
6.854 Advanced Algorithms Petar Maymounkov

Problem Set 10 (November 16, 2005)

With: Benjamin Rossman, Oren Weimann, and Pouya Kheradpour

Problem 1a. We assume (since it is not made explicit in the problem statement) that

we are given an undirected graph, annotated with edge capacities. (The directed case is

identical, and slightly easier.)

Let uij = uji be the capacity of edge ij. And let sk and tk be the source and sink, respectively,

for the kth demand pair. Also, let fij be the indicator that we are sending flow of value 1

from i to j. We must always have that fij + fji 5 1.

Our ILP constraints aim at finding a flow path of value 1 between sk and tk (for all k). This

is equivalent to finding a circulation of value 1 that goes through sk and tk in a modified

graph G′, where u′
sktk

= usktk + 1 for all k (the other capacites are unmodified), and force

fsktk = 0 and ftksk
= 1.

The program (applied to G′) is then:

fk
ij ∈ {0, 1}, ∀i 6= j

fsktk = 0, ∀k
ftksk

= 1, ∀k
fk

ij + fk
ji 5 1, ∀i < j∑

k

(fk
ij + fk

ji) 5 u′
ij, ∀i < j∑

j

(fk
ij − fk

ji) = 0, ∀k

Additionally, if we add the objective min
∑

fk
ij we will ensure that no cycles are created.

Problem 1b. Relax the ILP to LP. The constraints on fk
ij for a fixed k ensure that it defines

a valid circulation. After removing the forced part of the flow ftksk
= 1, the circulation turns

into a flow of value 1 from sk to tk.

10-1

This flow can be broken up into flow paths (and cycle that we ignore) of total flow value

1. This can be done in polynomial time using an algorithm studied early in the semester.

In particular, we do a DFS from sk along the flow edges fk
ij until we reach tk. Then we

subtract the traversed flow path, by subtracting the value of the minimum flow edge on that

path from all edges on the path. This certainly removes at least 1 edge from the flow of

k. We apply this procedure at most m times to end up with a list of all flow paths. If the

DFS search self-intersects, we subtract the resulting cycle (and throw it away). We need at

most n2 (maximum number of edges) iterations of DFS, each of at most O(n2) steps (edge

traversals). So total runtime to read flow paths for a demand pair k is O(n4). There are at

most n2 demand pairs, so total runtime to read all flow paths for all demand pairs is O(n6).

Problem 1c. For each demand pair, consider all fractional flow paths with respective flows

pk
1+· · ·+pk

m = 1. (There are at most m, the number of edges, flow paths, and each is assigned

flwo value pk
i .) Choose a random one of them, using the distribution (p1, . . . , pm), and send

the entire unit flow through it.

Consider a fixed edge ij, and let Xk be the indicator random variable that demand pair k

sends all of its unit flow through this edge. Xk is 1 with probability qk = fk
ij + fk

ji. Note that

since paths have no cycles, a path cannot go through the same edge twice.

The total number of paths that end up going through ij is
∑

k Xk. Since by the linear

program
∑

k qk 5 1, we have E [
∑

k Xk] 5 1. Apply the Chernoff bound from class, where

(1 + ε)µ = 3 log n, to get:

Pr

[∑
k

Xk = 3 log n

]
5 2−3 log n = 1/n3

So any fixed edge carries more than 3 log n paths with probability at most 1/n3. Then apply

a union bound to get an upper bound on the probability that there exists any edge that

carries more than 3 log n paths. This happens with probability no more than n2(1/n3) = 1/n.

Therefreo, by Markov inequality, in expected 1 try (of the random path selection procedure),

we will get a wiring that doesn’t violate this condition.

Problem 1d. If a solution exists where every edge carries at most w paths, then the

smallest edge capacity is more than w. Hence, we assume that all edges have capacity w

10-2

and apply the LP relaxation from above.

The analysis is much the same, but this time we have
∑

k qk 5 w, and hence E [
∑

k Xk] 5 w.

