
6.854 Advanced Algorithms Petar Maymounkov

Problem Set 3 (September 27, 2005)

With: Benjamin Rossman, Oren Weimann, and Pouya Kheradpour

Problem 1. In addition to Q.min, Q.high, and Q.low[], we augment the

VeB structure with Q.cmax. Where unlike Q.min, Q.cmax simply keeps a

copy of the maximum element, but the maximum element itself is stored in

the unaugmented part of the structure as usual.

Due to our design choice for Q.cmax, insert and delete-min are only triv-

ially modified:

insert(x,Q):

1. If Q is empty, set Q.cmax := x, proceed with usual insert,

2. Else if, x > Q.max, set Q.cmax := x, proceed with usual insert,

3. Else, proceed with usual insert.

This is adding 1 extra step per level, on the running time of insert which

touches log b levels, therefore total running time rmains O(log b).

delete-min(Q):

1. Call usual delete-min(Q) (which internally recurses with the aug-

mented delete-min), it returns element x.

2. If x was the last element, i.e. x = Q.cmax, reset Q.cmax := NULL,

3. Return x.

3-1



Problem Set 3 (September 27, 2005) Petar Maymounkov

Same running time argument as above.

find(x,Q):

if Q.min = x

return x

else if Q.low[x_h] not empty

return find(x_l,Q.low[x_h])

else

return NULL

Running time is T (b) = 1 + T (b/2) = O(log b).

successor(x,Q):

if Q.min = x

y_h := Q.high.min

y_l := Q.low[y_h].min

return (y_h,y_l)

else if (y_l := successor(x_l, Q.low[x_h])) != NULL

return (x_h,y_l)

else

y_h = successor (x_h, Q.high)

return (y_h, Q.low[y_h].min)

Running time is T (b) = 1 + T (b/2) = O(log b).

predecessor(x,Q):

if x = Q.min

return NULL

3-2



Problem Set 3 (September 27, 2005) Petar Maymounkov

else if (y_l := predecessor(x_l, Q.low[x_h])) != NULL

return (x_h,y_l)

else

y_h = predecessor(x_h,Q.high)

return (y_h, Q.low[y_h].cmax)

Running time is T (b) = 1 + T (b/2) = O(log b).

Finally, we argue that the space of the augmented VeB is still ...

Problem 2. Note that VeBs support a regular delete operation for exist-

ing elements:

delete(x,Q):

if x = Q.min

delete-min(x,Q)

else

delete(x_l,Q.low[x_h])

if Q.low[x_h] empty

delete(x_h,Q.high)

Note that this operation still takes time O(log log b) because if we fall in the

scenario where the two delete’s are called, one of them is constant time. We

are going to need the delete operation in order to implement decrease-key.

Initialize an array of n VeB’s on {1, . . . , C} each. Keep a pointer to the first

non-empty VeB.

3-3



Problem Set 3 (September 27, 2005) Petar Maymounkov

To insert an x ∈ {1, . . . , nC}, let x0 be the integer formed by the high order

log n bits of x, and let x1 be the integer formed by the remaining low order

log C bits of x. Then insert x1 into the x0-th VeB.

To decrease-key x to y, first, delete x1 from the x0-th VeB and insert y1

into the y0-th VeB.

To delete-min, run delete-min on the VeB at the current pointer location,

and if it is empty increase the pointer to point to the next VeB, and try

again.

Observe that due to Dijkstra’s monotone queue access, at most two conse-

quetive VeBs in the array can ever be non-empty. Since we are keeping a

pointer to the lower one at all times, the worst time delete-min could take

is O(log log C).

All of the above queue operations now run in O(log log C) time. Finally, as

a matter of space optimization, we can use a wrap-around array of only 2

VeBs, instead of n.

Problem 3a. We begin be listing all real costs:

1. Insert:

1A. Traverse down until hit blob or heap

1B. Occasionaly need to insert into heap

2. Decrease-key:

2A. Travel some number of nodes down

2B. May have to insert in heap, if hit a heap instead of blob

2C. May have to do a heap decrease-key, if already in heap

3-4



Problem Set 3 (September 27, 2005) Petar Maymounkov

3. Delete-min:

3A. Do delete-min from heap that contains minimum

3B. Scan up tree nodes to find next minimum

3C. Occasionally, have to make heap from blob (time linear in size of blob)

Now we match up all real costs with their potential counterparts.

The insert operation takes amortized O(k+k∆/t+I(t)): k accounts for 1A,

2A, and 3C; k∆/t accounts for 3B, because when each of t nodes deposits

∆/t potential at a node, the node has ∆ potential for a scan during 3B; and

I(t) accounts for 1B.

The decrease-key operation takes amortized O(D(t)+ I(t)): D(t) accounts

for 2C; I(t) accounts for 2B.

The delete-min operation takes amortized O(X(t)), which accounts for 3A.

The so described matching between charged (amortized) costs for operations

and real costs fully covers the algorithm, which proves the claim.

Problem 3b. Substituting k =
√

log C, t = 2
√

logC , ∆ = C1/
√

log C , I(t) =

O(1), D(t) = O(1), and X(t) = O(log t) we get:

Delete-min: O(X(t)) = O(log 2
√

log C) = O(
√

log C)

Decrease-key: O(D(t) + I(t) = O(1)

Increase: O(k + k∆/t + I(t)) = O

(√
log C +

√
log C

C1/
√

log C

2
√

log C
+ 1

)
= O(

√
log C)

Therefore, we get Dijkstra’s running time to be O(m + n
√

log C).

3-5



Problem Set 3 (September 27, 2005) Petar Maymounkov

Problem 4a. Let Xij be the indicator random variable that the i-th in-

serted item collides with the j-th inserted item (j < i), where:

Pr[Xij = 1] 5
1

n1.5

l

n1.5
+

1

n1.5

i− l

n1.5
=

i

n3

This is the union bound of: (a) h1(xi) = h1(xj) and h2(xi) hitting an allo-

cated spot, and (b) h2(xi) = h2(xj) and h1(xi) hitting an allocated spot.

Expected total number of collisions is now:

E

[
n∑

i=1

i−1∑
j=1

Xi,j

]
=

n∑
i=1

i−1∑
j=1

E [Xi,j]

=
n∑

i=1

i−1∑
j=1

i

n3

5
n∑

i=1

i2

n3

n→ 1

3

Problem 4b. Let’s look at the terms comprising Pr[Xij = 1] above: (a)

1/n1.5 uses that i and j are pairwise independent, and (b) l/n1.5 is a union

bound of l copies of 1/n1.5 which themselves assume only pairwise indepen-

dence.

Note that it is also required that the two hash functions used are independent

from each other, otherwise we wouldn’t be able to multiply 1/n1.5 by l/n1.5

e.g. above.

Therefore all we need is two independent hash functions that are each pair-

wise independant.

Problem 4c. Using Markov’s inequality (or just the definition of expec-

tation), with 1/2 probability, we get a pair of randomly selected pairwise

3-6



Problem Set 3 (September 27, 2005) Petar Maymounkov

independant hash functions to produce no collisions. Therefore, we have to

re-attempt to generate new hash functions expected 2 times until we get a

perfect pair. Since the time for each attempt is O(n), the expected running

total running time is still O(n).

Each hash function is described by 2 2-word seeds, therefore we need 8 words

in total to describe both hash functions.

3-7


