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Abstract. We prove that increasing functions on a finite distributive lattice are
positively correlated by positive measures satisfying a suitable convexity property. Applica-
tions to Ising ferromagnets in an arbitrary magnetic field and to the random cluster model
are given.

1. Introduction

Recently, Griffiths obtained remarkable inequalities for the correla-
tions of Ising ferromagnets with two-body interactions [1]. These
inequalities were subsequently generalized to a larger class of spin
systems [2, 5]. An apparently unrelated inequality for the probabilities
of certain events in a percolation model had been derived earlier by
Harris [6, Lemma (4.1)]. While Harris' inequality seems to have drawn
less attention than it deserves, Griffiths' inequalities have received several
applications of physical interest, and give useful information on the
existence of the infinite volume limit and on the problem of phase transi-
tions. Most interesting for the applications is the second inequality,
which states that any two observables / and g in a suitably chosen class
have positive correlations, or more precisely that their thermal averages,
defined with a suitably restricted Hamiltonian, satisfy:

</#>-</> <£>^0. (1.1)

One of the simplest situations where a property of this type holds is
the following. Let Γ be a finite totally ordered set, let μ be a positive
measure on Γ. Define, for any function / on Γ

<D=Z-1 Σμ(x)/W (1.2)
xeΓ
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w h e r e _ V-Λ , ,

Z = 2̂  Mx)
xeΓ

If/ and g are increasing real functions on Γ, then clearly:

(1.3)

It is natural to wonder whether something remains of this property
when Γ is only partially ordered. In the present paper, we shall generalize
the positivity of correlations expressed by (1.4) to the case where Γ is a
finite distributive lattice [9] and where μ satisfies a suitable convexity
condition. This result also generalizes in a natural manner that obtained
by two of us [8] for the random cluster model, which includes both
Griffiths' second inequality with two-body interactions and Harris'
inequality as special cases.

In Section 2, we recall the relevant lattice-theoretic notions, state
and prove the main result. We also show that the sufficient condition
thereby obtained for (1.4) to hold is by no means necessary. Section 3
is devoted to some applications, including Ising spin systems and the
percolation and random-cluster models.

2. Correlations on a Finite Distributive Lattice

We recall that a partially ordered set Γ is a lattice if any two elements
x and y in Γ have a least upper bound xvj; and a greatest lower bound
x A y. A subset F of a lattice Γ is called a sublattice of Γ if for any x and y
in Γ', x A y and xv y also lie in Γ. Γ' is then itself a lattice with the order
relation and lattice operations induced by Γ. A subset Γ' of a lattice is
called a semi-ideal of Γ if for any xeΓ' and ye Γ such that y ^ x, y also
lies in Γ. A semi-ideal need not be a lattice. The length of a totally
ordered set of n elements is defined to be n — 1 the length l(Γ) of a lattice Γ
is defined as the least upper bound of the lengths of the totally ordered
subsets of Γ. A finite non-void lattice has a least element 0 and a greatest
element /. A minimal element xφO of a lattice is called an atom. A
lattice is called distributive if the operations Λ and v satisfy either of the
following two equivalent conditions

XΛ(]/VZ) = (XΛJ/)V(XΛZ) for all x,y9z in Γ,

x v (y A z) = (x v y) A (X V Z) for all x,y,z in Γ.

A sublattice of a distributive lattice is also distributive.
A real function on a partially ordered set Γ will be called increasing

f resp. decreasing), if for any ordered pair x<,y of elements of Γ, f(x) S
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Let Γ be a partially ordered set and μ a positive measure on Γ. For
any function / on Γ, define </> by (1.2, 3). When it is necessary to refer
explicitly to μ and Γ, the average (1.2) will be denoted by </;μ, Γ>.
Our main result is the following:

Proposition 1. Let Γ be a finite distributive lattice. Let μ be a positive

measure on Γ satisfying the following condition:

