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Today’s computer users can expect their computers to fail frequently, forcing restarts, 
loss of data, and loss of time.   On commodity systems such as Windows, 85% of failures 
are caused by bugs in device drivers [Swift05].  Device drivers are privileged software 
modules that control hardware devices, such as disks and audio cards, and are extremely 
complex and difficult to build.  Unfortunately, that complex code is often written by 
inexperienced programmers at device companies, rather than by experienced kernel 
programmers in the company that wrote the operating system.  
 
The goal of Nooks for NT is to demonstrate the feasibility of an isolation system to 
greatly reduce the number of Windows system failures by inserting a new protection 
layer between device drivers and the core of the operating system kernel.  We create a 
new environment for driver execution, using memory isolation to ensure that driver bugs 
do not corrupt the rest of the system.  Once Nooks detects a driver failure, it unloads the 
failed driver and reloads a working version of the driver without any user intervention.  
Nooks for NT is based upon the original version of Nooks developed for Linux by Mike 
Swift in his thesis work at the University of Washington.  We reimplemented the 
architecture in Windows 2000, which has a much more sophisticated kernel environment 
and a much more complex driver and memory management model.  This brought to light 
some important lessons about the interactions between reliability and complexity and the 
prospects for bringing backward-compatible reliability subsystems to the mass market.  
 
In this thesis, we begin by explaining the concepts and architecture behind Nooks.  We 
then discuss the differences between kernel development in Linux versus Windows, with 
a focus on driver related issues.  Next, we cover our partial implementation of Nooks in 
Windows 2000, focusing on our design choices, the notable challenges we encountered, 
what we did and did not complete, possible future improvements, and a brief evaluation 
of our results.  We conclude with some ideas for expanding the scope of Nooks and 
possible paths for future work. 
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1.  Introduction 
1.1.  The Problem 
 
Today’s computers fail far too often.  These failures result in interruptions, loss of data, 
and loss of time.  Computer crashes cost over 250 billion dollars in damages each year 
for small businesses alone, according to the London Business School’s 2002 estimates 

[Butler02].  The high costs of crashes, and the resulting frustration of computer users, is 
one of the main shortcomings of today’s computer technology. 
 
These days, far more problems are attributable to software than hardware [Gray86] 
[Chou97].  A large portion of these software failures result from third-party extensions 
added to the operating system, such as device drivers.  User applications running on a 
system are isolated from each others’ faults, and the kernel is isolated from application 
failures, but in commodity operating systems, no such protection is afforded to kernel 
extensions.  Device drivers, because they often require close coupling with the kernel and 
with low-level hardware resources, are typically implemented as kernel extensions rather 
than user-mode components.  The resulting high privilege of device drivers means that a 
failure or a crash in a device driver typically brings down the whole system.  Thus, the 
reliability of a system’s device drivers has a critical impact on the reliability of the 
system as a whole. 
 
Unfortunately, a powerful array of causes conspires against high standards for device 
driver quality.  As low-level systems code, drivers present an extreme technical challenge 
to develop, especially for highly sophisticated kernels like NT.  Besides simply 
supporting their hardware, drivers must deal with the complexity of the operating system 
environment and interface, with concurrency and asynchronous requests, with 
multiprocessor platforms, with power management, and with dynamic hardware 
insertion, configuration, and removal (“Plug and Play”).  Furthermore, drivers are largely 
developed by third-party hardware manufacturers who often have little interest in 
software and who lack the kind of in-house expertise available to the system vendor.  For 
many of these hardware companies, driver development is simply an afterthought.  Such 
hardware manufacturers are often not held responsible for writing reliable code, because 
the system vendor typically gets blamed for any problems that appear.  Finally, driver 
code has a much shorter lifecycle than kernel code, as hardware is replaced every few 
years, but kernels last for decades or more.  The net result is that driver code tends to be 
of far lower quality than kernel code [Chou01], with a greatly disproportionate impact on 
system stability. 
 
Indeed, in Windows XP, 85% of total system failures are caused by device drivers 
[Swift05].  As the core components of commodity operating systems have become more 
and more reliable over the years, the increasing significance of kernel extensions for 
system unreliability has come to the attention of Microsoft and the research community.  
Traditionally, the research community has explored safe kernel extension through radical 
new approaches to system design [Bershad95] [Engler95] [Seltzer96], without addressing 
the question of how to make kernel extensions safe in existing commodity systems.  
Vendors of commodity systems, for the most part, have been hesitant to implement such 
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radical, all-or-nothing solutions.  Indeed, with such a broad market, not all Windows 
customers are likely to be interested in trading performance for reliability.  Compatibility 
constraints would also demand that the system continue supporting existing, unsafe driver 
models. Furthermore, the Windows team’s experience has shown that hardware 
companies are rarely willing to take extra steps to assure the reliability of their drivers, 
especially when it comes at the expense of their devices’ performance [Wang04], and 
hence they would prefer to continue using their existing code bases and the old driver 
models.  Radical solutions would thus be simultaneously expensive to implement and 
unlikely to gain any foothold.  With more than 35,000 Windows drivers on the market 

[Swift05], there’s little hope of fixing them all. 
 
With no reasonable means to fix so many existing drivers and with driver bugs causing so 
many crashes, any attempt to improve system reliability must do so in spite of buggy 
drivers.  Any attempt via improving driver reliability must be able to handle the 
numerous drivers on the market today and still protect the system from driver failures.  In 
order to achieve these goals, such a reliability system must be transparent to existing 
drivers.  In order to be practical, it must be also efficient, and for the most part, 
transparent to the rest of the kernel.  Only then does it have a chance of truly impacting 
commodity operating systems. 
 
