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Problem Set 4 – Solutions

Problem 1

(a) In the following arguments, the given equalities hold for all i ∈ [n], and therefore

the eigenvactors are the same:

• The i-th eigenvalue of αP is αλi, since:

(αP )vi = α(Pvi) = α(λivi) = (αλi)vi

• The i-th eigenvalue of P + I is λi + 1, since:

(P + I)vi = Pvi + IvI = λivi + vi = (λi + 1)vi

• Inductively:

P kvi = P (P k−1vi) = Pλk−1
i vi = λk−1

i (Pvi) = λk−1
i λivi = λk

i vi

the i-th eigenvalue of P k is λk
i .

• Applying the previous three results, it is straightforward that the i-the

eigenvalue of ((P + I)/2)k is: (
λi + 1

2

)k

(b) Let A be row-stochastic with its row vectors being a1, . . . , an. and let v and λ
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be an eigenvector and its eigenvalue. Denote the i-th entry of v by vi. Then:

|λ|‖v‖1 = ‖λv‖1

= ‖vA‖1

= ‖v1a1 + · · ·+ vnan‖1

≤ ‖v1a1‖+ · · ·+ ‖vnan‖1, (triangular inequality)

= |v1|‖a1‖1 + · · ·+ |vn|‖an‖1

= |v1|+ · · ·+ |vn|, (stochasticity)

= ‖v‖1

And therefore |λ| ≤ 1.

(c) If we let V be the matrix whose columns are the vi’s, and α be a column vector

consisting of the αi’s, we get that w = V α. Using that V T V = 1 for orthonormal

matrices:

‖w‖2 = wT w = (V α)T (V α) = αT (V T V )α = αT α =
n∑

i=1

α2
i = ‖α‖2
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Problem 2

For an arbitrary set R, let ∂R = {v ∈ V | ∃ r ∈ R ∧ (r, v) ∈ E}. Let S1 be an

arbitrary subset of W1 of size n/2. By definition, |∂S1| ≥ n/2 + αn, and therefore

by the pigeonhole principle:

|∂S1 ∩W2| ≥ n/2 + αn + n− αn− n = n/2

Set S2 to be an arbitrary subset of ∂S1 ∩ W2 of size n/2 and repeat the above

argument. Finally, the desired path is constructed backwards. Choose an arbitrary

vk ∈ Sk. Then by construction there exists at least one vk−1 ∈ Sk−1 such that

(vk−1, vk) ∈ E. Continue in the same manner until all v1, . . . , vk are chosen.
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Problem 3

(a) Use Cauchy-Schwarz in the following form:(
n∑

i=1

ai

)2

≤ n

(
n∑

i=1

a2
i

)

To get:

‖π‖2 =
∑

x∈S(π)

π2
x ≥

1

n

 ∑
x∈S(π)

πx

2

=
1

n

(b) Simply:

‖π − u‖2 + 1/n =
n∑

i=1

(πi − 1/n)2 + 1/n

=
n∑

i=1

(
π2

i − 2πi/n + 1/n2
)

+ 1/n

= ‖π‖2 − 2/n + n/n2 + 1/n

= ‖π‖2

(c) Let R ⊆ V be any subset with |R| ≤ αn. And let ω be a distribution on V which

is uniform on R and zero elsewhere. By construction, we have it that |S(ωP )|
equals the size of R’s neighbourhood including R itself.

Let P be the transition matrix of the random walk, and we will have to assume

that G is regular, so that we know what is the stationary distribution π. Also

‖ · ‖ will denote the l2 norm.

As in lecture, let v1, . . . , vn be an orthonormal set of eigenvectors for P . Then let

ω =
∑n

i=1 βivi, and as noted in class π = β1v1, and λ1 = 1 (the first eigenvalue

of P ). Then we have that:
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1

|S(ωP )|
≤ ‖ωP‖2 from part (a)

= ‖ωP − π‖2 + 1/n from part (b)

= (λ1β1 − β1)
2 +

(
n∑

i=2

λiβi

)2

+ 1/n

≤ λ2

(
n∑

i=2

β2
i

)
+ 1/n

= λ2‖ω − π‖2 + 1/n

On the other hand, using that π is uniform due to G’s regularity, we also have:

|R| · ‖ω − π‖2 = |R|

(
|R|
(

1

|R|
− 1

n

)2

+
1

n2
(n− |R|)

)

= 1− |R|
n

Then we apply the above two inequalities to get a bound on the expansion of R:

A =
|S(ωP )|
|R|

≥ 1

|R| (λ2‖ω − π‖2 + 1/n)

=
1

|R|λ2‖ω − π‖2 + |R|/n

=
1

λ2(1− |R|/n) + |R|/n

≥ 1

λ2(1− α) + α

The last inequality follows from the fact that |R|/n ≤ α implies λ2(1− |R|/n) +

|R|/n ≤ λ2(1− α) + α since λ2 < 1.
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