(A) For all x and y in Γ,

μ(x A y) μ(x v y ) ^ μ(x) μ(y). (2.1)

Let f and g be both increasing (or decreasing) functions on Γ. Then

o. (2.2)

Before turning to the proof of the proposition we first pave the way
with some elementary remarks. Let μ be a positive measure satisfying
condition (A), and let Γo C Γ be the support of μ:

Γo = {xeΓ:μ(x)>0}. (2.3)

If x e Γo and y e Γo, then by (2.1) μ(x A y) μ(x v y) > 0; this implies both
μ(xAy)>0 and μ(xvy)>0, or XAyeΓ0 and xvyeΓ0. Therefore,
by definition Γo is a sublattice of Γ as such it is both finite and distributive.
Furthermore, if (2.1) holds for all x and y in Γo, then it holds for all x and y
in Γ. In fact, (2.1) is non-trivial only for μ(x) μ(y) > 0, i.e. for xeΓ0

and yeΓ0.
The average (1.2) depends only on the restriction of / to Γo. If /

is increasing on Γ, a fortiori it is increasing on Γo. It follows from the
preceding remarks that it is sufficient to prove the proposition for the
case where Γo = Γ, i.e. where the measure μ is strictly positive, which we
assume from now on.

If Γ consists of one element, (2.2) is trivially satisfied as an equality;
l(Γ) is 0 in that case. If the number of elements of Γ is larger than one,
the length l(Γ) of Γ is at least one, and Γ contains at least one atom.
The proof of the proposition goes by induction on the length of Γ,
starting from l(Γ) = 0, and makes use of the following lemma:

Lemma. Let Γ be a finite distributive lattice with an atom α, let T'a, Γ^
and Γa be the sets { x e Γ x ^ α } , {xeΓ:x^a} and {xeΓ:x = x'va
with x'eΓ^}, respectively. Then (1) Γ'a,Γ^ and Γa are finite distributive
lattices; (2) Γ'ά and Γa are isomorphic; (3) Γa is a semi-ideal of Γ'a.

Proof of the Lemma. (1) For all x and y in Γ'a we have x^a, y^a
and hence, by definition, xAy^a. On the other hand, x v ^ x ^ α .
So both x Ay and x v y belong to Γ'a, i.e. Γ'a is a sublattice of Γ. Secondly,
for any x e Γ'ΰ we have x A a < α, and therefore, since a is an atom,
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x Aa = O; conversely, if x A a = O then x e Γ%. For all x and y in Γ^ we
have (x A y) A a = x A (y A a) = x AO = 0. On the other hand, (x v y) A a
= (xAa)w{y Ad) = OwO=O. Therefore Γ; is a sublattice of Γ. Finally,
if x\y'eΓ'ά, x = x'va and y = y'va, then xΛj/ = (x'vfl)Λ(y'vfl)
= (x' A y') v a and xv y = (x' v a)v (y' v a) = (xf v /) v a. So both xv y
and x Λ y lie in Γα, i.e. Γa is a sublattice of Γ. As Γ is finite and distributive,
so are Γa,Γ

r; and Γa.

(2) For x e Γ^ we have x v α e Γ f l . Conversely, for xeΓa there exists
by definition an element x' e Γ^ such that x = x ' v α . Suppose that also
x = x " v α with x" e Γ;. Then x' = x' A (X' V a) = x' Λ (X" v α) = (x' Λ X")
v (x' Λ α) = (x' Λ x") V O = X ' Λ X", and by symmetry x" = x' A X". Hence

x! = x", i.e. x; is determined uniquely (see also Ref. [9], p. 12, Theorem 10),
and the mapping x-+xv a from Γ'ά onto Γa is one-to-one. We have seen
that xΛy->(xΛj;)vα and xv y-+(xv y)v a. The mapping is therefore
an isomorphism (Ref. [9], p. 24).

