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Abstract 

Based on developmental biology’s Rule of Normal Neighbors, 
we develop a new mechanism for spatial patterning, exhibiting 
spontaneous symmetry breaking, regeneration, and approximate 
scale invariance. The desired pattern is represented as a 
topological adjacency graph, yielding an energy function that 
cells minimize through local interactions. Combined with a 
controller manipulating cells’ mechanical properties, we 
demonstrate programmable geometric homeostasis for 3D 
cellular surfaces via simultaneous patterning and deformation. 

Introduction 

How might one assemble a pattern from un-differentiated 
tissue or regenerate a missing piece lost to injury? A common 
theme seen in developmental biology is the Rule of Normal 
Neighbors (Mittenthal, 1981): a point in a patterned tissue 
knows what elements of the pattern belong adjacent to it, its 
“normal neighbors”. If it finds its neighbors are wrong, it 
takes steps to correct the situation, such as re-growing a more 
appropriate neighbor or changing its own fate to better fit its 
environment. This general rule captures many striking 
experimental results, such as the growth of inverted segments 
in cockroach limbs when the distal portions of the limbs are 
excised and replaced with longer explants (French, 1981). 

In recent work (Brodsky, 2014a), we propose one possible 
mechanism by which patterning and pattern repair under the 
rule of normal neighbors can be implemented, with only local 
computation and minimal resources. We represent the 
topology of a desired pattern as an adjacency graph over 
discrete pattern states. Based on this graph, we construct an 
energy function using local interactions for which the desired 
pattern is (usually) a minimum. Cells can then explore this 
potential by a process mathematically analogous to thermal 
(and simulated) annealing, seeking a minimum. 

The result is a spatial patterning mechanism that 
demonstrates spontaneous symmetry breaking, regeneration, 
and approximate scale invariance. In conjunction with control 
algorithms for cell-cell traction and bending forces, it has 
been used to generate self-stabilizing 3D geometries within a 
simplified model of embryonic tissue. This serves a primitive 
artificial demonstration of morphological homeostasis. 

Energy specification 

The core idea of the rule of normal neighbors is purely 
topological: what can lie adjacent to what. This alone is not 
enough to form a pattern, but it's a good starting place. In our 

formalism, each region of the pattern is assigned a discrete 
state, and the adjacency graph captures the neighbor 
relationships between homogeneous regions of a single state 
(see Figure 1). An implicit self-edge exists for each state, in 
order that the representation be scale-invariant and meaningful 
both in continuum and on a discrete lattice. 
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Figure 1 – Example adjacency graph (left), associated desired 
pattern (right). 

A variety of other patterns will satisfy the same adjacency 
graph, however, indeed, any arbitrary continuous distortion of 
the original pattern. Furthermore, any simply connected (but 
possibly overlapping) cut through the pattern, such as a spiral 
that repeatedly cut through the same regions, will still satisfy 
as well, albeit with some regions and neighbor contacts 
duplicated and others absent. 

In order to avoid arbitrarily pathological deformations, we 
favor compact, blob-like regions by including a virtual 
“surface tension” self-affinity term in the energy function. To 
avoid arbitrary cuts with missing regions, we can either 
impose boundary conditions that force every region contacting 
the boundary to appear in the pattern, or we can add per-
region quorum sensing. The former will ensure that all 
boundary-contacting regions are present, although the sizes of 
non-boundary-associated regions will be unstable, and they 
may shrink to a sliver or disappear entirely. Alternatively, 
quorum sensing adds complexity but can ensure the stability 
of region sizes and, in conjunction with surface tension, 
strongly discourage the presence of duplicate regions.  

Energy minimization 

For suitably-constructed energy functions such as sketched 
above, gradient descent can be implemented purely locally, 
with local information and local updates. However, spatial 
patterns are prone to local minima, and gradient descent fails 
almost immediately. Instead, a probabilistic strategy is quite 
successful.  Energetically favorable transitions are made with 
high probability and unfavorable transitions are made with 
low probability. With appropriate choice of weights (i.e. the 



Boltzmann distribution), this becomes analogous to natural 
and simulated annealing, complete with a “temperature” 
parameter. 

The algorithm sketched thus far works fairly well. 
However, it is noisy and has no clear termination condition. 
As an alternative, we can formulate a “thermodynamic limit” 
to the stochastic algorithm, where fluctuating discrete states 
are replaced by mean field values. The result is somewhat 
analogous to loopy belief propagation and produces clean, 
robust patterns even at significant temperatures, suitable for 
driving downstream actuators.  