2.  The Nooks Approach 
2.1.  Architecture 
 
Nooks is a driver-reliability subsystem created to improve system reliability while 
satisfying the goals listed above.  It is invisible to drivers, largely invisible to the normal 
operation of the kernel, and does not impose an enormous performance cost, at the same 
time greatly increasing system reliability.  Nooks improves driver-reliability by isolating 
drivers from the rest of the kernel.  This allows each driver to be monitored carefully, 
tracking all its interactions with the rest of the system.  If a driver fails, Nooks is able to 
tear down and remove the isolated driver and then restart a new instance so that the 
system is able to continue running without a reboot.  On an unprotected system, such a 
failure would propagate into the kernel, causing a system crash.  The Nooks architecture, 
designed to achieve all of these goals, is made up of five main components: protection 
domains, wrappers, resource tracking, error detection, and clean-up and recovery. 
 
2.1.1.  Protection Domains 
 
A protection domain consists of a logical container for one or more drivers with a single 
shared fate.  Hardware memory protection and well-defined cross-domain calling 
semantics define the boundaries of the domain, so that a fault in one driver may crash 
them all, but failures are contained within the domain. Thus, conceptually, a protection 
domain can be thought of as a barrier surrounding a group of drivers or a “driver sub-
process”.  Although the drivers run under the same address space as the kernel, their 
access to the address space is limited by the protection domain’s memory management 
code so that they can only write to addresses they specifically need access to.  Placing 
such a barrier around drivers allows us to see all control and data transfers in and out of 
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the drivers.  Combining protection domains with wrappers, we can track calls into the 
driver, the system resources it allocates, the system resources it has access to, etc., and 
any actions it may take that could propagate a fault into the kernel.  Thus, protection 
domains are the most fundamental part of Nooks, upon which all the other abstractions 
and components are built. 
 
2.1.2.  Wrappers 
 
Protection domains alone, however, are not particularly useful, because their strong 
isolation breaks compatibility with existing interfaces between kernel and driver.  To 
allow drivers to seamlessly operate within protection domains, we provide interface 
“wrappers”, adapter functions matching the original driver-kernel interfaces on either end 
but explicitly crossing the protection domain boundary in the middle.  Besides serving as 
gateways, wrappers also provide crucial points for monitoring driver-kernel interactions, 
because they are the sole means of control transfer in and out of a domain. 
 
Two conceptually similar classes of wrappers exist, one for kernel to driver calls and one 
for driver to kernel calls.  The two classes require different mechanisms to attach to their 
respective interfaces, however.  While installing kernel to driver wrappers is often a 
matter of making simple changes to the associated private kernel source code, modifying 
third party drivers to call out only through wrappers is somewhat more complicated.  This 
is accomplished using a special binary loader which remaps statically imported kernel 
function calls to their respective wrapper routines.  Using these statically interposed 
wrappers, the remaining cases, function pointers provided at run time, can be handled 
dynamically by substituting them with dynamically generated stubs.  
 
2.1.3.  Resource Tracking 
 
Centrally tracking the driver’s resource usage serves as an important infrastructure 
subsystem within the Nooks architecture.  While a driver runs, it creates, acquires, and 
modifies system resources; resource tracking (or “object tracking”) uses code invoked by 
the wrappers to maintain a comprehensive table of all such resources used by the driver 
and any interrelationships among them.  Since errors in a driver can cause it to misuse or 
corrupt system resources, risking a crash, the object tracker is used to duplicate and 
synchronize mutable objects, such that the kernel never sees the driver's changes to an 
object until they've been verified to be safe.  This same verification is also used to check 
invariants about driver's behavior, for example, preventing double-frees, so that a fault 
can be raised and the driver removed and restarted.  Finally, when a driver fails, any 
resources it owned need to be released.  The object tracker maintains all the information 
necessary to safely free shared resources one-by-one after a driver crash.  It is important 
to note that the object tracker itself is a rather unintelligent service, however; it serves 
only as a warehouse of information about a protection domain.  Higher-level services, 
like error detection and recovery, use the object tracker as a primitive tool. 
 
2.1.4.  Error Detection 
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Error detection is a crucial, high-level service provided by the system as a whole, based 
upon checks distributed throughout the wrappers.  Using the tools provided by wrappers, 
resource tracking, and memory protection, error detection is responsible for catching any 
driver failures and triggering the recovery process before system corruption can occur 
(and, ideally, before the user is inconvenienced by a major service lapse).  Error detection 
in Nooks is something of an approximate process, because of its best-effort design and 
because the interfaces isolated are rather complicated and ill-specified.  There are roughly 
six classes of errors Nooks can detect: non-continuable processor exceptions (including 
memory protection violations), resource invariant violations, invalid parameters, 
corrupted objects, resource consumption limits, and broken service guarantees.  The first 
two are relatively straightforward to implement comprehensively, but the others are more 
ill-defined and are implemented approximately or on an as-needed basis.  Error detection 
will never be perfect, but given enough effort, it can be improved to cope with an 
arbitrarily wide space of errors and a broad variety of drivers. 
 
2.1.5.  Clean-Up and Recovery 
 
Once a driver fault is detected, Nooks begins a rather elaborate procedure for safely 
unloading and reloading the driver. Conceptually, the key elements of this process are 
getting all threads of execution safely out of the driver, synchronizing, disentangling the 
driver from the rest of the system, freeing up the driver’s resources, and triggering an 
appropriate unload/reload sequence.  Much of this process revolves around repeatedly 
walking through the object tracker, releasing resources and disconnecting relationships, a 
process we casually refer to as “garbage collection”.  The details are complicated, nasty, 
and highly system-dependent, but for the most part, they follow the same basic recipe. 
 
2.2.  Discussion 
2.2.1.  Why Best Effort Only 
 
Nooks was designed around two core principles: be resistant to faults, not impervious to 
them, and be robust against mistakes, not malicious abuse.  Nooks is not intended to 
handle all imaginable failures; it is a best-effort-only system that tries to protect against 
the common case and thereby make a practical improvement in system reliability.  
Success is gauged not in terms of theoretical correctness-by-construction, but rather, as a 
measurable improvement in the end-user’s experience.  Handling all possible failure 
cases would be an irrelevant and impossible goal, and trying to do so would likely impose 
unreasonable performance degradation in a system designed for backward compatibility. 
 