(3) Consider an element x = x' v a of Γa. For y e Γ'a such that y ^ x
we have (y Λ X') V a — (y v a) A (X' V a) = y A X = y; so y = y'va with
y! = y AX' S x\ and therefore / e Γ^. Thus, by definition y e Γα, and Γa

is semi-ideal of Γ .̂ If the greatest element of Γ% is denoted by Γ\ the
greatest element of Γa is Γ v α, and for any xeΓa the corresponding
element in Γ'ά is x' = x Λ I".

Proof of Proposition 1. Suppose that the proposition holds for any
lattice of length ^n-~ 1, and let Γ be a lattice of length nΞ> 1 and μ a
strictly positive measure on Γ. Let / and g be increasing functions on Γ.
We consider the quantity

Ω = z2«fg>-<f><g»

= Σ μWμω(/WffW-/Wff(y)). ( 2 ' 4 )

Let α be an atom of Γ, and denote by Σ' and Σ" the sum over all elements
of Γ'a and the sum over all elements of Γ^, respectively. We can rewrite Ω
as follows:

Σ" Σ" /*(*) A*(y) (/M ?W - /(*) ff(y)) (2-5)
x y

Σ Σ" /*(*) 0OO (/W ?M - / W ff(y)+/(y) ?(y) - /(y) »W)

Since μ satisfies (2.1) on Γ, it also satisfies (2.1) on the sublattices Γ'a, Γ^
and Γa. Furthermore / and g are increasing on Γ'^Γ'ά and Γa. Since

= n - 1 and /(Γ^) ̂  n - 1, the first two sums in (2.5) are positive by
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the induction hypothesis. Using again this hypothesis to obtain a lower
bound for the first and third term in the last sum in (2.5) we obtain

Σ'μfΣ'μgΓμ Σ'μΓμfΓμg

Σ'μ Σ"μ

-Σ'μfΣ"μg-Σ'μgΣ"μf,

Ω ̂  {Σ'μ Σ"μ)-' (Σ'μf Σ'μ - Σ'μ Σ"μf) (Σ'μg Σ"μ - Σ'μ Σ"μg), (2.6)

where the summation variables have been omitted for brevity. We shall
now show that, again by virtue of the induction hypothesis, both the
second and the third factor in the right-hand member of (2.6) are positive,
or equivalently:

</;μ,O^</;μ,O> (2-7)

and similarly for g. From this it follows that Ω ̂  0, which implies the
proposition. This part of the proof proceeds in two steps: we shall
show that

</; μ, O ^ </; μ, Γα> ̂  </; μ, O . (2.8)

To prove the first inequality in (2.8), we observe that for all x e Γ« and
y G Tl such that y ̂  x condition (2.1) implies

μ(x) μ{y v a) ̂  μ{x Λ{yv a)) μ(x v(yv a)) = μ(y) μ{x v a). (2.9)

Therefore, if we define μa(x) = μ(x v a) for all x e Γ^9 the function μ/μa is
decreasing on Γ'ά (notice that by assumption μa > 0). On the other hand,
the function fa(x) = f(x v a) is increasing on Γ '̂, since / is increasing on
Γa. It then follows from the induction hypothesis that on Γ'ά with the
measure μa (which satisfies (2.1)), the functions μ/μa and fa are negatively
correlated, or equivalently

Σ"μaΣ"μfa^Σ"μΣ"μafa. (2.10)

Since / is increasing on Γ, f£fa on Γ«. From this and from (2.10) the
first inequality in (2.8) follows.

