1. Hierarchy review:

(a) \(\text{TIME}(n^2) \not\subset \text{TIME}(\omega(n^2 \log n)) \):

Let \(X = x_1, x_2, \ldots \) be a lexicographic enumeration of all binary strings, and let \(M_1, M_2, \ldots \) be an enumeration of all Turing Machines. For a fixed encoding choice, we can find \(M_1, M_1, M_2, M_1, M_2, M_3, \ldots \) as a subsequence in \(X \) in a linear-time verifiable manner. For example, in order to ensure multiple copies \(M_i \) in the sequence, one can designate each string of the (DFA) form \(\text{Encode}(M_i) \cdot 1 \cdot 0^* \) to represent \(M_i \).

We are going to build a machine \(M^* \) which runs in \(O(n^2 \log n) \) time and differs from each \(M_i \) on at least one input. On input \(x \), the machine \(M^* \) proceeds as follows:

(a) Check if \(x \) is a valid encoding of a Turing Machine. If not, output "0", otherwise let that machine be \(M_i \)

(b) Simulate \(M_i \) for exactly \(|x|^2 \cdot \log^* |x| \) steps, by keeping an additional step counter whose size is \(O(\log n) \) bits. Using a remark from class, we know that we can simulate a Turing Machine in real time. In addition, at each step we need to increment the counter, which takes \(O(\log n) \) time steps per increment. Therefore, the overall simulation cost will be \(O(n^2 \cdot \log n \cdot \log^* n) \).

If \(M_i \) halts during simulation, then complement its output, otherwise output "0".

For correctness, let \(M_i \) be any machine in \(\text{TIME}(n^2) \) which eventually runs in time \(cn^2 \) for some constant \(c > 0 \). Since \(M_i \) appears infinitely often in the above sequence, eventually there will be a \(x_j \) which encodes \(M_i \) and \(|x_j|^2 \cdot \log^* |x_j| \geq cn^2 \). By construction \(M^* \) will differ from \(M_i \) on that input.

Finally, observe that \(\log^*(\cdot) \) could have been replaced by any function that grows faster than \(O(1) \).

(b) \(\text{SPACE}(n^2) \not\subset \text{SPACE}(\omega(n^2)) \):

The construction in this case is much the same except for the following differences. \(M^* \) simulates \(M_i \) on input \(x \) by giving it \(|x|^2 \cdot \log^* |x| \) space and running it for \(O(2|x|^2 \cdot \log^* |x|) \) time steps. If \(M_i \) does not terminate, or falls in a loop, or overflows the allocated space, then \(M^* \) simply outputs "0", otherwise it complements the output of \(M_i \). Also note that the time step counter requires \(O(|x|^2 \cdot \log^* |x|) \) bits.

Finally, by replacing \(\log^*(\cdot) \) with any function that grows faster than \(O(1) \) we get the required result.

2. Non-deterministic space-bounded computation:

(a) This first part is straightforward. The program goes like this. Set the “current” vertex \(v_c \) to equal \(s \). Repeat at most \(|V(G)| \) times: Guess an adjacent vertex \(v_a \) and set \(v_c := v_a \). If \(v_c \) equals \(t \) then halt ”YES”. After \(|V(G)| \) unsuccessful guesses, halt ”NO”.

(b) (This part is adapted from Sipser’s textbook.) Begin by building an NL subroutine for computing the number C of vertices reachable from s. Let C_i denote the number of vertices reachable from s in at most i steps. $C_0 = 1$ and assume inductively that we have an NL subroutine that computes C_i. Compute C_{i+1} as follows:

- Set $C_{i+1} := C_i$
- For each $v \in V(G)$ do:
 - Set $C'_i := 0$
 - For each $v \neq u \in V(G)$ do:
 * Guess whether u reachable from s in i steps
 * If guessed yes, check that guess is correct. If guess is incorrect reject
 * Set $C'_i := C'_i + 1$
 * If $(u, v) \in E(G)$ set $C_{i+1} := C_{i+1} + 1$
 - If $C'_i \neq C_i$ reject
- Accept and output C_{i+1}

To solve co-PATH, we proceed as follows:

- Find C, using the above NL routine
- Set $R := 0$
- For each $v \in V(G)$, do:
 - Guess whether v is connected to s
 - If guessed yes: check that this is indeed true and increment R, otherwise reject
 - If $v = t$ then reject
- If $R \neq C$ reject
- Accept

3. Space-efficient boolean matrix multiplication and consequences:

(a) We compute each C_{ij} in turn (maintaining a counter to tell us where we are at). For each C_{ij} we check whether both a_{ik} and b_{kj} equal 1, for all $1 \leq k \leq n$ (by maintaining a counter for k). We will need another counter that helps us locate a_{ik} (or b_{kj}) given i, j and k by walking to them.

