
Massachusetts Institute of Technology Lecturer: Michel X. Goemans
18.409: Topics in TCS: Embeddings of Finite Metric Spaces

December 6, 2006 Petar Maymounkov and Benjamin Rossman

Low-stretch spanning trees

The main result

In this lecture we study the topic of approximating arbitrary graph metrics by (efficiently sample-
able) distributions over spanning subtrees. More formally, given a graph G, a distribution Ψ
over spanning trees of G is said to be a non-contracting distance approximation by subtrees with
distortion D ≥ 0 if:

∀x, y ∈ V (G) dG(x, y) ≤ E T∈Ψ

[
dT (x, y)

] ≤ D · dG(x, y),

where dT (·, ·) denotes the distance with respect to the subtree T . The main result that we prove
here is:

Theorem 1. For every unweighted undirected graph G on n vertices, there exists an efficiently
computable non-contracting distance approximation by subtrees with distortion O(log3 n).

A modification of this result shown in [2], not presented in this lecture, produces an algorithm
with distortion O(log2 n log log n). The main open problem associated with this result is the exis-
tence of o(log2 n log log n)-distortion approximation schemes to match or at least approach the case
of approximation by dominating trees and also the lower bound on distortion by dominating tree
metrics which is Ω(log n) for the n-vertex grid, see [1].

Preliminaries

Basics, disclaimer and notation: Recall that in non-contracting embeddings edges suffer the
highest distortion, therefore we will focus on reducing the edge distortion.

For the rest of this lecture, we will assume that G is unweighted. At the end of the lecture, it
will be clear in hindsight that all arguments hold unchanged for the weighted case.

From here on after, we use ∆G to denote the radius of a graph G with respect to a root vertex
r ∈ G which will be clear from the context.

Intuition: For intuition, let us first imagine that we have to approximate a graph G using a
deterministic approximation by subtrees. I.e. we have to choose a single subtree of minimal
distortion. Consider two extreme choices of subtrees. A breadth-first search (BFS) tree T ensures
that every edge e ∈ E(G)\E(T) has distortion bounded by 2∆T . Alternatively, a depth-first search
(DFS) tree T ′ may incur an edge distortion of up to n = |V (G)| ≥ 2∆T . When G is an expander,
the BFS tree has distortion Ω(log n) while the DFS tree could have distortion O(n). The key idea
of [3, 2] will be to approximate G by a randomly perturbed BFS tree, where the perturbation
ensures that each edge has a fair chance of being in the chosen spanning subtree tree.

We leave it as an exercise to the reader to show that there exists a family of graphs on n vertices
for which choosing a random BFS tree produces Ω(

√
n) expected edge distortion. Therefore the

straightforward approach is not sufficient. The construction of [2] produces subtrees that are close
to BFS trees but are not BFS trees. As far as we can tell, it is an open question whether one can
find approximations based on appropriately skewed distributions over BFS trees.

1

Exponential distribution: Let us review a few facts about the exponential distribution X ∼
Exp(λ). The density function is given by fλ(x) = λe−λx. The cumulative distribution function
is Fλ(x) = Pr [X ≤ x] = 1 − e−λx. Furthermore, E [X] = 1/λ and Var [X] = 1/λ2. And most
importantly, the memoryless property Pr [X ≥ p + q |X ≥ p] = Pr [X ≥ q].

Star decomposition

The main ingredient in the [2] construction is the star decomposition of graphs, which is applied
recursively to produce a BFS-like subtree.

Definition 1 (Star decomposition). A star decomposition of a graph G with a designated root
node r0 is a set of disjoint connected components G0 = (V0, E0), . . . , Gk = (Vk, Ek) together with a
collection of root nodes r0, . . . , rk such that ri ∈ Vi for all 0 ≤ i ≤ k and each ri has a neighbor in
V0.

A star decomposition of a graph G is obtained as follows:

i. Forward cut: Choose a radius γ′ uniformly from the interval [∆G/4, ∆G/2] and assign all
vertices at distance at most γ′ from r0 to V0. Set G0 to be the connected subgraph of G
induced by V0 with root r0.

ii. Consider the remaining graph G\V0 and replace each edge by two directed edges in opposite
directions. Define a the length `(u, v) of such a directed edge as:

`(u, v) =

1, if dG(r0, v) = dG(r0, u)− 1
1, if dG(r0, v) = dG(r0, u)
0, if dG(r0, v) = dG(r0, u) + 1

The distance induced on G\V0 by `(·, ·) is called the backward-edge distance. Note that `(·, ·)
is crafted so that an edge has non-zero length iff either the corresponding edge of G is not
included in any BFS tree of G rooted at r0, or otherwise it is directed towards r0 in such a
BFS.