Applying the Chernoff bound with (1 + ε)µ = w + 3
√

w log n, we get:

Pr

[∑
k

Xk = w + 3
√

w log n

]
5

1

2w

1

n3
√

w/ log n

When w = log n, the same union bound applies (as before), and hence we get that each edge

carries no more than w + 3
√

w log n wires.

When w < log n we need a different analysis. We have
∑

k qk 5 w, hence E [
∑

k Xk] 5 w.

Apply Chernoff with (1 + ε)µ = w + 3 log n:

Pr

[∑
k

Xk = w + 3 log n

]
5 2−w−3 log n = 1/(2wn3)

The union bound applies, and hence we get that no edge carries more than w + O(log n)

wires.

Problem 2a. Let n be the number of underlying points, and m the number of sets. If

there is a basis of size k, there are at most 2k different unions of the basis sets, therefore,

m 5 2k.

Problem 2b. Let B1, . . . , Bk be a basis, and let x and y appear in the exact same sets Ci.

First, we prove that if we remove x from all Ci’s where it is included and call the new sets

C ′
i, the new instance of the set basis problem has a basis of size k. The new basis will be

B′
i = Bi if x 6∈ Bi, and B′

j = Bj \ x if x ∈ Bj. We do this in two steps. For Ci 3 x. If

Ci = Bi1 ∪· · ·∪Bip , then Ci \x = B′
i1
∪· · ·∪B′

ip . Similarly, for Ci 63 x, if Ci = Bi1 ∪· · ·∪Bip ,

then Ci = Bi1 ∪ · · · ∪Bip = B′
i1
∪ · · · ∪B′

ip .

Next, we show that the set basis problem C ′
1, . . . , C

′
m has no basis smaller than k. Assume

otherwise, then there is a basis D′
1, . . . , D

′
l, where l < k. Consider the basis D1, . . . , Dl for

the original problem, where Di = D′
i if y 6∈ D′

i, and Di = D′
i ∪ x if y ∈ D′

y. Then we have

10-3

that C ′
i = D′

i1
∪ · · · ∪D′

ip ⇒ Ci = Di1 ∪ · · · ∪Dip . Hence, we have exhibited a basis smaller

than k for the original problem – contradiction.

Problem 2c. We identify and remove all pairs that have the property discussed in part

2b. There are n2 candidates and it takes O(n) time to check that a pair is such. Therefore

the removal procedure can be run in O(n3) time.

The new problem instance C ′
1, . . . , C

′
m has it that m 5 2k as shown in part 2a. But addi-

tionally, the number of points n′ in the new problem instance has it that n′ 5 22k
. Assume

not. Define a mapping:

F (x) :
⋃

C ′
i −→ ℘ ({C ′

1, . . . , C
′
m})

which maps every element x to the collection of sets that contain it. The domain of F is the

point set of the new problem instance, which we conjectured to be > 22k
. The range of F

is the set of all possible collections of sets from {C ′
1, . . . , C

′
m}, which has a total size 5 22k

.

By the pigeon-hole principle, there must exist two elements x and y that get mapped to the

exact same collection of sets. And by the definition of F it follows that x and y are to be

found in the exact same sets – contradiction.

We have reduced the original problem to a kernel problem on at most 22k
points and 2k sets.

Therefore, the original problem is fixed parameter tractable.

Problem 3. Begin with a MAX-SAT instance, comprising a collection of disjunctive

clauses. Cast the problem in more general light, where each clause is an arbitrary

(polynomial-time evaluatable boolean formula) with a weight, and the goal is to maximize

the total weight of the satisfied clauses. An instance of the original MAX-SAT simply

assigns weight 1 to all clauses.

Represent the problem by a graph where a vertex represents a variable in the problem

instance, and an edge represents the relation “shares a clause with”. We assume that the

tree-width of the problem instance is T , and that an optimal elimination order can be found

efficiently. Eliminate variables one-at-a-time according to the optimal order as follows:

To eliminate variable x, consider the set of clauses Cx that involve x or its negation x. Let

Vx be the set of variables involved in all of Cx, having that |Vx| 5 T + 1.

10-4

Consider the set of all assignments α : Vx → {0, 1} on Vx, no more than 2T+1 in count.

