
Problem Set I, Petar Maymounkov
6.841J – Advanced Complexity with Prof. Madhu Sudan

1. Hierarchy review:

(a) TIME (n2) 6⊂ TIME (ω(n2 log n)):

Let X = x1, x2, . . . be a lexicographic enumeration of all binary strings, and let M1,M2, . . .
be an enumeration of all Turing Machines. For a fixed encoding choice, we can find
M1,M1,M2,M1,M2,M3, . . . as a subsequence in X in a linear-time verifiable manner. For
example, in order to ensure multiple copies Mi in the sequence, one can designate each string
of the (DFA) form Encode(Mi) · 1 · 0∗ to represent Mi.

We are going to build a machine M∗ which runs in O(n2 log n) time and differs from each Mi

on at least one input. On input x, the machine M∗ proceeds as follows:

(a) Check if x is a valid encoding of a Turing Machine. If not, output ”0”, otherwise let that
machine be Mi

(b) Simulate Mi for exactly |x|2 · log∗ |x| steps, by keeping an additional step counter whose
size is O(log n) bits. Using a remark from class, we know that we can simulate a Turing
Machine in real time. In addition, at each step we need to increment the counter, which
takes O(log n) time steps per increment. Therefore, the overall simulation cost will be
O(n2 · log n · log∗ n).
If Mi halts during simulation, then complement its output, otherwise output ”0”.

For correctness, let Mi be any machine in TIME (n2) which eventually runs in time cn2 for
some constant c > 0. Since Mi appears infinitely often in the above sequence, eventually there
will be a xj which encodes Mi and |xj |2 · log∗ |xj | ≥ cn2. By construction M∗ will differ from
Mi on that input.

Finally, observe that log∗(·) could have been replaced by any function that grows faster than
O(1).

(b) SPACE (n2) 6⊂ SPACE (ω(n2)):

The construction in this case is much the same except for the following differences. M∗ simulates
Mi on input x by giving it |x|2 · log∗ |x| space and running it for O(2|x|2·log∗ |x|) time steps. If Mi

does not terminate, or falls in a loop, or overflows the allocated space, then M∗ simply outputs
”0”, otherwise it complements the output of Mi. Also note that the time step counter requires
O(|x|2 · log∗ |x|) bits.

Finally, by replacing log∗(·) with any function that grows faster than O(1) we get the required
result.

2. Non-deterministic space-bounded computation:

(a) This first part is straightforward. The program goes like this. Set the “current” vertex vc to
equal s. Repeat at most |V (G)| times: Guess an adjacent vertex va and set vc := va. If vc

equals t then halt ”YES”. After |V (G)| unsuccessful guesses, halt ”NO”.

1

(b) (This part is adapted from Sipser’s textbook.) Begin by building an NL subroutine for comput-
ing the number C of vertices reachable from s. Let Ci denote the number of vertices reachable
from s in at most i steps. C0 = 1 and assume inductively that we have an NL subroutine that
computes Ci. Compute Ci+1 as follows:

• Set Ci+1 := Ci

• For each v ∈ V (G) do:

– Set C ′
i := 0

– For each v 6= u ∈ V (G) do:
∗ Guess whether u reachable from s in i steps
∗ If guessed yes, check that guess is correct. If guess is incorrect reject
∗ Set C ′

i := C ′
i + 1

∗ If (u, v) ∈ E(G) set Ci+1 := Ci+1 + 1
– If C ′

i 6= Ci reject

• Accept and output Ci+1

To solve co-PATH, we proceed as follows:

• Find C, using the above NL routine

• Set R := 0

• For each v ∈ V (G), do:

– Guess whether v is connected to s

– If guessed yes: check that this is indeed true and increment R, otherwise reject
– If v = t then reject

• If R 6= C reject

• Accept

3. Space-efficient boolean matrix multiplication and consequences:

(a) We compute each Cij in turn (maintaining a counter to tell us where we are at). For each Cij

we check whether both aik and bkj equal 1, for all 1 ≤ k ≤ n (by maintaining a counter for k).
We will need another counter that helps us locate aik (or bkj) given i, j and k by walking to
them.

(b) Consider the recursive routine Compute(Ak
ij):

• If k = 1, return Aij

• For every 1 ≤ l ≤ n do:

If Compute(Adk/2e
il) = Compute(Abk/2c

lj) = 1, then return 1

• Return 0

The above function has bounded recursion depth O(log k). Furthermore the body of the function
can be executed using a constant number of pointer/counters. Thus the total space requirement
is O(log k log n).

