
6.854j – Problem Set 2 Petar Maymounkov

Petar Maymounkov

6.854J – Advanced Algorithms, Problem Set 2

With: Benjamin Rossman, Oren Weimann, and Pouya Kheradpour

Problem 1. Use a regular splay tree where each node keeps three extra

variables:

1. left-count: The number of descendants of its left child (including the

child itself),

2. right-count: The number of descendants of its right child (including the

child itself), and

3. invert-bit: If this bit is set, the direction of each edge (left or right) in

the subtree of this node is interpreted as switched. A descendant node

(lower in that subtree) can switch the edge direction back by setting

its invert-bit to 1, and so forth.

Before a splay operation on nodes x, y and z, and subtrees A, B, C, and

D (using the standard notation) takes place, we normalize the invert-bits

as follows. The invert-bits of x, y and z are set to 0, and their edges are

switched accordingly to represent the corrrect direction. Additionally, the

invert-bits of A, B, C and D are set accordingly to reflect the inherited (from

their parents) edge direction inversion, combined with their own (via XOR).

Then the splay operation can proceed as usual, without further regard of the

invert-bits.

Splay operations also have to update the left/right-counts of x, y and z after

splaying, in the straightforward way. Note that “right-count”s are not neces-

1

6.854j – Problem Set 2 Petar Maymounkov

sary for this step as they can be solved for during a splay operation, however

they will be necessary for reversal later on.

Split works as usual, except that the root of one of the subtrees has to

inherit inversion from its past parent by XORing its parent’s invert-bit into

its own invert-bit. left-counts should also be updated accordingly. Join works

similarly in the reverse way.

To access(k), start from the root t. If left-count(t) = k, go to left child

and recursively do access(k) there, else go to right child and do access(k -

left-count(t)). Finally, splay up as described above.

To insert(k, x), split the tree between k-th and k + 1-st node, attach x as

the root of the 1, . . . , k-tree via one left edge, set x’s left-count to k, and set

its invert-bit to 0. Then join the two trees.

To reverse(i, j), split the splay tree into three trees: 1, . . . , i−1, and i, . . . , j,

and j + 1, . . . , n. Flip the invert-bit of the middle tree, then join all three

trees back together. (Note that this is where the right-counts are necessary,

because they switch their meaning with the left-counts.)

All three update operations run in amortized O(log n) time, because we need

no changes in the original splay analysis. We have only added a constant

time of bookkeeping operations (for the left-count and invert-bit fields) per

splay operation.

Problem 2. We are given a work and a target tree, both with identical

sets of items and different shapes. The goal is to apply find/splay operations

on the work tree until we bring it into a shape identical to the target tree.

2

6.854j – Problem Set 2 Petar Maymounkov

Begin with the following:

Claim 1 For any tree with n = 4 nodes, we can turn any tree node into a

leaf, by a sequence of find/splay operations on selected nodes.

Proof: Prove by induction. Inductive step: assume claim is true for tree with

n− 1 nodes. Start with a tree of n nodes and pick an any element x. If x is

leaf, we are done. Otherwise, pick any leaf y below x and delete it (mentally,

for the moment). Then apply the inductive hypothesis. Now, if we hadn’t

deleted y, after the application of the inductive hypothesis x will either be a

leaf (in which case done), or it will have one child: y.

Since x is now certainly not a root, there are two possible shapes (not count-

ing their symmetric equivalents) for x, x’s parent u, and y (edges listed in

bottom-up order): y → x→ u or y ← x→ u.

The latter case is easy: splaying y will begin with a zig-zag step, which will

leave x as a leaf.

In the former case, y → x→ u, we start by making sure that u has a parent

g (x’s grandparent). If it doesn’t, then u is root and it must have a child g

different than x. We splay g, and it becomes a parent of u and a grandparent

of x.

Next splay y. This begins with a zig-zig step, which produces u ← x ← y.

Now, regardless of what is the next splay step for y (and there is one, because

u has a parent g), it will leave x and u in the following configuration: u ←
x → z (for some z coming from above). Which means that once y is fully

splayed, and we apply the splay operation to u, the very first step will be

zig-zag, and it will leave x as a leaf. This proves the inductive step.

Finally, we need to show that the base case n = 4 indeed holds. This is

3

6.854j – Problem Set 2 Petar Maymounkov

demonstarted by an exhaustive list of all possibilities (28 in count: 7 possible

tree shapes not couting symmetries, 4 nodes in each), which we omit for

brevity. �

Call the operation described above sink(x). Let deactivating a node y mean

that y and its descendants cannot be splayed during a sink(x) operation.