Next we observe that

(f- a Γ > — ί211)

where χ is the characteristic function of Γα. Since Γa is a semi-ideal of Γ'a,
χ is decreasing on Γ'a, and hence

</χ μ, Γ'ay S </; μ, ̂ } <χ μ, O , (2.12)

which by (2.11) immediately implies the second inequality in (2.8). This
completes the proof of Proposition 1.
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Proposition 1 provides us with a sufficient condition for increasing
functions on Γ to have positive correlations. The following argument
shows that this condition is not necessary as soon as the length of Γ
is larger than 2. Let μ be a positive measure on Γ. Define Ω again by (2.4).
Ω is a quadratic form with no diagonal elements with respect to the μ(x).
Take / and g increasing and let Ωx be the contribution to Ω of those
terms which contain μ(I) or μ{0). Then

Ωi = μ(I) Σ μ(*) (/CO - /(*)) (0(1) - 9(*))

+ μ(O) Σ μ(χ)(f(x)-f(O))(g(χ)-g(O))
x*O,I

^ μ(I) μ(O) (/(/) - f(O)) {0(1) - g(O)).

On the other hand,

o - Oi = i Σ' M*) μ(y) (f(χ) -f(y)) foM - βiy)).

where the sum Σ' runs over all (x, y) such that x Φ 0 , x Φ / 5 y φ 0 j Φ / .
Therefore

\Ω - Ωt\ £ (/(/) - /(o)) fof(/) - g(o)) \ Σ μ(χ) μ(y)

Another sufficient condition to ensure that increasing functions on Γ
have positive correlation is therefore:

2μ(I)μ(O)* ^μ{x)μ{y). (2.13)
χ,y

If /(Γ) = 2, Γ can be shown to have at most two atoms. If Γ has one atom
and length 2 it is totally ordered in that case (2.2) holds for any μ.
If Γ has two atoms and length 2, (2.13) reduces to (2.1). For Z(Γ)^3,
however, (2.13) holds for μ(I) μ(O) sufficiently large, whatever relations
may exist between the μ(x) for intermediate x.

If Γ is the lattice 0>{X) of subsets of the set X = {a, b, c}9 ordered by
inclusion (see next section), one obtains by elementary calculation the
following necessary and sufficient set of conditions, which lacks the
simplicity of (2.1) or (2.13):

(μ(ab) + μ(ac) + μ(abc)) μ(0) ̂  (μ(b) + μ(c) + μφc)) μ(a)

(μ(ab) + μ(abc)) (μ(0) + μ(c)) ^ (μ(b) + μφc)) (μ(a) + μ(ac)) (2.14)

μ(abc) (μ(0) + μφ) + μ(c)) ^ μφc) (μ(a) + μ(ab) + μ(ac)) ,

and all conditions obtained from these by arbitrary permutations of
a,b,c. If we denote disjoint union (and in general addition mod2, or
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symmetric difference) by + we can write these conditions in the following
general form:

X £ μ(R + aύμ(S)^ £ £ μ(R)μ(S + at), (2.15)

where at = a,b or c, Jj~ is an arbitrary semi-ideal of ^(X\α f), and

3. Applications

Consider a finite set X and the set 0>(X) of subsets of X. If 0>(X) is
partially ordered by inclusion it is a distributive lattice for this order,
the operations Λ and v becoming intersection n and union u in that
case. Taking for Γ any distributive sublattice of 0>(X) and applying
Proposition 1, we obtain the following proposition:

Proposition Γ. Let X be a finite set, Γ a sublattice of 0*{X\ μ a
positive measure on Γ satisfying the following condition:

(A') For all R and S in Γ,

(3.1)

Let f and g be both increasing (or decreasing) functions on Γ. Then

Conversely, if we know Proposition Γ to hold, Proposition 1 follows
immediately from a theorem in lattice theory ([9], p. 59, Theorem 3,
Corollary 2) which states that any distributive lattice of length n is
isomorphic to a lattice of subsets of a set X oϊ n elements. Therefore,
although Proposition Γ refers to a special class of lattices, it is in fact
completely equivalent to Proposition 1.

