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Problem Set 1 – Solutions

Problem 1

Our approximation scheme B will run A (with precision ε) as a black box 2k + 1

times and will output the median of A’s answers. If at most k of A’s answers are

imprecise, B will output a correct value, because in that event the median is forced

to lie in [f(x)/(1 + ε), f(x)(1 + ε)].

Let Xi be the indicator that the i-th call to A produces an imprecise answer, and

set X =
∑2k+1

i=1 Xi. Then the probability that B outputs an imprecise value is

δ = Pr[X > k].

We have that µ = E[X] ≤ k/2 + 1/4. Set η = 3/4, and apply the Chernoff bound

Pr[X > (1 + η)µ] ≤ exp(−η2µ/3) to get that:

δ ≤ exp(−3k/32)

Solving for k yields that k ≥ 11 ln(1/δ). Therefore B requires 2k +1 = 22 ln(1/δ)+1

invocations of A, which gives us runtime O
(
(1/ε)|x| ln(1/δ)

)
.

We cannot produce an ε-approximation scheme that runs in O(log 1/ε) time, because

the runtime dependence on ε is blackbox and for any B-schemeA can be adversarially

chosen to subvert B’s proper function.
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Problem 2

Let ai denote the i-th row of A, let Bj denote the j-th column of B, and let cij denote

the (i, j)-th element of C. Our goal is to verify that aiBj = cij for all i, j ∈ [n].

Generate a random (1×n)-dimensional 0/1-matrix R and test whether RAB = RC.

Repeat 2 times, and output “pass” if both times succeed, “fail” otherwise.

Compute RAB as ((RA)B) in O(n2); RC also takes O(n2) time.

If C = AB the algorithm will output “pass”. Otherwise, let j be a column in C

within which there are one or more entries cij 6= aiBj. Since we are working in Z2,

if R has non-zero entries at an odd number of indices corresponding to errors in C,

then RAB 6= RC and the errors will be noticed.

Let i be the index of some particular error in the j-th column Cj of C. Depending

on the choice of value of R’s entries in non-j locations, either a choice of 0 or 1 at the

j-th location will ensure that the above condition is met. Either way this happens

with probability 1/2.

Therefore one iteration of this routine captures an error with probability 1/2. Hence,

two iterations will not omit an error with probability 3/4.
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Problem 3

Let Xc be the indicator that clause c is not satisfied under a random assignemnt of

all involved variables. We have that E[Xc] = Pr[Xc = 1] = (1/2)3 = 1/8, since there

is a unique assignment of the involved variables that doesn’t satisfy c.

Let X =
∑

c Xc, then E[X] = m/8 (using linearity of expectation), where m is the

number of clauses. Applying Markov, we get Pr[X > m/8] < 1, therefore there exist

some assignment which satisfies at least 7m/8 of the clauses.
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Problem 4

We are trying to calculate:

R(t) = min
n

(∀ coloring ∃ mono subset)

= min
n

¬¬(∀ coloring ∃ mono subset)

= min
n

¬(∃ coloring ∀ subset non-mono)

= max
n

(∃ coloring ∀ subset non-mono)

Let n and t be parameters. Pick a random coloring. Let Xs be the indicator that a

subset s ⊆ V (Kn) of size t is monochromatic. We have that E[Xs] = Pr[Xs = 1] =

21−(t
2). Let X =

∑
s Xs, and by linearity of expectation E[X] =

(
n
t

)
21−(t

2).

When E[X] < 1 we must have that Pr[X 6= 0] > 0, since by Markov’s inequality

Pr[X ≥ 1] < 1 and X is integral. Therefore we conclude that when
(

n
t

)
21−(t

2) < 1

there exists a coloring for which all t-subsets of Kn are non-monochromatic. Even-

tually:

R(t) ≥ max

{
n
∣∣∣(n

t

)
21−(t

2) < 1

}
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Problem 5

Part I. Define x ∈ S to be “bad” if the collection of subsets that contains x and

the collection of subsets that don’t contain x have the same minimum weight subset.

First, we show that there are no bad elements if and only if there is a unique minimum

weight subset. Suppose, there is a unique minimum weight subset. Then there

couldn’t be a bad element x because that would imply that there are at least two

equally weighted minimum weight subsets. Alternatively, suppose there is no unique

minimum weight subset. Let S1 and S2 be two different min-weight subsets, and

w.l.o.g. let x be such that x ∈ S1 and x 6∈ S2, then x is bad.

Let Xx be the indicator that x is bad. Let w(T ) for T ⊆ S be the weight of T . Let

Ui be the subsets containging x, and let Wj be the subsets not containing x. Then:

Pr[x bad] = Pr
[
w(x) + min {w(Ui)} = min {w(Wj)}

]
= Pr

[
w(x) = min {w(Wj)} −min {w(Ui)}

]
≤ 1/(2m)

Note that A = w(x) and B = min {w(Wj)}−min {w(Ui)} are independent random

variables, and hence Pr[A = B] ≤ 1/(2m) since at most one value of A hits B.

Consequently, E[Xx] = 1/(2m). Set X =
∑

x Xx and observe that E[X] = 1/2. Since

X is integral, Markov implies that with probability at least 1/2 we have X = 0.

Part II. We proceed with the following setup. As mentioned in class, the Tutte

matrix A of the input graph has non-zero variable entries xij for each edge (i, j).

When there is a bipartite matching det(A) is a non-zero polynomial.

Let us randomly assign xij = 2wij , where wij are drawn uniformly from

{0, . . . , 2n2 − 1}. And in accordance with the above lemma, let S be the set of

all (i, j) pairs that represent an edge, and let {Sα} be a collection of subsets of edges

that correspond to perfect matchings.
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In the event that there is a minimal weight subset in {Sα} (where the weight of (i, j) ∈
S is wij) the determinant’s term corresponding to that subset’s perfect matching has

a value that is 2−w times smaller, for w ≥ 1, than any other term in the determinant.

Therefore, it cannot be canceled out by any other term and therefore the determinant

is non-zero. Furthermore (for the same reason), the quantity tij = det(Bij)2
wij/2w

is non-zero for any edge involved in the minimum weight perfect matching.

Alternatively, it is obvious that tij = 0 for all edges that are not involved in perfect

matchings, because they are not involved in non-zero terms of the determinant of A.

To distinguish the edges of the minimum weight matching from the edges of other

matchings, we need to show that tij is odd if and only if (i, j) belongs to the minimum

weight matching. By construction, the determinant’s term corresponding to the

minimum weight matching will have absolute value exactly equal to 2w, where w is

the largest power of 2 that divides det(A).

Therefore, for every edge (i, j) which belongs to a perfect matching, the quantity tij

can be written as:

tij =

(∑
β

∏
e∈β

2we

)
1

2w

=
∑

β

∏
e∈β

2we−w

where β iterates over all matchings that involve (i, j). Note that the above quantity

is odd if and only if (i, j) is involved in the minimum weight matching. In that event

precisely one of the summation terms equals 1 and the remaining ones are powers of

2.

The above line of reasoning holds true when {Sα} has a minimum weight subset,

which happens at least half of the time as proven in the above lemma. To pre-

vent incorrect output, at the end we check that the produced edges form a perfect

matching indeed.
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