(b) Consider the recursive routine $\text{Compute}(A_{ij}^k)$:

- If $k = 1$, return A_{ij}
- For every $1 \leq l \leq n$ do:
 - If $\text{Compute}(A_{il}^{[k/2]}) = \text{Compute}(A_{lj}^{[k/2]}) = 1$, then return 1
- Return 0

The above function has bounded recursion depth $O(\log k)$. Furthermore the body of the function can be executed using a constant number of pointer/counters. Thus the total space requirement is $O(\log k \log n)$.
This construction is in the heart of Savitch’s Theorem stating $\text{NSPACE}(f(n)) \subseteq \text{DSPACE}(f(n)^2)$. In particular, given a machine in $\text{NSPACE}(f(n))$ the configuration space (states + tape) is a directed graph G_M on $2^{O(f(n))}$ vertices. Savitch’s Theorem boils down to checking connectivity between the starting configuration and the $2^{f(n)}$ halting configurations in at most $2^{O(f(n))}$ steps. This problem is equivalent to computing $A_{ij}^{2^{f(n)}}$, where A is the adjacency matrix of G_M and (i, j) encode halting configurations. Therefore the space required by the deterministic simulation of M is $O(\log 2^{O(f(n))} \log 2^{f(n)}) = O(f(n)^2)$.

4. Ladner’s general theorem:

Let $f_1, f_2, \ldots, f_i, \ldots$ be an enumeration of all binary functions $f_i : \{0, 1\}^* \rightarrow \{0, 1\}^*$ such that $f_i(x)$ can be computed in at most $|x|$ time steps.

For a polynomially-computable $h(n) : \mathbb{N} \rightarrow \mathbb{N}$ (to be specified later), define L_A and L_B as follows:

$$L_A = \{ x \mid (x = 0 \cdot w \land w \in L_1) \lor (x = 1 \cdot w \land h(|x|) \text{ even } \land x \in L_2) \}$$

$$L_B = \{ x \mid (x = 0 \cdot w \land w \in L_1) \lor (x = 1 \cdot w \land h(|x|) \text{ odd } \land x \in L_2) \}$$

By construction, it is clear that $L_1 \leq_P L_A, L_B \leq_P L_2$. It remains to show that $L_A \nleq_P L_B$ and $L_B \nleq_P L_A$. These two conditions will be implied by the definition of $h(n)$.

We define $h(n)$ recursively as follows. The base case is $h(1) = 2$. In the inductive step:

- If $h(n) = 2i$, then
 - If there exists x with $|x| \leq Q(n)$ and $L_A(x) \neq L_B(f_i(x))$, then $h(n+1) = 2i+1$, otherwise $h(n+1) = h(n)$.
- If $h(n) = 2i + 1$, then
 - If there exists x with $|x| \leq Q(n)$ and $L_B(x) \neq L_A(f_i(x))$, then $h(n+1) = 2(i + 1)$, otherwise $h(n+1) = h(n)$.

Note that $h(n)$ goes to infinity, because otherwise it would follow that $L_2 \leq_P L_1$ for contradiction. The value $Q(n)$ is chosen so that we can deterministically compute in $O(\text{poly}(n))$ time steps the following:

- A description of f_i for any $i \leq Q(n)$
- The values $L_1(x)$ and $L_2(x)$ for all x with $|x| \leq Q(n)$

By construction, it is now clear that $h(n)$ is polynomial-time computable, and $L_A \nleq_P L_B$ and $L_B \nleq_P L_A$.

3
5. Approximation and inapproximability:

(a) It is straightforward that ASYMMETRIC k-CENTER is in \mathbf{NP}, since a solution can be easily verified using the All Pairs Shortest Paths.

The decision version of ASYMMETRIC k-CENTER would be the language containing all (G, k, d) for which G is a weighted (un)directed graph for which there exists $S \subseteq V(G)$ with $|S| \leq k$ and $\max_{x \in V(G)} \min_{y \in S} d_G(x, y) \leq d$. We reduce VERTEX COVER cover to this problem.

Let G be undirected. Consider G^* which is a copy of G with an additional vertex $v_{(u,w)}$ for each edge $(u, w) \in E(G)$, and additional edges $(u, v_{(u,w)})$ and $(v_{(u,w)}, w)$. It is easily seen that G has a k-VERTEX COVER iff G^* has a k-CENTER. Note that this reduction reduces VERTEX COVER to DOMINATING SET, which is the same as SYMMETRIC k-CENTER with distance 2.

(b) We show that ASYMMETRIC k-CENTER cannot be $(2 - \epsilon)$-approximated for any $\epsilon > 0$. We demonstrate how to solve DOMINATING SET using a $(2 - \epsilon)$-approximation oracle for SYMMETRIC k-CENTER.

For an unweighted, undirected graph G, let G^* be a weighted copy of G with some additional edges. In particular, for every $(u, w) \not\in E(G)$, we have $(u, w) \in E(G^*)$ and $w(u, w) = 2$.

Now just note (using a basic integrality argument) that every k-center S of G^* with $\text{Obj}(S) < 2$ (found by the approximation oracle) is in fact one with $\text{Obj}(S) = 1$ and hence it is a dominating set.

(c) Let Π be a promise problem defined as follows. Π_{YES} contains all pairs (k, G) for which graph G has a k-center S with $\text{Obj}(S) \leq 1$. Π_{NO} contains all pairs (k, G) for which graph G has no k-center S with $\text{Obj}(S) \leq c$.

Let $A(k, G) \in \mathbb{R}$ be the output of the c-approximation oracle for SYMMETRIC k-CENTER on input (k, G). Then the predicate “$A(k, G) \leq c$” decides Π.