Nooks also does not attempt to protect against deliberate abuse.  Protecting against abuse 
requires a much more complex and involved isolation system than one just protecting 
against bugs, and trying to protect against malicious kernel extensions at this level makes 
little sense.  Few unprivileged users have any need to install kernel extensions.  As the 
history of Windows applications shows, few application developers are interested in the 
extreme effort associated with building a kernel extension.  Most legitimate kernel 
extensions are drivers, virus scanners, server modules, and other privileged or 
administrative services tightly coupled with the operating system.  Furthermore, it is 
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virtually impossible to prevent such extensions from abusing the system once they are 
loaded; a network driver can always send spam and forward worms; a keyboard driver 
can always sniff passwords.  Instead of imposing draconian restrictions on legitimate 
kernel modules, it makes much more sense to secure the mechanism used to load kernel 
modules and prevent abusive modules from being installed in the first place.  Compared 
to restricting abuse once modules are loaded, this is an easy problem. 
 
2.2.3.  Why LPDs? 
 
Besides the above two core principles around which Nooks was designed, another key 
design goal was to make the system adoptable and attractive for existing commodity 
operating systems.  In particular, this means easy integration into existing OS code bases, 
support for existing drivers without modifications, and low runtime overhead.  In order to 
meet these constraints, Nooks uses a novel approach based around lightweight protection 
domains.  While many other research architectures for safe kernel extensibility have been 
explored, none of them meet all the constraints to the extent that LPDs can.  The 
Software Fault Isolation (SWFI) memory isolation mechanism [Wahbe93] has been used 
successfully as the basis for safe kernel extensions [Seltzer96], but typical 
implementations have depended upon special compilers and were unable to isolate 
arbitrary existing binaries.  Also, SWFI alone does not address the problems of safe, 
transparent integration and recovery, which requires either re-architecting the driver 
interfaces or implementing a LPD-like structure based on SWFI (which may well be 
possible).  Type-safe languages similarly provide a memory isolation mechanism, as well 
as some level of interface safety, but they require completely re-architected interfaces and 
support for an entirely new programming model in the kernel [Bershad95].  User-mode 
drivers have also been used in some systems [Herder06] [Hunt97], but they are 
exceedingly difficult to retrofit into an existing operating system due to deadlock and 
performance considerations, to say nothing of backward compatibility [Microsoft05_2].  
The most viable alternative to the LPD is perhaps the virtual machine.  Whole-system 
VMs partitioning the user applications are not useful, because they inappropriately tie 
together the fates of drivers and applications, but per-driver VMs are a reasonable 
possibility [Erlingsson05] [LeVasseur04] [Fraser04].  However, VMs are rather costly 
structures to use, and they offer surprisingly few advantages as well as some new 
compatibility hazards, the drivers running in the environment of the wrong kernel.  
Unlike these alternatives, Nooks and its LPDs do not require any major shift in operating 
system or driver development, allow for easy integration with current platforms, are fairly 
lightweight, and properly handle driver recovery. 
 
3.  Operating System Environments Background 
3.1.  Linux 
 
The Linux 2.4.18 kernel, under which Nooks was originally developed, is a far simpler 
and more simplistic system than NT. Little time went into original system engineering, 
since the kernel was developed from what was began as a toy system. Linux has since 
grown in large part by accretion as new demands and new markets appeared. The 2.4 
kernel environment is relatively simple and unsophisticated compared to systems like 
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NT. Although SMP is supported, the kernel is non-preemptable, and many operations still 
hide behind a single master lock. Kernel code and data is not pageable, and most of the 
system memory space is simply direct-mapped. 
 
Device driver interfaces are similarly simplistic and accreted. Each driver interface is 
designed as a domain-specific plug-in specification for the kernel. The driver interface 
protocols and object models are much less complicated than a powerful, centralized 
interface like NT’s, though the individual, unique models are far more numerous. Support 
for power management and Plug and Play is limited and is largely implemented in user-
mode in an ad-hoc manner. This simplicity may have a silver lining, however, in that it 
may make driver development easier and hence potentially result in more reliable 
drivers.1 
 
Another distinct feature of Linux is its open-source development model. Unlike 
Windows, which operates on a binary-only economy, the Linux kernel lacks a 
standardized binary extension interface, and so the kernel and practically all its 
extensions are distributed in source form. Source code for the kernel and drivers is thus 
readily available for anyone to study from or modify, facilitating both learning by 
example and hack-like constructions. Leveraging this source-only environment, the 
kernel also relies heavily on compile-time configuration in lieu of a run-time 
configuration store like the Windows registry. An incredible variety of configuration and 
customization choices are available at compile time, often effected through preprocessor 
source code transformations, but comparatively few options can be set given a pre-
existing binary, and almost none can be set at run-time. 
 
From a research perspective, the net result is that Linux 2.4 is friendlier to budding 
research projects but less representative of a modern operating system.  With its 
simplified, partitioned architecture, Linux 2.4 makes it easier to focus on the core 
concepts and feasibility assessment of a new research system, without succumbing to the 
greater challenges and overwhelming details necessary for a mass-market production 
implementation.  However, the same simplicity also limits the efficiency, power, and 
growth potential of the operating system.  Because of this, the Linux system architects 
have been pushing more and more in the direction of an NT-like design in recent years.  
The most recent version, 2.6, incorporates a number of elements characteristic of NT, 
such as kernel preemptability and a unified driver object model.  While still 
comparatively simplistic, Linux remains a rapidly moving target. 
 
3.2.  Windows 
 
Windows, based on the NT kernel, is a very feature rich and complicated operating 
system, providing a significantly more complex programming environment than Linux.  
Unlike Linux, which was a reimplementation of the UNIX tradition, NT was designed in 
the spirit of the Digital VMS operating system.  NT was designed from the beginning 
with high goals, to be robust, secure, efficient, and concurrent, to be a server, a client, and 
much more.  The combination of these goals led to a solid but complicated system, with 
                                                 
1 For an interesting counterpoint, see [Semack04]. 
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strong binary compatibility, kernel code paging and preemption, and multiprocessing and 
asynchrony all playing a prominent role in the operating system. 
 