And compute w(α) to be the total weight of clauses (in Cx) that α satisfies. Let Dx be a

new collection of clauses, comprising of all complete conjunctions on Vx, each representing

a unique α. Replace Cx in the problem, with Dx, and assign weight w(α) to each clause

α ∈ Dx, without changing the solution space of the original problem. Note that |Dx| 5 2T+1,

and the clauses in Dx are mutually exclusive (only one can be satisfied at a time).

Now let V ′
x = Vx \ {x}, having that |V ′

x| 5 T , and consider all assignments α′ : V ′
x → {0, 1}

on V ′
x, no more than 2T in count. Compute w′(α) as:

w′(α′) = max {w(α0), w(α1)}

Where αi is α′ extended to Vx, assigning value i to x. Set D′
x to be a collection of clauses,

comprising all complete conjunctions on V ′
x, each representing a unique α′. Note that |D′

x| 5
2T . Assign weight w′(α′) to each clause α′ ∈ D′

x. And replace Dx in the problem with D′
x,

preseving the solution set of the problem.

We have thus far eliminated x from the problem at a cost of 2T nO(1) operations, without

changing the tree-width of the problem and while preserving the solution space.

We apply this procedure exhaustively until all variables but one, xLAST, are eliminated.

Assuming that the dependancy graph of the problem is connected, we will end up with two

clauses at the end: xLAST and xLAST. We pick the one with the higher weight. To compute

the weight maximizing assignment, we track back through the reductions to read out the

exact assignments of all variables.

If the dependency graph is not connected. We apply this procedure to each connected

component independently and combine the solutions.

Problem 4. Let t0, t1, . . . be the times when new jobs are inserted. The (global) optimum

of the online load balancing problem is OPT = maxt>0 OPTt, where OPTt is the (instanta-

neous) optimum maximum load at time t (it is well-defined, because there is a well-definte set

of jobs active at the time). Notice however that OPTt 5 OPTtj , where tj is the most recent

job insertion time, because between two job insertions the instantenous optimum can only

decrease, which doesn’t change the global optimum. And therefore, OPT = maxj OPTtj ,

therefore we can concentrate our attention only on the times when jobs are inserted.

10-5

Let’s consider time tj when job j (with load pj) is being inserted. Graham’s rule places j on

the least loaded machine to result in load Lj on that machine.

Let Mj be the maximum load at time tj (after job j was inserted). There are two cases

to consider. In the first case, Lj is not the maximum load. In this case Mj is no bigger

than Mj−1 and hence by induction Mj 5 (2− 1/m)OPTj−1 and it doesn’t affect the global

maximum load of Graham’s rule. In the other case, Lj does become the maximum load at

time tj in which case the following analysis applies.

The average load before we placed j was bigger than Lj−pj. And hence the optimum OPTtj

after placing the job has that OPTtj = Lj − pj + pj/m.

Consider that Lj = (Lj−pj +pj/m)+(1−1/m)pj, and we know that Lj−pj +pj/m 5 OPTtj

and (1− 1/m)pj 5 (1− 1/m)OPTtj . Hence Mj = Lj 5 (2− 1/m)OPTtj .

This argument holds for OPTtj for all j, and to be specific: Mj 5 (2− 1/m)OPTtj for all j.

So the maximum load of Graham’s rule is:

max
j

Mj 5 (2− 1/m) max
j

OPTtj = (2− 1/m)OPT

Problem 5a. We define the adversary’s strategy of picking the sequence of partners. If the

choice algorithm always accepts the first element, then give it the absolute worst, otherwise

give it the best.

Recursively, if the algorithm hasn’t halted by the i-th step, the adversary has fed it the

sequence 1, 2, 3, . . . , i (by rank) so far. On the next step, the choice algorithm cannot differ-

entiate among the remaining partners because all of them have lower rank then what it has

already seen. So the adversary checks if the choice algorithm is planning on halting if it sees

something smaller than everything it has seen so far, or if it planning to halt regardless, and

in these cases it feeds it the absolute worst. Otherwise it feeds it the (i− 1)-st partner.

By construction, the choice algorithm always halts on the absolute worst.

