Problem 1

(a) In the following arguments, the given equalities hold for all $i \in [n]$, and therefore the eigenvectors are the same:

- The i-th eigenvalue of αP is $\alpha \lambda_i$, since:
 \[(\alpha P)v_i = \alpha (Pv_i) = \alpha (\lambda_i v_i) = (\alpha \lambda_i) v_i \]

- The i-th eigenvalue of $P + I$ is $\lambda_i + 1$, since:
 \[(P + I)v_i = Pv_i + Iv_i = \lambda_i v_i + v_i = (\lambda_i + 1) v_i \]

- Inductively:
 \[P^k v_i = P(P^{k-1}v_i) = P\lambda_i^{k-1}v_i = \lambda_i^{k-1}(Pv_i) = \lambda_i^{k-1}\lambda_i v_i = \lambda_i^k v_i \]
 the i-th eigenvalue of P^k is λ_i^k.

- Applying the previous three results, it is straightforward that the i-the eigenvalue of $((P + I)/2)^k$ is:
 \[\left(\frac{\lambda_i + 1}{2} \right)^k \]

(b) Let A be row-stochastic with its row vectors being a_1, \ldots, a_n. and let v and λ
be an eigenvector and its eigenvalue. Denote the i-th entry of v by v_i. Then:

$$|\lambda||v||_1 = \|\lambda v\|_1$$

$$= \|vA\|_1$$

$$= \|v_1a_1 + \cdots + v_na_n\|_1$$

$$\leq \|v_1a_1\| + \cdots + \|v_na_n\|_1$$ (triangular inequality)

$$= |v_1||a_1||_1 + \cdots + |v_n||a_n||_1$$

$$= |v_1| + \cdots + |v_n|$$ (stochasticity)

$$= \|v||_1$$

And therefore $|\lambda| \leq 1$.

(c) If we let V be the matrix whose columns are the v_i’s, and α be a column vector consisting of the α_i’s, we get that $w = V\alpha$. Using that $V^TV = 1$ for orthonormal matrices:

$$\|w\|^2 = w^Tw = (V\alpha)^T(V\alpha) = \alpha^T(V^TV)\alpha = \alpha^T\alpha = \sum_{i=1}^{n} \alpha_i^2 = \|\alpha\|^2$$
Problem 2

For an arbitrary set R, let $\partial R = \{v \in V \mid \exists \ r \in R \land (r, v) \in E\}$. Let S_1 be an arbitrary subset of W_1 of size $n/2$. By definition, $|\partial S_1| \geq n/2 + \alpha n$, and therefore by the pigeonhole principle:

$$|\partial S_1 \cap W_2| \geq n/2 + \alpha n + n - \alpha n - n = n/2$$

Set S_2 to be an arbitrary subset of $\partial S_1 \cap W_2$ of size $n/2$ and repeat the above argument. Finally, the desired path is constructed backwards. Choose an arbitrary $v_k \in S_k$. Then by construction there exists at least one $v_{k-1} \in S_{k-1}$ such that $(v_{k-1}, v_k) \in E$. Continue in the same manner until all v_1, \ldots, v_k are chosen.
Problem 3

(a) Use Cauchy-Schwarz in the following form:

\[
\left(\sum_{i=1}^{n} a_i \right)^2 \leq n \left(\sum_{i=1}^{n} a_i^2 \right)
\]

To get:

\[
\| \pi \|^2 = \sum_{x \in S(\pi)} \pi_x^2 \geq \frac{1}{n} \left(\sum_{x \in S(\pi)} \pi_x \right)^2 = \frac{1}{n}
\]

(b) Simply:

\[
\| \pi - u \|^2 + 1/n = \sum_{i=1}^{n} (\pi_i - 1/n)^2 + 1/n
\]

\[
= \sum_{i=1}^{n} (\pi_i^2 - 2\pi_i/n + 1/n^2) + 1/n
\]

\[
= \| \pi \|^2 - 2/n + n/n^2 + 1/n
\]

\[
= \| \pi \|^2
\]

(c) Let \(R \subseteq V \) be any subset with \(|R| \leq \alpha n\). And let \(\omega \) be a distribution on \(V \) which is uniform on \(R \) and zero elsewhere. By construction, we have it that \(|S(\omega P)|\) equals the size of \(R \)'s neighbourhood including \(R \) itself.

Let \(P \) be the transition matrix of the random walk, and we will have to assume that \(G \) is regular, so that we know what is the stationary distribution \(\pi \). Also \(\| \cdot \|\) will denote the \(l_2 \) norm.

As in lecture, let \(v_1, \ldots, v_n \) be an orthonormal set of eigenvectors for \(P \). Then let \(\omega = \sum_{i=1}^{n} \beta_i v_i \), and as noted in class \(\pi = \beta_1 v_1 \), and \(\lambda_1 = 1 \) (the first eigenvalue of \(P \)). Then we have that:
\[
\frac{1}{|S(\omega P)|} \leq \|\omega P\|^2 \quad \text{from part (a)}
\]
\[
= \|\omega P - \pi\|^2 + 1/n \quad \text{from part (b)}
\]
\[
= (\lambda_1 \beta_1 - \beta_1)^2 + \left(\sum_{i=2}^{n} \lambda_i \beta_i \right)^2 + 1/n
\]
\[
\leq \lambda^2 \left(\sum_{i=2}^{n} \beta_i^2 \right) + 1/n
\]
\[
= \lambda^2 \|\omega - \pi\|^2 + 1/n
\]

On the other hand, using that \(\pi \) is uniform due to \(G \)'s regularity, we also have:
\[
|R| \cdot \|\omega - \pi\|^2 = |R| \left(|R| \left(\frac{1}{|R|} - \frac{1}{n} \right)^2 + \frac{1}{n} (n - |R|) \right)
\]
\[
= 1 - \frac{|R|}{n}
\]

Then we apply the above two inequalities to get a bound on the expansion of \(R \):
\[
A = \frac{|S(\omega P)|}{|R|}
\]
\[
\geq \frac{1}{|R| (\lambda^2 \|\omega - \pi\|^2 + 1/n)}
\]
\[
= \frac{1}{|R| \lambda^2 \|\omega - \pi\|^2 + |R|/n}
\]
\[
= \frac{1}{\lambda^2 (1 - |R|/n) + |R|/n}
\]
\[
\geq \frac{1}{\lambda^2 (1 - \alpha) + \alpha}
\]

The last inequality follows from the fact that \(|R|/n \leq \alpha \) implies \(\lambda^2 (1 - |R|/n) + |R|/n \leq \lambda^2 (1 - \alpha) + \alpha \) since \(\lambda^2 < 1 \).