Then the above claim still holds, but it ensures that x sinks to the bottom of

the tree in the sense that there can only be deactivated nodes below it. The

proof of the claim remains unchanged if we just pretend that the deactivated

nodes are simply not present in the tree during the sink operation.

Our reshaping algorithm will go as follows. Introduce the operation mark on

the data items, which marks (via a bit field) the tree nodes corresponding to

that item both in the work and in the target trees. A an item is markable

only if its corresponding node in the target tree: (a) is a leaf, or (b) all of its

children are already marked.

By the definition of mark, marked nodes in the target tree form subtrees that

are entirely marked. We will ensure that the same invariant holds for the

working tree.

To bring the work tree into the shape of the target tree, recursively do: Pick

a markable item x, deactivate all marked items in the working tree, and do

sink(x). Then mark x itself. Repeat until no unmarked items remain.

To show correctness, prove by induction that every marked substree in the

target tree has an identical correspondent in the work tree. The base step

is when we mark the first item. This case holds trivially. Now, assume the

hypothesis holds true, and we are about to execute another iteration of the

algorithm.

First note that all marked subtrees in the work and target trees can be treated

4

6.854j – Problem Set 2 Petar Maymounkov

as single nodes, as no operations ever change their internal shapes. Therefore,

we can assume we are in the case where both trees have an identical (item-

wise) subset of leaves marked.

If the item x of the next iteration is also a leave (in the target tree) than it

couldn’t end up as a parent of marked (deactivated) nodes in the work tree,

because that would violate the ordering of the marked items. For the same

reasons, if it is a parent of two marked nodes, the corresponding marked

nodes in the work tree must end up below it.

Each time a node is marked (and hence deactivated during iteration) the size

of the tree on which the sink operation is performed shrinks. At some point

it will shrink to 4 nodes. At this point, instead of applying our iteration

procedure we use an explicit recipe for reshaping any tree of size 4 into any

other such tree. We omit the recipe for the case 4 for the sake of brevity. It

can easily be derived by playing with splay demo applications on the web.

Problem 3a. An item x of frequency p must be at most the i-th in order,

where i = 1 + (1 − p)/p = 1/p, because all items ahead of it must be of

frequency at least p. Generally, an item of order i appears (for the first

time) in Sk, where k = log log i. Also, the access time Ak for items in Sk is

log |S0|+ · · ·+ log |Sk| = 20 + · · ·+ 2k = 2k+1− 1. Hence, the access time for

an item of frequency p is 2log log i+1 − 1 = O(2log log i) = O(log 1/p). Therfore

the total access time is O(m
∑

px log 1/px), where m is the total number of

accesses.

Problem 3b. Augment each Sk with a binary search tree Bk which contains

all items in Sk that don’t appear in Sk−1, keyed by their declared search count.

5

6.854j – Problem Set 2 Petar Maymounkov

Begin with an empty S0, and a counter m for the total number of searches

to be performed. Maintain invariant that for every item x with access count

ax, x is to be found in at least Sk, Sk+1, . . . where k = log log m/cx.

To maintain invariant, each time an item x is inserted, compute k and insert

x in Sk, Sk+1, If any Si overflows, remove that item from Si which has

the smallest declared access count. (Find that item using Bi.) If Si the last

item in the tree collection, create the next tree Si+1 and insert all items from

Si into Si+1 as well the item from Si that had the smallest access count and

was removed from Si. Update the Bi’s accordingly: note that operations on

Bi take the same time as operations on Si.

Insert operations take O(log n) time except for when the last tree overflows.

The cost for overflowing (and copying) a tree of size n is O(n log n). This cost

is prepaied ahead of time (in the form of potential) by items inserted since the

last overflow. The number of items since the last overflow is n−
√

n, hence

each of them has to prepay O(log n) in potential. Therefore the amortized

running time of insert is O(log n).

By construction, items appear in trees in their exact ascending order, there-

fore (using the result from part 3a), the access time is statically optimal.

Problem 3c. Given a data structure of the kind used in this problem,

augment it by attaching a doubly linked list Lk to each Sk. Lk lists all items

x in Sk for which Sk is the smallest tree they belong to. The items in Lk will

be ordered chronologically, i.e. they are appended at the front every time

they are inserted.

Given an arbitrarily, but fully (all subtrees are full except for maybe the last

one), populated version of the data structure, define the access operation as

follows.

