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Problem Set 4 — Solutions

Problem 1

(a) In the following arguments, the given equalities hold for all i € [n], and therefore

the eigenvactors are the same:

e The i-th eigenvalue of aP is a)\;, since:
(aP)v; = a(Pv;) = a(Nv;) = (aX)v;
e The i-th eigenvalue of P+ I is A\; + 1, since:
(P + Iw; = Pu; + Tvr = \vi +v; = (A + D,
e Inductively:
Pru; = P(P*'u) = PXF oy = MY (Poy) = Mt o = Ay,

the i-th eigenvalue of P* is AF.

e Applying the previous three results, it is straightforward that the i-the
eigenvalue of ((P + I)/2)" is:
N+ 1\
2

(b) Let A be row-stochastic with its row vectors being as,...,a,. and let v and A




be an eigenvector and its eigenvalue. Denote the i-th entry of v by v;. Then:

[Alllvlly = [[Avlly
= [[vAllL
= |lvia1 + - - - + vpan
< |lviaq|| + - - - + [|vnan |1, (triangular inequality)
= |vlllaally 4+ - + [on]llanlls
= |v1] + -+ |vn|, (stochasticity)

= [[vllx
And therefore |A\| < 1.

(c) If we let V be the matrix whose columns are the v;’s, and a be a column vector
consisting of the a;’s, we get that w = V. Using that VTV = 1 for orthonormal
matrices:

|w|]* = w'w = (Va)' (Va) = o (VIV)a =ala = Zaf = [|laf?

=1



Problem 2

For an arbitrary set R, let OR = {v € V | 3r € RA (r,v) € E}. Let S; be an
arbitrary subset of W; of size n/2. By definition, |05:] > n/2 4+ an, and therefore
by the pigeonhole principle:

|0S1 N Wy >n/24+an+n—an—n=n/2

Set Sy to be an arbitrary subset of 95; N Wy of size n/2 and repeat the above
argument. Finally, the desired path is constructed backwards. Choose an arbitrary
v € Sp. Then by construction there exists at least one vy_; € Sip_; such that

(vk—1,vx) € E. Continue in the same manner until all vy, ..., v are chosen.
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Problem 3

(a) Use Cauchy-Schwarz in the following form:

(&) = (%)

To get:

(b) Simply:

|7 —u|®*+1/n = Z(m —1/n)*+1/n

i=1
= Z (77 —2m;/n+1/n) + 1/n
i=1

= H7rH2 —2/n+ n/n2 +1/n

= ||

(c) Let R C V be any subset with |R| < an. And let w be a distribution on V' which
is uniform on R and zero elsewhere. By construction, we have it that |S(wP)]

equals the size of R’s neighbourhood including R itself.

Let P be the transition matrix of the random walk, and we will have to assume
that G is regular, so that we know what is the stationary distribution 7. Also

| - || will denote the I norm.

As in lecture, let vq, ..., v, be an orthonormal set of eigenvectors for P. Then let
w = Z?Zl Biv;, and as noted in class m = vy, and \; = 1 (the first eigenvalue
of P). Then we have that:
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1

< ||wP]? from part (a)
|S(wP)]|

= |wP —7|*+1/n from part (b)
" 2

= (M =B+ (Z )\i@') +1/n
=2

< \? (Zﬁ?) +1/n

=2
= N|w—7|?+1/n
On the other hand, using that 7 is uniform due to G’s regularity, we also have:

T RO AN I
IR - |lw — |2 = |R| (w(,m ~) + =5 (n—I|R))
IRl

n

=1

Then we apply the above two inequalities to get a bound on the expansion of R:

_|SwP)

A
|R]

1

= TR (Vllw — a2 + 1/n)
1

~ [RPZw — 7|7+ |R|/n
1

~ X(1— [R|/n) + |Rl|/n

1
= M1l —-a)+a

The last inequality follows from the fact that |R|/n < a implies A2(1 — |R|/n) +
|R|/n < M1 — a) + a since A\? < 1.



