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Problem Set 3 – Solutions

Problem 1

Let the vertices of the line Ln be named 1, . . . , n. And let R(k) be the expected

number of random walk steps it takes to move from vertex k to vertex k + 1, for

1 ≤ k < n. We have that R(1) = 1, and:

R(k) =
1

2
+

1

2

(
1 + R(k − 1) + R(k)

)
Solving the recurrence yields R(k) = 2(k − 1) + 1.

Now, let’s devide the cover time of Ln starting from a vertex v into two phases.

Phase I starts at t = 0 and ends when the walk hits either end-point for the first

time. Phase II starts at the end of Phase I and continues until the other endpoint is

hit.

It is now easy to see that the durations of both phases are each stochastically domi-

nated by A, the time to hit vertex n, starting from vertex 1. The expected time to

do this is simply:

A =
n−1∑
k=1

R(k) = (n− 1)2

Therefore the cover time of Ln is O(n2). On the other hand, a lower bound on

the cover time is the expected duration of Phase II, which is exactly equal to A.

Therefore the cover time on Ln is in fact Θ(n2).
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Problem 2

Assuming that the 2-SAT formula on k clauses and n variables has a satisfying

assignment, we fix one such assignment δ. Consider a sequence of random variables

X1, X2, . . . , where Xt equals the number of variables for which the current assignment

agrees with δ.

On any given iteration we pick an unsatisfied clause. For any such clause, the as-

signment of at least one of the involved variables must disagree with δ. Therefore,

with probability at least 1/2 we have that Xt+1 = Xt + 1. Further, with probability

at most 1/2 we have that Xt+1 = Xt − 1. In the special event that Xt = 0, we have

that Pr[Xt+1 = Xt + 1|Xt = 0] = 1. We are interested in the expected value of the

first time τ for which Xτ = n.

This process is stochastically dominated by the process from the previous problem,

where we have a random walk on Ln starting from vertex 1, aiming to reach vertrex

n. We know that the expected time of this is Θ(n2).

This gives us probability at least 1/2 of reaching a satisfying assignment (if it exists).

Repeating the entire process 2 times (or equivalently running it for twice as many

steps) ensures that the probability of success is at least 3/4, as the probability of

failing on both tries is at most 1/4. Note that no restart is needed between the two

tries, because the bounds on cover times we use are derived for arbitrary starting

states.
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Problem 3

Part (a). Begin with n vertices labeled by [n], each with d (directed) outgoing

edges labeled by [d], such that the other end-point of each edge is not yet connected.

There are nd edges in total, and for each there are n possible connection points.

Therefore, there are nnd different directed graphs with out-degree d where both

vertices and edges are labeled (i.e. no isomorphisms exist). The number of such

graphs dominates the number of edge-labeled, undirected, d-regular graphs, therefore

nnd is an upper bound on the number of such graphs.

Part (b). For a fixed undirected, connected d-regular graph G, from lecture we

know that the cover time is at most 4|V ||E| = 4dn2 = c. Consider a random walk

(starting from an arbitrary vertex) for w steps, where w is a multiple of c. Treat

this walk as w/c disjoint random “sub-walks”. The probability that the random walk

does not cover the graph is upper-bounded by the probability that no sub-walk covers

the graph. The sub-walks are independent of each other, and according to lemma

from class each sub-walk covers the graph with probability at least 1/2. Therefore,

the probability that the graph is not covered is upper-bounded by the probability

that w/c fair coin tosses all turn heads, which is 2−w/c.

Let XG be an indicator random variable for the event that the walk does not cover

G. Set X =
∑

G XG, and observe that the event that the random walk is universal

is equivalent to the event X = 0. By linearity of expectation we have that E[X] ≤
ndn2−w/c. Therefore, if w > 4d2n3 log n, then E[X] < 1. Since X is integral, the

latter implies that there exists a universal traversal sequence of length 4d2n3 log n+1.
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Problem 4

This problem deals with investigating the lower and upper bounds on the coupling

time of two uncoordinated random walks on undirected, connected and non-bipartite

graph G. Where one walker starts from stationary (i.e. uniform on the vertices) and

one starts from an arbitrary state.

For an upper-bound on the lower-bound of the coupling time we give as an example

complete graph on n vertices with self-loops K∗
n. In this case the coupling time is

exactly equal to n, because at each step the two walkers have probability 1/n of

meeting.

For a (generous) upper-bound, consider a random walk on the product graph G×G,

where the walk on the left-side follows the walk on G from stationary, and the walk

on the right side follows the walk on G from a fixed arbitrary state. The transition

probabilities of this walk on G×G are exactly uniform across all incident edges for

any vertex v ∈ V (G× G). Furthermore, the graph is undirected, non-bipartite and

d2-regular. Therefore, tracking the two random walks on G is the same as taking a

random walk on G×G.

The two random walks on G meet whenever the walk on G × G hits a vertex of

the form (v, v) ∈ G × G. The expected time until the latter happens is upper-

bounded by the cover time on G × G, which (as shown in class) is no larger than

4|V (G×G)||E(G×G)| = 4n4d2.
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Problem 5

M is connected because starting from any card ordering j1, j2, . . . , j52 we can get

to any ordering i1, i2, . . . , i52 by applying the Markov transition on the sequence of

cards i52, i51, . . . , i1.

Consider the following coordinator strategy. Pick a random card by its suit and rank

(not by its index in the deck). Apply the Markov transition using this card on both

decks. Clearly, each deck individually moves along the Markov chain.

After each card has been touched once, the two decks have identical configurations.

According to the Coupon collector’s problem, this happens on average (and with

tight concentration) after O(n ln n) steps.
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