6

6.854j – Problem Set 2 Petar Maymounkov

To access item x, look for it in S0, S1, . . . until you find it in Sk, takes time

O(2k). Insert x in each of S0, . . . , Sk−1 while removing the least recently

added item from the corresponding trees (find that item using the chrono-

logical linked lists), in order to preserve the sizes of all trees, also done in

O(2k). Update L0, L1, . . . , Lk accordingly in O(log log k) time. Access and

restructuring completes in total time O(2k).

Now consider the sequence A of m access operations and examine the average

access time for some fixed element x with frequency px. The total number of

accesses to x is ax = pxm. Name them t1, . . . , tax . Let s1 be the number of

access operation in A before t1, let s1 be the number of access operations in

A between t1 and t2, let s2 be the number of access operations in A between

t2 and t3, and so forth.

Due to our access algorithm, just before the i-th access, x will be located in

Slog log si
, and hence the access time of the i-th access will be O(log si) (see

part 3a), and therefore the total access time for item x will be:

Tx =
ax∑
i=1

log si, subject to
ax∑
i=1

si 5 m

Technically speaking, the access time for the first access should be counted

as O(log n) because before the first access x might be in the largest subtree.

However, static optimality analysis is only interesting in the case when n is

fixed and m is asymptotic, therefore, we can safely regard the time for the

first access to x as log si without influencing the order of the running time.

We want to pick the worst case configuration of s1, . . . , sax so we can compute

the maximum possible Tx. Due to the concavity of the log-function, this is

achieved when:

s1 = · · · = sax = m/ax = 1/px

7

6.854j – Problem Set 2 Petar Maymounkov

And hence, the worst case total access time for x is:

Tx = mpx log 1/px

Therefore the average running time for access to x is O(px log 1/px).

(page over)

8

6.854j – Problem Set 2 Petar Maymounkov

Problem 4a. The insertion of the first 4 suffices is regular and it doesn’t

use any suffix links. The insertion of the 5-th and 6-th suffices is indicated

with dotted lines below.

$

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h h

h

h

L
L
L
L

L
L
L
L

@
@

@

b

a

n

a

n

a

$ $

a

n

a

n

a

n

a

n

a

$

$ $

$

1 2 3

4

5

6

h

(page over)

9

6.854j – Problem Set 2 Petar Maymounkov

Problem 4b. As noted in class, suffix links are not placed on leaf nodes:

$

h
h
h

h h

h

h h
h

h
�

�
�

�
�

�
�

�
�

�
�

�
�

\
\
\
\

�
�

�

PPPPP

A
A
A
A

!!!!!

banana$

na

na$

a

na

$

$
na$

$

1
6

4 2

5

3

h

Problem 5a. Denote by ki the number of characters in Ti. We begin with

a regular empty compressed suffix tree structure. And we first preprocess T1

in the standard way.

Once we are done with T1, we move the pointer back to the root of the suffix

tree, and proceed to preprocess T2 using the same suffix tree, but we force

s2,1, the first suffix of T2 (i.e. the entire T2 itself), to be inserted using a

slowfind.

This takes O(k2) steps (in the worst case), but it is only done once so we

are fine. This special step ensures that the insertion of s2,1 doesn’t violate

the branching properties of the suffix tree. Once s2,1 has been inserted, the

rest of T2’s preprocessing can take advantage of the pre-exisiting suffix links.

And the runtime analysis for one tree holds unchanged.

10

6.854j – Problem Set 2 Petar Maymounkov

Repeat this procedure for the rest T3, . . . , Tn. By construction, the running

time is then O(k1 + k2 + · · ·+ kn).

Problem 5b. We perform a depth-first search on the subtree of N , and

keep track of which kinds of $i symbols we encounter on the way. If we

encounter each kind at least once, this implies that the substring of N is to

be found in all subtrees.

Problem 5c. Let each node in the common compressed suffix tree contain

two mark bits m1 and m2, initially set to 0. Traverse the tree in post-

order, and at each node flip the mi bit to “1”, if the node corresponds to a

terminating character of type $i, or if either of its children has their mi bit

set.

By construction, a node’s mi bit is set if the substring (from root to node) of

that node is present in Ti. Finally, we perform another depth-first traversal

of the tree, which keeps track of the deepest node it encounters that has both

of its mark bits set. That node corresponds to a maximal common substring.

We are done in O(|T1|+ |T2|).

11