2

This construction is in the heart of Savitch’s Theorem stating NSPACE (f(n)) ⊆
DSPACE (f(n)2). In particular, given a machine in NSPACE (f(n)) the configuration space
(states + tape) is a directed graph GM on 2O(f(n)) vertices. Savitch’s Theorem boils down to
checking connectivity between the starting configuration an the 2f(n) halting configurations in
at most 2O(f(n)) steps. This problem is equivalent to computing A2f(n)

ij , where A is the adja-
cency matrix of GM and (i, j) encode halting configurations. Therefore the space required by
the deterministic simulation of M is O(log 2O(f(n)) log 2f(n)) = O(f(n)2).

4. Ladner’s general theorem:

Let f1, f2, . . . , fi, . . . be an enumeration of all binary functions fi : {0, 1}∗ → {0, 1}∗ such that fi(x)
can be computed in at most |x|i time steps.

For a polynomially-computable h(n) : N → N (to be specified later), define LA and LB as follows:

LA =
{
x | (x = 0 · w ∧ w ∈ L1) ∨

(x = 1 · w ∧ h(|x|) even ∧ x ∈ L2)
}

LB =
{
x | (x = 0 · w ∧ w ∈ L1) ∨

(x = 1 · w ∧ h(|x|) odd ∧ x ∈ L2)
}

By construction, it is clear that L1 ≤P LA, LB ≤P L2. It remains to show that LA �P LB and
LB �P LA. These two conditions will be implied by the definition of h(n).

We define h(n) recursively as follows. The base case is h(1) = 2. In the inductive step:

• If h(n) = 2i, then

– If there exists x with |x| ≤ Q(n) and LA(x) 6= LB(fi(x)), then h(n+1) = 2i+1, otherwise
h(n + 1) = h(n).

• If h(n) = 2i + 1, then

– If there exists x with |x| ≤ Q(n) and LB(x) 6= LA(fi(x)), then h(n + 1) = 2(i + 1),
otherwise h(n + 1) = h(n).

Note that h(n) goes to infinity, because otherwise it would follow that L2 ≤P L1 for contradiction.

The value Q(n) is chosen so that we can deterministically compute in O(poly(n)) time steps the
following:

• A description of fi for any i ≤ Q(n)

• The values L1(x) and L2(x) for all x with |x| ≤ Q(n)

By construction, it is now clear that h(n) is polynomial-time computable, and LA �P LB and
LB �P LA.

3

5. Approximation and inapproximability:

(a) It is straightforward that ASYMMETRIC k-CENTER is in NP, since a solution can be easily
verified using the All Pairs Shortest Paths.

The decision version of ASYMMETRIC k-CENTER would be the language containing all
(G, k, d) for which G is a weighted (un)directed graph for which there exists S ⊆ V (G) with
|S| ≤ k and maxx∈V (G) miny∈S dG(x, y) ≤ d. We reduce VERTEX COVER cover to this
problem.

Let G be undirected. Consider G∗ which is a copy of G with an additional vertex v(u,w) for each
edge (u,w) ∈ E(G), and additional edges (u, v(u,w)) and (v(u,w), w). It is easily seen that G
has a k-VERTEX COVER iff G∗ has a k-CENTER. Note that this reduction reduces VERTEX
COVER to DOMINATING SET, which is the same as SYMMETRIC k-CENTER with distance
2.

(b) We show that ASYMMETRIC k-CENTER cannot be (2 − ε)-approximated for any ε > 0.
We demonstrate how to solve DOMINATING SET using a (2 − ε)-approximation oracle for
SYMMETRIC k-CENTER.

For an unweighted, undirected graph G, let G∗ be a weighted copy of G with some additional
edges. In particular, for every (u, w) 6∈ E(G), we have (u, w) ∈ E(G∗) and w(u, w) = 2.

Now just note (using a basic integrality argument) that every k-center S of G∗ with Obj(S) < 2
(found by the approximation oracle) is in fact one with Obj(S) = 1 and hence it is a dominating
set.

(c) Let Π be a promise problem defined as follows. ΠYES contains all pairs (k, G) for which graph
G has a k-center S with Obj(S) ≤ 1. ΠNO contains all pairs (k, G) for which graph G has no
k-center S with Obj(S) ≤ c.

Let A(k, G) ∈ R be the output of the c-approximation oracle for SYMMETRIC k-CENTER on
input (k,G). Then the predicate “A(k, G) ≤ c” decides Π.

4