3.2.1.  Programming Style 
 
Windows, like its contemporaries, was built largely without object-oriented or type-safe 
programming languages.  Nonetheless, it was built using a strong foundation of 
modularity and abstractions with well-defined binary interfaces.  Besides being good 
software engineering practice, much of this work was done to support the proprietary 
binary ecology commercial operating systems are generally intended for.  Being a 
proprietary operating system, driver writers would have limited knowledge about the 
internal implementations of the system, and given proprietary drivers, Microsoft would 
have little opportunity to manage or maintain the drivers’ implementations.  Therefore, 
Microsoft had to provide a coherent, well-specified interface that provides everything 
driver writers need. 
 
This black-box approach has its good sides as well as its bad.  Driver writers have limited 
knowledge of the system and are left at the mercy of the interface designers, which can 
make their job harder, but it also limits their ability to misuse implementation details of 
the operating system to build their drivers.  This, in theory, prevents drivers from using 
operating system features they are not supposed to use and breaking when those 
behaviors change as the system evolves.  Unfortunately, many driver developers still 
discover and exploit aspects of the operating system that they shouldn’t, simultaneously 
making their drivers fragile and impeding the evolution of the system.  Thus, it seems to 
be an open question whether full access to source or access only to interface 
specifications leads to better drivers in the antagonistic third-party driver development 
model. 
 
Two additional key strategies Microsoft used to enable the system’s binary-only ecology, 
as well as to improve the system’s overall modularity, were the use of explicit binary 
modularity and the exposure of heavyweight infrastructure services such as the object 
manager, the security reference monitor, and the registry.  Binary modularity, where the 
kernel itself and its suite of core drivers are divided up into multiple loadable modules, 
means that a single suite of binaries covers most every realizable configuration, and 
installing or upgrading drivers and services never requires recompilation.  Similarly, the 
registry provides a centralized, structured store for configuration information, available 
even as the system is bootstrapping itself, which means recompilation is never necessary 
for reconfiguration either.  This stands in stark contrast to the UNIX world, where 
recompilation is a regular event, and driver source is provided not because it can be but 
because it must be.   
 
3.2.2.  Windows Driver Model 
 
The main interface Microsoft exposes to driver writers is known as the Windows Driver 
Model (WDM) [Oney02].  WDM is the primary driver model for most classes of 
hardware.  Based on the ancestral driver model of NT, it closely parallels the internal 



 8

structure of the IO manager.  The core idea of WDM is an asynchronous messaging 
model based around “IO Request Packets”, where requests generated on behalf of users 
are satisfied by propagating these packets through a stack of handler drivers.  This model 
allows fast, efficient handling of both synchronous and asynchronous IO but also 
provides the basic foundation for an extensible binary driver interface.  In particular, the 
layered structure encourages separation of concerns and supports extensibility via packet 
filters, both crucial for a viable binary ecology.  The messaging model also serves as the 
basis for the higher level functionality provided by the WDM infrastructure, such as 
device discovery, configuration, and power management. 
 
WDM is a complicated system, however, and the interactions between threading and 
asynchrony, plug and play and power management, serve to make driver development a 
rather tricky task.  Threading and asynchrony create problems because drivers must 
internally queue and later process asynchronous events delivered concurrently in multiple 
threads, all the while being prepared for request cancellation and device state changes.  
This makes for a rather painful exercise in concurrent programming [Oney02].  Plug and 
Play and power management also create their own set of problems, because each are 
presented as two conceptually separate state machines, yet whether the device is 
configured and providing service to the system, Plug and Play concept, is inherently 
coupled to the physical power state of the device, a power management concept.  The net 
result is that Plug and Play and power management, when implemented together, form a 
notoriously confusing hybrid API [Oshins04]. 
 
These services provided by WDM form an indispensable part of the system, helping to 
make Windows hardware support efficient and relatively seamless, but the APIs and 
programming environment it presents makes driver development unduly challenging and 
error prone.  Microsoft is well aware of these issues and has put a lot of effort into 
mitigating them, in the form of better abstractions, a sophisticated test harness [DV05], 
static analysis [PREfast03] and model checking tools [SDV06], and most recently, an 
entirely new driver development interface known as Windows Driver Foundation (WDF) 
[Microsoft06].  WDF is essentially a wrapper around the core WDM interface, providing 
a much friendlier suite of abstractions and turnkey solutions for many of the tricky 
problems.  Not only is WDF generally expected to significantly decrease the number of 
WDM-related bugs, the relative simplicity and clean, encapsulated design of its interface 
will likely make Nooks-style transparent isolation noticeably easier.  Nonetheless, the 
Windows driver interface remains a complex beast and a significant source of driver 
bugs, above and beyond what one would expect with more simplistic driver interfaces 
such as Linux’s.  Unfortunately, to support the majority of the market and the features it 
demands, this is the kind of complexity Nooks must handle. 
 
4.  Nooks for NT 
4.1.  Goals 
 
The original Nooks project proved very successful under the simpler environment 
furnished by Linux, but we wished to demonstrate that it would be effective not only 
there but on commodity systems in general.  Windows, given its ubiquity, complexity, 
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and deep dissimilarity from Linux, was the obvious choice.  The goal of the Nooks for 
NT project was thus to re-implement under Windows the architecture embodied in Nooks 
for Linux and to understand and document any new challenges and design questions that 
arose.  A successful implementation under Windows would demonstrate soundly that the 
principles behind Nooks hold across operating systems.  Building the system on 
Windows required significant design changes to the implementation of the Nooks 
subsystems, but the basic architecture held.  Although we stopped short of a complete 
implementation, we were able to demonstrate most of the basic principles.  We discuss 
our implementation and the lessons learned below. 
 
4.2.  The Design Under Windows  
4.2.1.  Binary Compatibility 
4.2.1.1.  NT Binary Ecology 
 
Binary compatibility is the defining challenge for Nooks on NT.  In Linux, the lax, 
source-based approach to configuration and module distribution makes it easy to 
implement quick-and-dirty approaches to compatibility.  The Linux kernel is largely 
monolithic, using preprocessor source-level configuration and exposing few standard 
binary interfaces.  Link-time binary interfaces, and sometimes even source-level 
interfaces, change from release to release.  Given this unsteady foundation, few 
application and driver providers rely on binary distribution, and most are prepared to deal 
with periodic breakages as interfaces change.  The original Nooks implementation took 
advantage of this flexible environment, altering macros, changing macros into functions, 
and occasionally modifying a few lines of driver source code.   
 