In the applications we shall restrict ourselves to the case where
Γ = 0P(X) for some X. Again, this does not imply a loss of generality,
because (a) any measure μ on a sublattice Γ' oi8P(X) which satisfies (2.1)
can be extended to a measure on 0>(X) satisfying (2.1) by defining
μ(R) = 0 for Re0>(X)\Γ; (b) any increasing function / on Γ can be
extended to an increasing function on 0>(X) by defining f(R) = f(R+)
for R e 0>(X)\Γ\ where R + is the least upper bound of R in Γ (c) averages
do not change under this extension.

In order to see more clearly what is achieved by Proposition 1 or Γ
we first give a more explicit description of the set i f of real increasing
functions on 0P(X). i f is a convex cone, and contains the one-dimensional
vector space of constant functions. Constant functions do not contribute
to_correlations and we eliminate them by a normalization: we impose
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f{0) = 0. It is furthermore convenient to take a section of the remaining
cone by the hyperplane f{X)= 1. Let therefore J2?o be the set of real
increasing functions such that /(0) = O, f{X) = 1. J2?o *

s convex, closed
under multiplication,_and globally invariant under the transformation
/(Λ)->/(Λ) = 1 - f(R), where R = X\R. It is convenient to introduce the
family of functions nP e J5?o, defined for any P c X, P Φ 0, by

nP(R)=l if RDP

= 0 if R J P .
The functions πP satisfy

(3.3)

Consider furthermore for any non-void semi-ideal Δ~ of ^(X) the
characteristic function of its complement Δ + = gP{X)\Δ ~:

χΔ + (R)=ί if ReΔ +

(3.4)
= 0 if RφΔ+.

The functions χΔ + belong also to if0 and satisfy

XAXIΔI = X J Ϊ nJί (3 5)

The set of functions nP is a subset of the set of functions χΔ + . In fact, if
ΓP = {Re 0>(X): R D P}, ΓP is the complement of a semi-ideal of ^(X),
then ΓPuQ = ΓPnΓQ, and

Hp = Xrp (3.6)

Conversely, it is easy to see that any function χΔ+ can be expressed in
terms of the functions nPi, where the sets Pf (ieJ) are the minimal sets
inzl + :

z ^ = Σ ( - i ) | 7 ' l + 1 Π ^ (3.7)
J'CJ,J'Φ0 ίeJ'

where for any finite set J we denote by \J\ the number of elements in J.
The functions χΔ+ can be shown to form the extremal points of if0. The
content of (2.2) for increasing functions is then exhausted by taking for
/ and g all possible functions χΔ +.

We now look for measures on &>(X) that satisfy condition (Ar).
Define λ{R) ( - oo ̂  λ(R) < + oo) by μ(R) = exp (λ(R)). Then (A') becomes:

(B) For all R and S subsets of X:

λ(R nS) + λ(R vS)^ λ(R) + λ(S). (3.8)
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Let Ji be the set of all real functions λ on έP(X) that satisfy (3.8). Jί is a
convex cone; in other words, if μί and μ2 satisfy (3.1) then μ = μ<x

1

ιμ02ί

satisfies (3.1) for all real positive ocί and α2. Jί is globally invariant under
the transformation λ(R)-^λ(R) = λ(R). Condition (B) expresses that the
function λ is convex in a suitable sense. For functions of a real variable,
convexity is roughly equivalent to increase of the first derivative, and
to the positivity of the second derivative. The analogue of this property
in the present case is the following. We assume for simplicity that λ is
finite everywhere. Then (B) is equivalent to either of the following two
conditions:

(C) For all reX, the function λ(R + r) - λ(R) is an increasing function
oiRcX\r.