Problem 5b. The random choice strategy is the following: go through k/2 randomly and

uniformly chosen partners without picking any one of them. Then (in the second stage) con-

tinue drawing randomly from the remaining items. If during the second stage you encounter

10-6

a partner with a rank higher than the best rank seen in the first stage, then pick it an halt.

Otherwise get stuck with the last partner.

In one particular event, the best partner is chosen if the 2nd best happens to fall withing

the first stage, and the best happens to fall within the second stage. This event happens

with probability (1/2)(1/2) = 1/4. Therefore, with probability at least 1/4 we end up with

the best partner.

Problem 5c. The dating sequence of n mates is partition into log n “sectors”. The i-th

sector has length n/2i. Each sector is further partitioned into two stages. The first stage

comprises the first 1/4-th of the mates and the second stage comprises the remaining 3/4-th

of the mates.

The selection algorithm can be thought of as a sequential walk through the mate sequence.

The sequence itself is a uniform random permutation of the mates. At any given step of

the algorithm, the current pointer is situated within some sector. Furthermore, the current

pointer is either in the first stage of the sector, or in the second stage.

If we are in the first stage of the sector, we never halt, rather we just remember the entry

seen and move on. If we are in the second stage of the sector: we halt if the current entry is

better than the best entry of the first stage of the sector, otherwise we move on. Note that

halting decision are made exclusively based on information from withing the current sector.

To analyze this random process (the outcome of the random algorithm) we use the method

of delayed probabilities. In particular, let R1, . . . , Rn be the random variables holding the

actual rank values, i.e. Ri is the rank value at step i. By construction the Ri’s are assigned by

the random permutation. However, we choose to use a different (but equivalent) assignment

process:

1. For each sector, the relative order of the rank variables is chosen first (without actually

choosing their absolute values). So, for example, if we are looking at the first sector

R1, . . . , Rn/2, we pick a permutation on [n/2] that defines the relative ordering of the

R1, . . . , Rn/2.

2. Next, we uniformly choose a log n-partition of the rankset [n], such that the i-th

partition has size n/2i, and assign the elements in the i-th partition to the i-th sector.

10-7

The ordering of these elements within the sector has already been chosen in step 1.

Now we are in position to analyze our algorithm. First note, that if we have reached sector

i, the probability that we halt on this sector, is equal to the probability that the best rank

within the sector is in the second stage. This happens with probability 3/4.

Overall (unconditional probability), the probability that the algorithm halts within the i-th

sector is equal to the probability that it doesn’t halt on any of the first i − 1 sectors, and

that the i-th sector is halting. Since the sectors are probabilistically independent, we can

see that the probability that we halt on the i-th sector is exactly hi = (1− 3/4)i−13/4.

If we halt on the i-th sector, the expected rank of the exact halting element is upper-bounded

by the expected rank of the highest element in the first stage of the sector. There are n/2i+2

elements in the first stage of sector i. This elements are picked uniformly at random from

the set of all ranks (in step 2 of our delayed probabilities agenda above).

The expected rank of the smallest of n/2i+2 random elements from a set of n is 2i+2 (using

the method of symmetric expectations). Notice that in our case the ranks that end up in the

1st stage of the halting sector are not a purely independent selection from all ranks. They

are skewed only by the fact that the smallest rank of the sector ends up in the second stage.

This increases the expected rank of the smallest-rank element by a factor of at most 2, so

now the rank is 2i+3.

So finally we can write an upper-bound on the expected value of the rank of the halting

element as:
log n∑
i=1

3

4

(
1− 3

4

)i−1

2i+3 = 24

On the flip-side, we also want to examine the expected value of the worst case, i.e. no sector

produces a halt. The probability that this happens is (1− 3/4)log n = 1/n2. Assuming that

in this worst case we end up with the worst rank, this only adds n/n2 = 1/n = o(1) to the

expectation.

Problem 5d. It is imperative that while dating MIT women indiscriminately, we don’t

let them know that they are merely sample points. Doing so would change their level of

devotion to us, and will give us a skewed/incorrect reading of their true ranking.

10-8