NT, however, is based around a commercial binary-only ecology, where system 
interfaces are stable and compatibility is assured by Microsoft for large spans of time.  
Application and hardware vendors, each guarding their own trade secrets, provide a 
variety of binary-only modules that must ultimately cooperate to produce a working 
system.  This is possible only because NT maintains persistent, well-defined binary 
interfaces, with long term bug-for-bug compatibility.  Subsystems are then constructed 
out of layers of binary modules, loaded at boot or dynamically, where configuration and 
layering relationships are maintained in the registry.  This yields predictable behavior and 
solid binary compatibility across versions and provides mechanisms for third parties to 
extend subsystems without access to the source code.  Unfortunately, it also proves to be 
a major source of compatibility, interaction, and misconfiguration bugs.  Third party 
kernel modules interacting with each other and with the kernel, often with incorrect 
implementations of incompletely documented interfaces, are a principal source of bugs.  
The rigidity imposed by strict binary compatibility also makes evolutionary progress 
difficult to realize.  The problem faced by Nooks thus becomes one of treading lightly, 
preserving binary interfaces with high fidelity yet protecting the system from 
innumerable mis-implementations of those same interfaces by third party drivers. 
 
4.2.1.2.  The Nooks Loader 
 
NT drivers are dynamically loaded and linked into the kernel by the kernel memory 
manager.  Because driver source code is unavailable, we interpose our wrappers to track 
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allocations and maintain isolation by modifying the kernel’s loader.  All driver binaries 
list by name the routines they import from the kernel and from other libraries.  At load 
time, the kernel loader traverses these import lists and places the routines’ absolute 
address in the driver’s “import address table” (IAT).  Rather than introduce our 
interposition logic into the complicated core of the loader, we use the standard technique 
of replacing entries in the IAT with pointers to wrapper routines, after the kernel loader 
has finished its work.  We use this mechanism to apply wrappers to all nontrivial kernel 
routines, allowing us to track control flow out of the driver.  
 
Although this load-time interposition mechanism makes tracking control flow out of the 
driver straightforward, tracking control flow back in is more difficult.  Kernel interfaces 
often employ callbacks or tables of function pointers. In many cases, we can make simple 
changes to all points in the operating system code which call into these entry points.  In 
some cases, however, the function pointers are passed around arbitrarily, sometimes even 
to other third party drivers.  It also may not be obvious statically whether a function 
pointer belongs to an isolated driver or to trusted code.  Our solution to this problem was 
to dynamically generate wrapper stubs for every new function pointer and, using the 
existing wrappers, swap out the original pointers for the new stubs at runtime.  In this 
way, we are able to interpose on all control flow in and out of the driver, allowing us to 
maintain kernel-driver isolation, track the resources exchanged across the boundary, and 
verify the correctness of the interactions. 
 
4.2.1.3.  Macros and Object Tracking 
 
In NT, global data structures typically cannot be changed, which makes tracking shared 
resources more challenging (as well as impeding kernel evolution in general).  Even data 
structures whose internals are intended to be private to the kernel often cannot be 
modified, because drivers do not always respect the official interface boundaries.  
Sometimes it is possible to make backward compatible changes to structures, such as by 
adding new fields at the end, but this too fails when drivers allocate the memory for 
structures on their own.  This means that very rarely can we insert any new fields into 
existing shared structures in order to help us track their lifecycles, verify correctness, and 
clean up garbage.  Instead, all tracking must be external to the objects, based on lookups 
in a large dictionary structure.  An equivalent structure existed in the Linux 
implementation, but in NT it took on a greater role.  Unlike under Linux, the NT object 
tracker was designed in a highly structured form with well defined interfaces.  It was used 
to store a variety of information, including object type, lifecycle status, information for 
garbage collection, ownership, reference count, and any translations necessary across the 
boundary of isolation.  This information was maintained continuously by the shell of 
wrappers surrounding the driver, tracking objects’ lifecycle events as they flowed in and 
out.  
 
As an alternative to functions, the use of macros in public interfaces is not inherently 
problematic for Nooks, but frequently their purpose is to manipulate shared objects and 
shared state.  Because macro invocations are unobservable and cannot be wrapped, and 
unlike under Nooks for Linux, macros cannot be retrofitted into function calls, object 
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tracking on macro invocations is impossible.  Instead, the effects of macros must be 
inferred after the fact from the changes they produce.  In particular, many objects may 
come “out of nowhere”, having been initialized by macros in driver-allocated storage and 
then provided to the kernel.  These must be validated and tracked on demand.  Also, 
unexpected state changes due to macro calls may occur on opaque objects already 
tracked.  These changes must be detected, validated, and responded to the next time the 
object is passed back to the kernel. 
 
4.2.1.4.  Challenges  
 
Although we successfully produced a promising start, binary compatibility for Nooks or a 
Nooks-like system on NT remains haunted by two challenges: a plethora of semantically 
rich interfaces that are difficult to wrap and numerous third party drivers that abuse those 
interfaces.  The driver interfaces on NT are very carefully engineered, but not in the style 
of a typical kernel-user interface or an RPC interface.  Indeed, they look much like high-
performance internal interfaces rather than public interfaces.2  Interfaces frequently 
employ semantically rich, complex shared data structures, often with embedded control 
information such as function pointers.  These structures typically combine both public 
and private regions, with the private regions manipulated by macros.  Some of these 
structures are even placed in driver-allocated memory, where their birth and death are 
unobservable.  Although we’ve been successful at wrapping the interfaces we considered 
so far, such interface designs make the work far more difficult and the resulting system 
far more complicated than it needs to be.  
 