(D) For all reX, s eX, s φr, and for all Rc(X\r\s)9 the following
quantity is positive

λ{R + r + s) + λ(R)-λ(R + r)-λ{R + s)^O. (3.9)

The functions nP defined by (3.1) are easily seen to satisfy condition (B).
Moreover, if P reduces to a point, P = {r}, then nr satisfies (B) with equality
for all (R, S). It is therefore convenient to decompose any function λ on Γ
on the basis on the nP:

λ(R)=Σψ(P)nP(R)= Σ <P(p) ( 3 1 0 )
P PCR

where the φ(P) are obtained by inverting (3.10):

φ(P)= Σ (-f]~mλ(R) (3.ii)
RCP

Condition (D) is then expressed as the following condition on φ :

(E) For all r e X, s e X, r Φ s, and for all R C (X\r\s)9 the following
quantity is positive:

Σ φ(P + r + s)^0. (3.12)
PCR

Condition (E) contains no restriction on the one-body term φ(r).
An interesting special case of (E) is obtained by taking φ(P) ̂  0 for all P
with |P| ̂  2. On the other hand, if φ(P) vanishes for |P| > 2, condition (E)
reduces to the condition φ(r, 5) ̂  0 for all (r, s). If φ(P) vanishes for all
\P\ >3,E reduces to the following condition: For all

X Max(0, -<p(r,s,ί)). (3.13)
ίΦr.s

We now describe some applications of the previous results to physical
systems.
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1. Lattice Gas and I sing Spin System

We interpret X as a set of sites which can be either occupied or empty,
and nr as the number of particles on site r. We take the Hamiltonian of
the system to be H= — λ with λ defined by (3.10) and φ satisfying con-
dition (E). This describes a lattice gas with many-body interactions,
a special case being that where all the interactions are attractive (φ(P) ̂  0
for \P\ ^ 2). The correlation functions are ρ(R) = (nRy. We then obtain,
among others, inequalities of the type

p/™ \

(3.14)
dφ(S)

for all values of the inhomogeneous "chemical potential" φ(r).
The same system can be interpreted as an Ising spin system. With

each site reX is associated a spin variable σr = 2nr-l, and for all
RCX.WQ define σR by :

°R= Π σr '
reR

The Hamiltonian is then rewritten as:

H = - Σ ψ(P) nP = - Σ J(R) σR + constant. (3.15)
P R

The relation between φ and J is easily obtained by expanding σR as a
function of the nP and conversely. One finds:

J(R)= Σ 2~]

PDR

φ(P)= Σ 2 | P |

RJP

Condition (E) can be easily expressed in terms of J. Substituting (3.16)
into (3.12), we obtain, for R, r and s disjoint:

Σ Σ (3.17)
PCR SIP

Sφr,s

The sum over P is trivial and we obtain:

£ J(S + r + s)(-) l s | + l * n S ' ^ 0 . (3.18)
Sφr,s

This inequality should hold for all R not containing r or 5, or equivalently
for all R. Changing the notation from R to R and remembering that
σs(R) = ( — ) | Λ n S | , we see that condition (E) can be rewritten as follows:

(F) For all r =f= s, the following function on Γ is positive:

Σ J(S + r + s)σs^0. (3.19)
Sφr,s
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Notice that condition (F) is invariant under the change of J(S) into
(-) | S |J(S), because σs(R) = (-)^σs(R). In particular, when reinter-
preting a lattice gas as an Ising spin system, condition (E) becomes the
same condition on J, whether we associate occupied sites with up spins
or down spins.

For two-body interactions, (J(S) = 0 for |S| > 2), (F) reduces to the
condition J(r, s) ̂  0 for all (r, s). With two- and three-body interactions,
(J(S) = 0 for \S\ > 3), (F) reduces to the following condition:

For all r φ s :
Σ \J{r,s,t)\. (3.20)

We now compare the present results with those obtained in earlier works
[2]. There, one assume that J(R) ̂  0 for all R. For \R\ ^ 2, this is similar
to, but not equivalent to our condition (F). For instance, with 2 and 3
body interactions, (3.20) implies a stronger restriction than J2^09 but
on the other hand does not contain any condition on the sign of J3. The
most interesting difference is that we have no restriction on the one-body
potential, and therefore on the magnetic field h(r) = J(r). For instance,
with H defined by (3.15) and J satisfying (F), we obtain for any pair of
sites (r, 5) and any value of the (inhomogeneous) magnetic field:

Λ> - <χ> <X» £ 0. (3.21)

The class ££ of functions allowed for /, g in Proposition Γ is different
from the class J used in [2], which is the convex cone generated by the
σR. For instance, if r and s are two different sites, then σrσs lies in J but
not in jSf, while nr + ns — nrs = ̂ (σr + σs — σrσs) + Ct lies in JS? but not
in J. Note however that the functions nR belong both to Ά and S£.

