (or @ sequential index) which could be the seed
a constant (independent af). Knowledge of any of the pseudo-random function used to generate it.

(1 + ¢)n check blocks generated according to tﬁé(e are going to use 160—_bit check block ID’s, yvhich
above procedure will recover — § fraction of the will mean that the effective number of conceivable

original message. The distributigris a function of Unique check blocks 1%, given that the message

¢ ands as follows: F = (In§ + In(e/2))/In(1 — §), IS reasonably big.

p1 = 1 — (1 + 1/F)/(1 + 6), andpi = (1 —

p1)F/((F—=1)i(i—1))for2 =i =< F. The priceto 3 2 part two

pay for a smallee andJ is an increase in the constant

factor in the decoding time. Specifically, the decodo make sure that we recover the whole message, in-

ing time is proportional ta In F' ~ n1n(1/€) (when stead of applying the above code to the actual mes-

€ ~ ¢ are small). sage that we want to encode, we apply it to a com-
The decoding process is no more difficult than th®site message. The composite message will consist

encoding. We call the message blocks that compri¥fethe actual message followed by a small number

a check block itedjacentmessage blocks. Decodingf auxiliary blocks which, just like the check blocks

consists of one basic step: Find a check block, allisém the previous section, will act as a kind of par-

whose adjacent message blocks have been recovésegheck blocks. Like check blocks, every auxil-

except for one, and solve for it. Repeat this step uary block will be the XOR of some number of mes-

til the entire message has been recovered. The ng#ge blocks. Only this time, each message block ran-

idea is that initially only a few check blocks will bedomly chooses which auxiliary blocks will be ad-

useful to decode some message blocks. Namely flaigent to it. To ensure that knowledge of ahy- ¢

will be the check blocks of degree 1, which are iffaction of the composite message will recover the

effect direct copies of message blocks. After tremtire original message with probability— 6971, at

degree-1 check blocks have been processed, meastl.1gin auxiliary blocks should be used.

check blocks will become useful, and so forth. This By picking a good configuration of, § and g,

way most of the message will be recovered in a casie can practically alleviate the probability of fail-

cading fashion. To see that this process takes lingag to recover the whole message. Since these codes

time, following the appraoch of [5, 6], we think of theare proven to be good asymptotically (i, there is

n message blocks and tlié + ¢)n check blocks as some lower limit on how small the encoded messages

the left and right vertices, respectively, of a bipartiteould be. Using this two-part code design, we have

graphG. A check block has edges to and only to thechieved codes that recover messages of as few as

message blocks that comprise it in terms of the XOR000 blocks, with only 3% overhead and probability

We say that an edge héft (respectivelyright) de- of failure 10~®. Our non-optimized, 150-line Java

greed if the left-end node (respectively right-endmplementation encoded and decoded a message of

3

size 1 million blocks in roughly 10 seconds. For thinat has partial knowledge of the filefirst proceeds
experiment, we used blocks of size 0, so that we cansendw its entire state information table. This
measure the intrinsic time of encoding and decodiafiows w to get a complete picture of what check
without factoring in disk access and XOR-ing costdocks v has. Thenw proceeds to send check
(which depend on the block size). blocks thatv doesn’t have, while making sure that
for each encoding stream the check blocks are sent
in consecutive order (different streams could be in-
terleaved), starting from the position after the last
position in the stream for which has a check block.

e note that there is a lot of freedom in the ordering
of the check blocks that are sentito This freedom
allows for a variety of optimizations that we discuss
é%ter. This completes the definition of the algorithm.

4 The algorithm

We start by defining atreamwith ID s* € {0, 1}1%°
to be the infinite sequence of 160-bit numbe
ap, az, ..., wherea; = SHAL(s* - i). Consequently,
we use “a stream with IB* of a file's encoding”
to mean the sequence of check blocks of this fil
encoding with ID’s taken from the above infinite se-
quence. 5 Discussion

Each peer node, which is in the process of down-
loading a file, will keep a small amount of state inRateless codes seem to be a promising new tool for
formation represented by a table of pairs of the foriRe peer-to-peer world. They offer improved file
(stream ID, last position). If the pair(s*,p) is inthe availability and simplified reconciliation protocols.
list, it will mean that the node has the firstcheck Already in plain vanilla form, we expect the above
block of the stream with IB* of the file’s encoding. algorithm to outperform most currently implemented
The pair(¢*,), whereg™ is the node’s peer-to-peeior proposed multi-source download schemes. When
ID, will always be in this table, even if = 0. it comes to availability, i.e. guarantees that peers

We are going to assume that each requesting nggéh partial file knowledge have as little overlap in
v has some external way of finding out which otheheir knowledge of the file as possible, the use of
nodes are source nodes for the requested file, aakless codes achieves most of what one could hope
which other nodes are in the process of downloa@dr, Two nodes can have overlapping information
ing the file, i.e. have partial knowledge. Of all thesgnly if earlier down the line this information came
other nodesy will choose one or more, according tgrom the same one node that had partial information
some open-ended choice procedure, and will initiad¢ the file. The possibility of such occurances are
an interaction with each of them. Each interactiqpw. They can be reduced even further by carefully
will proceed as follows. designing the way in which nodes with partial file