Unfortunately, the complexity of these interfaces also makes them easy to confuse and 
very tempting to misuse.  Driver authors frequently misunderstand the interfaces or leave 
significant bugs in their released implementations.  Indeed, we observed special patches 
in the kernel to accommodate bugs in certain popular drivers.  Our object tracking logic 
also discovered a notable (albeit benign) bug in the Windows 2000 PS2 keyboard/mouse 
port driver’s initialization code (in handling of the notorious “pending bit” in a particular 
class of IO request packet).  Even worse is the case of intentional abuse of the interfaces, 
where driver authors can’t figure out how to achieve their goals legitimately or don’t 
have time to implement a properly engineered solution and so they violate protocols and 
abstraction boundaries in order to implement the driver’s core functionality.  One popular 
example is system call hooking, which has so frustrated Microsoft that they are taking 
steps to disallow it completely in the Vista release [Microsoft05].  In wrapping many 
interface corner cases, we found ourselves asking the question not “is this allowed?”, but 
“is this hack used?”  Nooks must support a substantial fraction of what is actually done, 
not what is formally intended by the interface design.  It remains an open question how 
flagrantly the majority of drivers violate the interfaces and how much of a barrier the 
diversity of violations would be to a large-scale Nooks implementation. 
 
4.2.2.  Libraries and Driver-Driver Interactions 
4.2.2.1.  NT IO Management 
                                                 
2 We were told off the record that the interfaces in fact were not originally designed for the public, that 
Microsoft originally intended to write all drivers in house. 
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In NT, IO support is built up in a structured hierarchy of interacting drivers.  The kernel’s 
centralized IO manager interface is common to almost all drivers, responsible for service 
requests and communication, system state changes, device enumeration, and resource 
allocation.  Even core bus subsystems like USB and PCI are implemented as ordinary 
drivers.  All hardware devices and buses in the system belong to a single global 
hierarchy, with each parent responsible for enumerating and connecting its children (see 
figure 1 below).3  Further, each node in the tree consists of a layered stack of cooperating 
driver instances (called “devices” in Microsoft literature).  User requests propagate from 
top to bottom through the device stack.  The bottommost layer in each stack is provided 
by the parent bus’s driver, above which lies the driver specific to the device itself. 
Additionally, there may be one or more “filter drivers” in the stack, which modify or 
generalize the functionality of the device.  Typical examples of filter drivers are antivirus 
and data encryption programs, which usually lay above the file system in order to 
intercept and manipulate file IO requests. Another important sort of filter driver is the 
“class driver”, a generic filter provided by Microsoft which exposes standard interfaces to 
the rest of the system.  For example, keyboard and mouse services are provided through 
the “keyboard class” and “mouse class” filter drivers, respectively. 
 

 
Figure 1 - Sample device tree, highlighting mouse device stack 
 
This centralized IO manager interface is based around a mechanism known as the “IO 
request packet” (IRP).  IRPs are an asynchronous communication mechanism, roughly 
analogous to a call stack divorced from any owning thread context.  IRPs are used as a 
                                                 
3 This hierarchy is rendered rather faithfully by Device Manager in the “View devices by connection” 
mode. 
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generic communication mechanism, employed for user IO requests, internal driver-to-
driver requests, and system state notifications.  It is IRPs that are passed down device 
stacks, created by the IO manager on behalf of users or by drivers in need of lower-level 
services.  An IRP is sent to the top of the target device stack and, like the current 
execution context in a stack of function calls, propagated recursively downward until a 
driver instance completes it and returns it back upward.  This mechanism is then used to 
implement a series of standard protocols for device attach and detach, reads and writes, 
IO control, and the like. 
 
However, despite this centralized interface, a number of device classes use special, 
device-specific interfaces known as “miniports”.  Miniports are typically wrappers 
around the central IO manager interface, intended to provide either a simpler, more 
straightforward interface or cross-platform compatibility.  By the same token, however, 
miniports constitute distinct, largely redundant interfaces that driver writers must learn 
and Nooks must support.  While Microsoft has recognized this concern and is working to 
solve it in their new Windows Driver Foundation driver model [Microsoft06], miniports 
remain a thorn to deal with in any backwards compatible reliability system. 
 
4.2.2.2.  Boundary of Isolation 
4.2.2.2.1.  Introduction 
 
The key defining feature of an isolation system is where the boundaries it creates are 
drawn.  From this perspective, virtual machines, processes, and nooks form a continuum, 
differing primarily in the boundaries they provide.  In most systems, two kinds of 
boundaries are present: the supervisor-child boundary and child-child boundaries.  For 
transparent driver isolation, placement of the former, the system / driver boundary, is a 
nontrivial architectural question, though largely a tractable one.  Since the system 
interfaces are reasonably well defined and complete source code for one side is available, 
the design can concentrate on the end goals of reliability, simplicity, and performance.  
Among Nooks-like architectures, the key challenge becomes where to put miniports, 
shared libraries, and system library services.  
 
On the other hand, where to place the boundaries among the individual black-box drivers 
is inevitably an open question, one which may not always be answerable even at runtime.  
The simplest model for driver-driver isolation would be to place each driver module in its 
own protection domain, able to fail without disturbing other drivers.  Unfortunately, this 
model is unrealistic under NT, where drivers interact directly and layer upon one another.  
As far as end-to-end functionality is concerned, this interaction necessarily ties the fates 
of different drivers together, regardless of any isolation policy.  Further, it is 
commonplace for hardware vendors to provide multiple cooperating driver modules that 
share undocumented, proprietary communication channels, which cannot be marshaled 
across domains.  Hence, it is necessary to support multiple drivers and multiple binary 
modules within a single protection domain, and somehow, to decide which modules to 
isolate together. 
 
4.2.2.2.2.   The Kernel / Driver Boundary 
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Although the overall notion of where the system / driver isolation boundary belongs is 
established by the Nooks architecture, the finer details must be resolved as 
implementation questions.  In particular, miniports and shared libraries may be isolated 
along with their corresponding drivers, treating the entire monolith as a client of the 
central IO manager interface, or they may remain with the kernel, their module-specific 
interfaces split across the boundary.  Such decisions are important, because the 
alternatives may be drastically different in terms of interface complexity and overhead. 
 