Special cases of the preceding results can be obtained by the methods
of Ref. [5]. In fact, the phase space Γ is the cartesian product Z\ where
Z 2 = {0,1}. Z 2 is totally ordered and can be considered as a special case
of example (3) in [5], with the function g being taken as n(n(0) = 0, n(l) = 1).
Propositions 3 and 5 in [5] then imply (3.14) in the case where φ(P)^0
for all \P\ ^ 2. The results of the present paper are more general, because
here we can accommodate more general functions than linear com-
binations of the nR with positive coefficients, for the observables and the
exponent of the Boltzmann factor.

The previous considerations extend straightforwardly to more general
lattice gases where one allows more than one particle on each site, and by
an easy limiting process, to lattice gases without hard cores.
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2. Random-cluster Model

We interpret X as the set of edges of a finite graph G. The set of vertices
of the graph is denoted by V, the incidence relation, which associates
two vertices with each edge, by z, and the graph by G = (V, X, i). The
vertices associated with reX are called the ends of r. We shall describe
several measures on Γ = 3P(X) which satisfy (3.1).

(a) For any r e X let pr and qr be real positive numbers. Take

μ(R)=U Prϊlis- (3.22)
reR seR

Obviously, (3.1) is satisfied as an equality. If the pr and qr are restricted
to the interval [0,1] and satisfy pr + qr = l for all r e X, μ is a probability
measure on ^(X). A graph provided with this probability measure is
called a percolation model. Harris' lemma, mentioned in the introduction,
constitutes a specialization to this case of Proposition Γ, applied to the
infinite quadratic lattice graph (or rather a sufficiently large finite
subgraph of it), the functions / and g being arbitrary characteristic
functions of the type (3.4).

Consider next for any RcX the graph GR = (V,R, i\ obtained from
G by omitting all edges not in R. By a cluster of GR we shall understand
a maximal connected subgraph of GR.

For any subgraph G' = ([/, S, i\ with U C V, S C X, of G let

yG,(R)=ί if G' is a cluster of GR

= 0 if G' is not a cluster of GR.

Define μ(R) = exp λ(R) with

R) (3.24)
G'

where for any G', φ(Gf) is a real number, and where the sum runs over all
connected subgraphs of G (or, equivalently, over all subgraphs of G).
In order that λ(R) satisfies (3.9), φ(G) has to satisfy the condition

(G) For all r e X, s e X, r Φ 5, and for all R C {X\r\s)9

) - yG,(R + r) - yc,(Λ + s)] ^ 0 . (3.25)
G'

We shall now discuss several examples of functions φ(Gf) satisfying
condition (G).

(b) Let ξ be a real function on the edge set X, and take for G' = (U, -S, ί):
φ(G') = Σ ξ(r). Then A(Λ) = £ ξ(r)9 and (3.9) is satisfied as an equality.

reS reR

With ξ(r) = logpr — logqrf the measure is proportional to that of example
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(a). A special case is that where all ξ(r) are equal to a real number c,
then λ(R) = c\R\.

(c) Let ψ be a real function on the vertex set V, and take for G' = (U, S, ί):
φ(G') = £ ψ(r). Then λ(R) = £ ψ(v) = constant, so that (3.9) is trivially

veU veV

satisfied for any choice of ψ(v).