2

iii. Let x1, . . . , xs denote the vertices in V \V0 which have a neighbor in V0, called portal nodes.

iv. In order to select the remaining components V1, . . . , Vk, we exhaustively cut pieces from G\V0

in the following manner. As long as there exists a portal node xi not yet assigned to any
component, do the following:

v. Backward cut: Choose a random radius γ′′ with distribution ∆G · Exp(λ) for λ = Θ(log2 n)
and assign all unassigned vertices of G\V0 at backward-edge distance γ′′ from xi to a new
component Vj . The portal xi becomes the root of the new component.

vi. Note that the backward-edge distance guarantees that whenever there is an unassigned vertex
in G\V0, there is also a portal unassigned vertex.

Observe that if we fix γ′′ = 0 the edges that are cut during the backward-cut iterations are also
cut by at least one BFS tree in G rooted at r0.

The subtree construction

The subtree of G that approximates dG(·, ·) is constructed using the following randomized algorithm:

i. Construct a star decomposition G0, G1, . . . , Gk of G

ii. Let G∗ be the multi-graph obtained by collapsing each Gi to a single node

iii. Select a spanning star of G∗ whose edges are the edges connecting r1, . . . , rk to their neighbors
in V0.

iv. Recurse inside G1, . . . , Gk

v. At the end, all selected edges form a spanning tree of G

In particular, note that if γ′′ = 0 in the star decomposition step, the resulting tree is exactly a BFS
tree of G.

3

Structure Analysis

The following lemmas analyze the probability that an edge is cut by the star-decomposition:

Lemma 2. The probability that an edge is cut by the forward cut is at most 4/∆G.

Proof. Consider an edge e = (u, v). If max
(
dG(r0, u), dG(r0, v)

) ≤ ∆G/4 or min
(
dG(r0, u), dG(r0, v)

) ≥
∆G/2 or dG(r0, u) = dG(r0, v) then e is not cut. Otherwise, without loss of generality dG(r0, u) =
dG(r0, v)− 1 and therefore e is cut with probability at most 4/∆G. z

Lemma 3. The probability that an edge is cut by the backward cut is at most O(log2 n/∆G).

Proof. Let H = G\V0 ∪ · · · ∪ Vi−1 be the directed graph (endowed with the `(·, ·) edge length)
over the unassigned vertices at some stage of the backward cut iteration. Also let pH,e,ri denote
the probability that a fixed edge e = (u, v) ∈ H is cut during the remaining backward cut rounds,
where the portal vertex xi ∈ H is the root of the next round.

Assume without loss of generality that d`(xi, u) ≤ d`(xi, v) and denote d = d`(xi, u). Also
note that when `(u, v) = 0 the edge e will not be cut, therefore also assume for the worst that
`(u, v) = 1. Finally, set p = maxH,e,xi pH,e,xi , where the maximum is taken over all graphs H of at
most n vertices. We can now write the following inequality:

pH,e,xi ≤ Pr
[
d ≤ γ′′ < d + 1

]
+ Pr

[
γ′′ < d

] · max
H′,e,xj

pH′,e,xj

Keep in mind that d is a function of H, e and xi both above and in what follows below. We can
now take the maxH,e,xi on both sides of the inequality to get:

max
H,e,xi

pH,e,xi ≤ max
H,e,xi

(
Pr

[
d ≤ γ′′ < d + 1

]
+ Pr

[
γ′′ < d

] · max
H,e,xi

pH,e,xi

)
⇔

p ≤ max
H,e,xi

(
Pr

[
d ≤ γ′′ < d + 1

]
+ Pr

[
γ′′ < d

] · p
)

Let H, e and xi be such that the maximum is attained. Then get the recursive relationship:

p ≤ Pr
[
d ≤ γ′′ < d + 1

]
+ Pr

[
γ′′ < d

] · p

This gives us an upper bound on p:

p ≤ Pr [d ≤ γ′′ < d + 1]
1−Pr [γ′′ < d]

=
Pr [γ′′ ≥ d ∧ γ′′ < d + 1]

Pr [γ′′ ≥ d]
= Pr [γ′′ < d + 1 | γ ≥ d]
= Pr [γ < 1]

≤ 1− e−λ/∆G ≤ λ/∆G = O(log2 n/∆G)

The third step in the above derivation follows from the memoryless property of the exponential
distribution. z

4

Note that as far as the above lemma is concerned, we could have used γ′′ ∼ ∆G·Exp(1), and thus
we would have obtained a smaller cut probability. This however will fail us in consequent steps of the
analysis. Another interesting exercise to the reader is the following. Assume γ ∼ [∆G/64, ∆G/32];
exhibit a family of graphs for which the cut probability is almost 1.

Corollary 4. The probability that an edge is cut is at most O(log2 n/∆G).

The next lemma ensures that the recursion is not too deep:

Lemma 5. With high probability the radius of component Vi is at most 7
8∆G.

Proof. For a fixed component Vi and v ∈ Vi, let δ be the distance (with respect to dG) between the
root ri of Vi and v. We will show that:

Pr
[
δ >

7
8
∆G

]
< O

(
1

nlog n

)

This implies that with probability 1− 1/poly (n) the above inequality holds for all components, at
all levels of the recursion and all pairs ri and v.