One would prefer the isolation boundary to cross whichever interface is narrowest and 
simplest, to improve the odds of producing a robust, bulletproof implementation.  For 
example, we were able to isolate our 3c905B-TX Ethernet card by wrapping about 60 
functions from the NDIS network driver miniport interface.  This was simpler than 
wrapping NDIS as a WDM driver, even though we already had a large set of WDM 
wrappers, because as a driver, NDIS is extremely complicated and broad, requiring on the 
order of 200 wrappers. 
 
Alternatively, one would prefer that the boundary crosses the interface with the lowest 
rate of invocation, to reduce the overhead of cross-domain control transfer.  This is 
particularly important for libraries that include simple, frequently used runtime services 
that, in principle, need not involve any kernel-driver communication.  In some cases, it 
may even be worth factoring out and duplicating such code within the protection domain 
– we pursued this route for our heap allocator.  Finally, it’s desirable to minimize false 
dependencies and unnecessary shared fate, to make the granularity of failure and 
recovery as fine as possible.  This becomes an issue particularly when libraries are used 
by multiple, independent client drivers yet maintain centralized shared state.  In such 
cases, the library must be hacked to sever the shared state, must reside with the kernel, or 
must be isolated together with all dependent drivers in a single, unnaturally large domain. 
 
4.2.2.2.3.   The Driver / Driver Boundaries 
 
Although the same issues of simplicity, efficiency, and fate sharing apply to the case of 
driver / driver boundaries as well, here they are largely overshadowed by the problem of 
compatibility and the tension between compatibility and adequate fault isolation.  Since 
third-party driver modules can expose arbitrary undocumented, unmarshallable interfaces 
to each other, it is imperative to know which drivers communicate using such interfaces 
so that they can be isolated together.  If this is not done correctly, serious failures can 
occur.  If two cooperating drivers are isolated in separate domains, their communication 
is generally interrupted, and the drivers will likely stop functioning or crash.  Even worse, 
if one driver is isolated and the other is not, the unprotected driver may crash and bring 
the system down.  The trivial solution to this problem would be to isolate all drivers and 
put them in the same domain, but this leads to wildly shared fates, where a single driver 
failure causes a massive interruption in system functionality.  This is further complicated 
by the separate but related problem that some drivers on the system may not be fully 
supported by Nooks; this means that neither they, nor any drivers they secretly cooperate 
with, can be isolated by Nooks.  Thus, it becomes a crucial problem to be able to divide 
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the system’s drivers into sets that do not separate any inseparable drivers but are 
otherwise reasonably fine-grained.  
 
Unfortunately, for existing drivers, this problem cannot be solved by static inspection, 
and in the most general case, is extremely difficult even at runtime.  The means of 
bootstrapping a communication relationship are varied, all of which are observable, but 
not all of which are easily interpreted.  For example, a driver could send out an ioctl-type 
IRP with a proprietary function code; this would indicate an attempt to employ an 
unmarshallable interface.  Unfortunately, it’s not always easy to determine which driver 
is the target of such an IRP.  Since IRPs are addressed to driver stacks, not drivers, any 
layer in the stack could be the destination4.  Another conceivable problem case is the use 
of presumed “safe” shared stores for driver-driver communication.  For example, two 
drivers could bootstrap their communication by passing pointers through the registry or 
the filesystem.  Although we have never observed such a disgusting abuse of the 
interfaces, it remains a possibility.  Thus, in general, this problem seems to be intractable. 
 
In practice, however, there remain a few special cases we can handle easily.  The most 
obvious solution is simply to have drivers ship with metadata listing their relationships.  
Although this is not a backward compatible solution, it is a very simple change for 
hardware vendors to add.  Also, in some cases, cooperating drivers directly link against 
each other; this is trivial to detect at load time.  Finally, it is straightforward to recognize 
the common special case of drivers that simply don’t attempt to employ any proprietary 
interfaces.  Although determining which drivers to isolate together remains a challenging 
issue for Nooks and an important question for future work, we think it unlikely to be an 
insurmountable obstacle.  In practice, we expect that using conservatively large groups of 
drivers, and in the future, using driver-associated metadata, will prove to be sufficient. 
 
4.2.2.2.3.1.   Optimization 
 
For driver-driver interactions, even though the problem of compatibility largely 
overshadows issues of efficiency and optimization, one can still say a few interesting 
words about the latter.  One might expect that, with NT’s heavy emphasis on driver-
driver interaction, it would be necessary to optimize all cases.  In practice, we find that 
domain-domain interactions are actually relatively rare.  This is because, typically, a 
driver stack includes a few well-tested, trustworthy layers from Microsoft, and only one 
or two third party drivers, which are generally best kept in the same domain -- since they 
already share fate you typically lose nothing, yet you potentially gain better performance 
and compatibility.  Hence, most interactions are either within the confines of a domain or 
between a domain and the kernel.  For driver-driver interactions inside a domain, it’s 
straightforward and worthwhile to streamline any Nooks overhead; typically, little 

                                                 
4 This issue is somewhat mitigated by the fact that all driver instances in a stack have naturally shared fates; 
interrupting service on any one of them necessarily interrupts service for the whole stack.  Thus, lumping 
together all untrusted drivers of a stack is not out of the question. There remains a problem, however, if 
some of the drivers in the stack are not supported by Nooks or if a single driver binary is instantiated in 
multiple separate stacks. 
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interference is needed.  Thus, as with Nooks on Linux, the hot spot remains at the kernel / 
driver interface; anything to reduce the number of calls is a potential win. 
 