If v is interacting with a source node, then first knowledge choose the ordering of the check blocks
sends its(v*,r) pair to that node, where* is v's that they exchange among each other. To properly
node ID. Then the source node starts sending tainderstand the implications of rateless codes and fur-
all check blocks from the stream with I starting ther optimize their use, we emphasize a few open
from positionr. For the sake of simplicity of exposi-questions.
tion, we are going to assume that the recipient knows
the stream ID and position of each check block. O
can achieve this, e.g., by sending the stream ID, start-
ing position and length of the stream before they st&¥e speculate that the reconciliation costs upon ini-
transferring the stream. The interaction terminatgation of interaction between two nodes are min-
whenever one of the two parties disconnects or whiemal. The message cost of reconciliation between
v has collected the required number of blocks to revo nodes is no bigger than the cost of sending the
cover the file. In case the interaction terminates b&tate information table, whose size is directly propor-
fore v is able to recover the filey updates its statetional to the number of different streams from which
information table appropriately. a node has check blocks. This number is generously

On the other hand, if is interacting with a noder upper-bounded by the total number of nodes that had

Open questions

4

partial knowledge of the file within the life-span othis problem may make use of global properties of
the download. In our experience, this number htte flow of information in the peer-to-peer network.
actually never exceeded 20. As a result, the recon-

ciliation data sent upon initiation of interaction be .
tween two nodes will in practice always fit in one II§ Conclusion

packet. This |s.I|ker to F’e more cost effective COMAe hope that this paper will motivate further studies
pared to algorithms using compact summary daia o jications of rateless codes to peer-to-peer prob-
structures [2] for set reconciliation. lems. Our experiments show that due to their sim-
To prove that this algorithm scales, though, oficity of implementation and speed, on-line codes
needs to consider the case when the number of noggs 5 good candidate for practical solutions.
with partial file knowledge increases dramatically. In The download algorithm that we propose shows
this case, we believe that one can improve the abqugt rateless codes offer increased file availability
algorithm to make peers form small but sufficientlynq gecreased reconciliation costs. Interestingly, the
big clusters within which they will help each othegecrease of reconciliation costs is due to the limit
with the download. Then the size of the state infogy, how many streams a cluster of nodes may need.
mation table will be proportional to the size of thesens shows that one can avoid difficult information-
clusters. How big these clusters need to be, and hy¥oretical problems, like set reconciliation, by mak-
to design the algorithms for forming these C|USteﬁ$g use of a wider range of properties of the under-
poses an open question. lying peer-to-peer system. Moreover, since the limit
Another open question asks whether availabiligh the number of streams is, in some sense, a global
guarantees can be improved even further. The spgrperty of the multi-source setting, further research
ification of our algorithm in Section 4 leaves soméhould be done to better use other such global prop-
freedom of interpretation. When a nodeequests erties.
help from a nodev with partial knowledgew can
choose the order in which it sends blocksutoFor References
example,w could send blocks from one stream un-
til the stream is exhausted, or it could interlea\& EDonkey2000. http://www.edonkey2000.com/.
blocks from different streams. The choice of afi2] J. Byers, J. Considine, and M. Mitzenmacher. Fast Approx-
proach becomes important if the connection between imate Reconciliation of Set Differences. Draft paper,
. . available as BU Computer Science TR 2002-,2(D2.
the two nodes is unexpectedly interrupted. By choos- o .
. - . %3_ J. Byers, J. ConS|d|nfe, M. Mltzenmacher, and S. Rost. In-
ing what specific approach .tO use, one (?"fm .pICk a formed Content Delivery Across Adaptive Overlay Net-
vorable trade-off between higher reconciliation costs works. InSIGCOMM 2002.
and higher file availability in the presence of unex4] M. Karpovsky, L. Levitin, and A. Trachtenberg. Data ver-
pected disconnects. It is an open problem to find ification and reconciliation with generalized error-control

good strategies and understand the nature of thiSCOdeS' In39th Annual Allerton Conference on Communi-
trade-off cation, Control, and Computin@001.

. . . . [5] M. Luby, M. Mitzenmacher, A. Shokrollahi, D. Spielman,
Finally, the consistency of our algorithm is based and v. Stemann. Practical Loss-Resilient CodesST®G
on a common, unspoken assumption that nodes 1997.
communicate over TCP. This ensures that recejé} M. Luby, M. Mitzenmacher, and A. Shokrollahi. Analy-
ing nodes won't have holes in their knowledge of sis of Random Processes via And-Or Tree Evaluation. In
the streams, because packets don’t get dropped yn->ODA 1998.

til the connection is open. It is an interestin ue[57_] Petar Maymounkov. Online Codes. Technical Report
pen. 949 TR2002-833, New York University, October 2002.

tion Whethe_r there is an equivalent of this algonthr[g] Y. Minsky, A. Trachtenberg, and R. Zippel. Set Reconcili-
that works just as well over a lossy UDP channel. ation with Nearly Optimal Communication Complexity. In

There is, of course, a handful of hacks that can get International Symposium on Information Thec?@01.
around this problem, however most of them will in®] Y. Minsky and A. Trachtenberg. Practical Set Reconcilia-
crease the number of rounds in the protocol which tion. In 40th Annual Allerton Conference on Communica-
. i | i 2.

is undesirable. We believe that possible solutions to 10" Control: and Computing?00

5