First we observe that:

Pr [γ′′ > ∆G/16] < exp(−λ∆G/16) = O(1/nlog n)

This means that all but ∆G/16 edges on the path from ri to v increase the distance from r0. Also
recall that dG(r0, ri) ≥ ∆G/4. Therefore δ − 2∆G/16 + ∆G/4 ≤ dG(r0, v) ≤ ∆G. Which yields
δ ≤ 7

8∆G. z

Note that the proof of the above lemma breaks if we had chosen γ′′ ∼ ∆G ·Exp(1).

Corollary 6. The star decomposition algorithm has O(log n) levels of recursion.

Stretch Analysis

Theorem 7. The spanning tree computed by recursively applying the star decomposition algorithm
has expected stretch O(log3 n).

Let e = (u, v) be any edge in the input graph. Recall that it is sufficient to bound the expected
stretch of e.

Claim 8. If e is cut during the star decomposition of some subgraph G with radius ∆G, then the
final stretch of e is O(∆G) with probability 1− 1/poly (n).

Note that it is sufficient to show that this only holds with high probability: Since the maximum
possible stretch is n, bad events that happen with probability 1/poly (n) can contribute only a
constant to the expectation. This claim immediately implies the main result:

E T∈Ψ[dT (u, v)] =
∑

Level G

Pr [e cut at this level] ·O(∆G)

≤
∑

Level G

O
(log2 n

∆G

)
·O(∆G)

= O(log3 n)

5

Proof of Claim: There are two ways in which an edge can be cut: by the forward cut, or by the
backward cut. Both are illustrated below, where the edge in red is being cut:

8:36 PM

It is easily seen that immediately after the cut the stretch of the edge is O(∆) using the paths
in blue and the bounds on the radius of the forward and backward components. We will show that
every path r−v between the root of a component G and some arbitrary point inside the component
G incurs a constant stretch throughout the levels of the recursion. This will complete the proof the
claim.

The recursive decomposition algorithm can be viewed as an iterative one with O(log n) rounds,
in the following manner. After each round, the algorithm keeps a collection of connected components
G and a set of spanning tree edges T . The components are labeled as Gj , with respective roots rj

and radius ∆j . Initially, G = {G} and T = ∅. The distance between pairs of points after the i-th
round are denoted by di(·, ·).

Let r be the root of the initial graph and v be some vertex in it. We are trying to show
that the distance between r and v in the final tree is O(∆) where ∆ is the radius of the initial

6

graph. After a round of the algorithm, the path between r and v is represented by the vertices
v = v1, r1, v2, r2, . . . , vm, rm = r, where (rj , vj+1) is an edge in T and (vj , rj) is taken to be the
shortest path inside Gj .

First we analyze how the distance v − r changes in a round. And in particular we define
ρi+1(rj , vj) := di+1(rj , vj)/di(rj , vj). Let us assume that the i-th round has just completed. We
look at how a vj − rj path changes. If di(vj , rj) ≤ ∆j/4 the path is shorter than the forward cut,
and therefore di+1(vj , rj) = di(vj , rj), equivalently ρi+1(rj , vj) = 1.

Now suppose vj and rj are separated by the forward cut. Let G′ be the new component that
contains vj and let its root be r′.

The distance vj− rj increases at most by twice the number of backward edges on the path from
r′ to vj . In other words, di+1(rj , vj) ≤ di(rj , vj) + 2γ′′. To this end:

Claim 9. For every backward component G′ produced by the star decomposition of some component
G, in every level of the recursion, the backward radius is bounded by ∆G/ log n with probability
1− 1/poly (n).

This is verified using a union bound in combination with:

Pr
[
γ′′ ≥ ∆G

log n

]
≤ exp

(
− λ

log n

)
=

1
poly (n)

We thus have:

ρi+1(rj , vj) ≤
di(rj , vj) + 2 ∆j

log n

di(rj , vj)

= 1 +
2

di(rj , vj)
∆j

log n
(recall that di(rj , vj) ≥ ∆j

4
)

≤ 1 +
8

log n

= 1 + O
(1

log n

)

7

Using this, we can bound the stretch of an entire r − v path as follows:

O(log n)∏

i=1

ρi =
(
1 +

1
O(log n)

)O(log n)
= O(1)

Note that in the above we implicitly use the fact that the stretch of an r−v path is bounded by the
stretch of its rj − vj sub-path with maximum stretch, hence we use the shorthand ρi notation. z

References

[1] Alon, Karp, Peleg, and West. A graph-theoretic game and its application to the k-server
problem. SICOMP: SIAM Journal on Computing, 24, 1995.

[2] Kedar Dhamdhere, Anupam Gupta, and Harald Räcke. Improved embeddings of graph metrics
into random trees. In SODA, pages 61–69. ACM Press, 2006.

[3] Elkin, Emek, Spielman, and Teng. Lower-stretch spanning trees. In STOC: ACM Symposium
on Theory of Computing (STOC), 2005.

8