(d) Let c be a real number and take φ(G') = c for all G'. Then
λ(R) = cy(R), where γ(R) = £ yG>(R) is the total number of clusters of GR.

G'

It is easily seen that γ(R + r + s) + y(R)-y(R + r)-y(R + s) equals 1
if GR contains two clusters G[ and G'2 such that in GR+r+s both r and s
have one end in G[ and one end in G2, and equals 0 otherwise. Hence (3.9)
is satisfied for c ̂  0. The corresponding measure is

μ{R) = κγiR) with ι c = e x p c ^ l . (3.26)

(e) Take φ(G') = ψ(υ) if G' consists of a single vertex z; ("isolated
vertex"), φ(G') = 0 otherwise. Then yG>(R + r + s) + γG.(R)-γG,(R + r)
— yG>(R + 5) equals 1 if G' is an isolated vertex of GR which is neither an
isolated vertex of GR+r nor one of GR+S, and equals 0 otherwise. λ(R)
satisfies (3.9) if ψ(v) Ξ> 0 for all v in V. The measure is then

μ ( # H Π ( ί s ) e x P V ^ ) > (3.27)
V

where the product is over the isolated vertices of GR.

(f) Let {cn}, (n= 1,2,...) be a set of real numbers, and let n(Gf) be
the number of vertices of G'. Take φ(G') = cn{GΎ It can be shown that
φ satisfies (3.25) if the cn satisfy the following relations:

f ( ) r π > ! ( 3 2 8 )

A few choices of cn which satisfy (3.28) are: cn = n (this is the above-
mentioned trivial example (c) with \p(ύ)=\ for all υ in V), cw = c ^ 0
(example (d)), cn = δnl (example (e) with ψ(v) = 1), cn = n~a, where α is a
positive real number.

If μ1 and μ2 are two measures satisfying (3.1), the product μ1μ2 is
also a measure satisfying (3.1). We discuss two examples of such a
product measure.

(g) Take λ(R) = c ω(R), where c is a positive real number and ω(R)
is the number of independent cycles (cyclomatic number) of GR. Accord-
ing to Euler's formula we have ω(R) = \R\ — \V\ + y(R). The corresponding
measure is therefore the product of the measures discussed under (b)
(with ξ(r) = c for all r e X), (c) (with ψ(v) =-c) and (d).
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(h) Take the product of the measures (3.22) with 0 ̂  pr ̂  1, qr = 1 — pr,
and (3.26):

μ(R) = κ^Y\prYlqr. (3.29)
reR seR

A graph provided with this measure is called a random-cluster model. In
a previous paper by two of us [7] it was shown that for K = 2 the func-
tion Z which by (1.3) corresponds to the measure (3.29) is equal (apart
from a trivial factor) to the partition function of an Ising model with V
as the set of sites and with a Hamiltonian containing only ferromagnetic
pair interactions:

H=-YίJrσmσυΊr), (3.30)
reX

Jr=-±logqr (3.31)

where the vertices v(r) and υ'(r) are the ends of the edge r in the graph G.
Similarly, for any WcV the Ising model spin correlation function
(σw}ls (where in order to avoid confusion the averages for the Ising
model discussed before are denoted by < >/s) is equal to the expectation
value under the measure (3.29) with K = 2 of a quantity εw defined by

εw(R) = 1 if each cluster of GR contains an even number
(possibly zero) of vertices from W (3.32)

= 0 otherwise,
that is,

= <ew',μ>. (3.33)

Now it is obvious that for any pair (Wί, W2) of subsets of V we have

= εWιεw2 > (3.34)

where Wί + W2 is the symmetric difference of W1 and W2. Since the
functions εw are increasing on 0*(X), Proposition Γ can be applied, giving

<βιτi%2> ^ < ε ^ > <εW2> . (3.35)

From (3.33), (3.34) and (3.35) it follows that

which is the second Griffiths-Kelly-Sherman inequality for the case where
there are only pair interactions.
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