Regulating Geometry 

Ultimately, the goal of patterning is to spatially choreograph 
phenotypic properties. These properties may be simple and 
self-contained (e.g. “color”), or they may be disruptive and 
far-reaching, such as the geometry of the substrate itself. With 
substrate manipulations, the patterning process is not a feed-
forward cascade but is in general a large feedback loop, 
changes to geometry rearranging and disrupting the original 
pattern. However, given a suitably robust and self-stabilizing 
patterning mechanism such as above, combined with suitable 
closed-loop controllers for geometric features, self-stabilizing 
geometry that is faithful to the pattern can be demonstrated. 
With a simple embryonic epithelium model (Brodsky, 2014b), 
actuation mechanisms that combine curvature sensing, 
intrinsic forcing (e.g. purse-string), and extrinsic bending 
(apical/basal constriction) have been shown to be successful. 

Results 

Several successful patterns and their associated adjacency 
graphs are illustrated in Figure 2, using the mean field 

algorithm. These patterns can self-organize on a variety of 
domain shapes and sizes and can self-repair in response to 
large sections being erased. Temperature was selected or 
annealed as appropriate for the size of the domain and the 
complexity of the pattern; under poor temperature conditions 
or with certain pathological patterns, topological defects can 
arise, particularly twinning (duplication of regions and sub-
patterns) and twisting (irreconcilable partial mirror 
inversions). The rightmost example illustrates a case of the 
algorithm operating on and directing a dynamically deforming 
surface (Brodsky, 2014b), such that the overall shape is 
determined by the underlying pattern. Under the direction of 
the algorithm, cells flow and rearrange themselves to produce 
the desired structure. Such self-organizing, self-stabilizing 
geometries are the subject of ongoing work. 
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States 2, 3, 4, 5 control for 

curvature; 1, 6 relax curvature. 

Spherical initial conditions. 
########################## 
#333333333333444444444444# 
#333333333333444444444444# 
#333333333333444444444444# 
#333333333335544444444444# 
#333333333555555444444444# 
#333333335555555544444444# 
#333333355555555554444444# 
#333333555555555555444444# 
#333333555555555555444444# 
#222225555555555555544444# 
#222222555555555555111111# 
#222222555555555555111111# 
#222222255555555551111111# 
#222222225555555511111111# 
#222222222555555111111111# 
#222222222225511111111111# 
#222222222222111111111111# 
#222222222222111111111111# 
#222222222222111111111111# 
########################## 

66666666666666666666666666 
66666666666666666666666666 
66666666622222222111111666 
66633333222222222111111166 
66633333322222222111111166 
66333333322222222111111166 
66333333322222222111111166 
66333333332222222111111166 
66333333333222222111111166 
66333333333222222111111166 
66333333333332226611111666 
66633333333366666666666666 
66644444444446666666666666 
66444444444444555555566666 
66444444444445555555556666 
66444444444445555555556666 
66444444444445555555556666 
66644444444455555555556666 
66664444444455555555566666 
66666666666666655566666666 
66666666666666666666666666 

CCCCCCCCCCCCCCCCCCCCCCCCCC 
CCCCCCCCCC666666CCCCCCCCCC 
CCAAAACCCC666666CCCC7777CC 
CAAAAAACC66666666CC777777C 
CAAAAAA511666666112777777C 
CAAAAA5511116611112277777C 
CAAAAA5551111111122277777C 
CCAA55555111111112222277CC 
CC5555555111111112222222CC 
CC5555555511111122222222CC 
CC5555555BBBBBBBB2222222CC 
CCC555555BBBBBBBB222222CCC 
CCC444444BBBBBBBB333333CCC 
CCC4444444BBBBBB3333333CCC 
CC999444444BBBB333333888CC 
CC9999444444BB3333338888CC 
C999999444444333333888888C 
CC9999944444433333388888CC 
CC9999994444433333888888CC 
CCC9999CCCCCCCCCCCC8888CCC 
CCCCCCCCCCCCCCCCCCCCCCCCCC  

Figure 2 – Example successful results – exhibiting exactly one instance of every region, each contacting every normal neighbor and no 
spurious neighbors – achieved under appropriate annealing conditions. Left three are on rectangular lattices, while rightmost is on an 
irregular, dynamically changing cellular mesh of spherical overall topology. 