4.2.2.3.  Reference Counting and Crash Recovery 
 
NT’s uniform approach to kernel object management introduces a new challenge for the 
process of unloading a crashed driver.  All standard “kernel objects,” drivers included, 
are managed and reference counted by the centralized object manager service.  Once a 
driver’s hardware is removed or Nooks reports that the driver has failed, driver unload 
occurs automatically when the reference count reaches zero – but the system flatly 
refuses to unload any sooner (and with good reason).  Unfortunately, referencing is a 
highly generalized mechanism; references can be held by user processes, by kernel 
objects and services, and even by other drivers.  It’s hard, perhaps impossible in some 
circumstances, to hunt down all reference holders and safely release their references.  
Instead, the solution is to convert the failed driver into a zombie, nonfunctional and 
invisible except for an object shell, its resources released.  Then, a new copy of the driver 
can be loaded, and the driver’s clients can reconnect.5 

 
4.2.3.  Memory Management 
4.2.3.1.  NT Memory Management  
 
In this section, we discuss the NT memory manager, the impact of its design on the 
Nooks architecture, and our limited implementation of Nooks memory management.  The 
NT memory manager provides the system with paged virtual memory with four gigabytes 
addressable on 32-bit x86 machines.  Under the standard configuration, the low two 
gigabytes are reserved for user space and the upper two gigabytes are reserved for system 
space.  Internally, the hardware’s two-level lookup system is used to find the page table 
entry (PTE) for a specific virtual address, where each PTE stores permission and 
translation information.  The user half of the address space is specific to the current 
running process, whereas most of the system half of the address space is global to all 
processes.  All kernel code and loadable modules (including drivers) run in system space 
and are given mostly unchecked access to all addresses. 
 
The most notable design element of the NT memory manager is the fact that it uses a 
virtually mapped kernel, with pageable code and data where possible. Up to half of 
system address space is dedicated to the large unified file cache, handled by the same 
paging mechanisms as kernel code and data.  Unlike most UNIX variants (e.g. [Shah04]), 
physical memory is not mapped at all, except temporarily in small views for I/O requests.  
In general, the system handles physical memory relatively efficiently, and that is not 
normally a kernel bottleneck.  On the other hand, kernel address space is very tight on 32-
bit machines, given the large footprint of the file cache and other pageable structures. 
 

                                                 
5 The situation would be somewhat simpler with shadow drivers [Swift04], however, where it’s unlikely 
anyone but Nooks would ever have a reference to the real driver.  Outside clients would probably only 
reference the proxy.  Unfortunately, due to legal considerations, we could not explore shadow drivers under 
NT. 
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For Nooks, the most important aspects of this architecture are the synchronization and 
dependency constraints imposed by pageability, the precious nature of address space, the 
unusual means to access user memory, and the highly dynamic nature of the system 
address space.  A few important questions also remain from the original Nooks work, 
relevant to NT and Linux alike, such as possible hardware optimizations and the 
challenge of reliably providing memory for object tracking and cloning even when free 
physical memory runs out.  We discuss these in more detail in the following sections. 
 
4.2.3.2.  Nooks for NT Memory Management Implementation 
 
The memory management architecture we implemented for Nooks was fairly simple and, 
due to time constraints, did not fill the requirements for a complete Nooks 
implementation.  It allows us to specify special read-only or read-write permissions for 
each driver for every individual page of system space.  There is no intelligent control 
over user address space – in principle, drivers are still allowed full access to user space 
addresses.  Our current implementation is incomplete in particular because privileges are 
set statically when a driver is loaded into the system, and no changes are made as the 
system is running.  Such privileges are assigned based on the major regions of the 
memory map; for example, drivers are never allowed to write to page tables or the file 
cache. 
 
To specify permissions, each protection domain has a bit vector that represents its write 
privileges for system space.  Each bit represents whether the isolated driver has read and 
write access or just read access for each PTE.  When the system enters a protection 
domain, it switches over to the PTEs for that domain, but instead of just using a copy of 
the system’s PTEs, it also checks the bit vector and masks off the write-enable bits as 
appropriate.  While the driver is running, any attempt to write to address space protected 
by the bit vector results in an access fault.  This access fault is then handled and treated as 
a fatal driver error, which the error detection subsystem catches, triggering driver 
recovery.  It is important to note that, if memory protection is comprehensive, invalid 
memory accesses are never successful and hence no memory is corrupted before the 
driver can be unloaded. 
 
We implement this architecture with a simple lazy management scheme.  Rather than 
integrate tightly with the NT memory manager, we hook the TLB flush and page fault 
handlers, otherwise treating the NT memory manager as a black box.  Each protection 
domain maintains a private copy of all the PTEs representing system address space, 
updated only when necessary.  TLB flushes are used to trigger updates for PTEs that 
were previously valid, while page faults are used to trigger updates for PTEs that were 
previously invalid.  In this scheme, new addresses are imported lazily, a potentially 
significant win since most drivers never touch more than a fraction of system address 
space.  When a page fault occurs, the page fault handler checks to see if the page is valid 
in system space but not in the domain’s private page tables, and if so, lazily imports the 
PTE.   
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Entire TLB flushes are also handled lazily.  Individual TLB entry flushes do trigger 
synchronous updates across all domains, but when the whole TLB is explicitly flushed, 
Nooks instead sets a special dirty bit on each domain.  Whenever a dirty domain is called 
or returned into, the entire page table is re-copied.  Because copying page table entries for 
all of system address space, 2MB in all, is an expensive operation, laziness is a crucial 
optimization for the common case of multiple protection domains where only a few are 
active at a time.  Indeed, although our performance is normally good, TLB flush intensive 
tasks can make the system noticeably jerky under this scheme.  Fortunately, we do not 
need to consider ordinary address space context switches as TLB flushes, because all the 
pages in system space which drivers need access to are marked global and hence are not 
flushed.6   
 
In all, the current implementation has three major limitations.  The first is that there is no 
direct access to user space addresses; this is discussed more fully below.  The second is 
that our address protection is entirely static, based on memory regions, not based on 
individual objects like the original Nooks system; the latter requires some additional 
infrastructure, including proper cloning of shared objects and a private, domain-local 
heap allocator, which we ran out of time to complete.  Finally, our performance is 
somewhat less than optimal, because of our black-box treatment of the NT memory 
manager.  Even within the black-box scheme, there was room for significant optimization 
which we did not exploit.  These limitations were mainly a result of time restrictions, 
however, and do not reflect any fundamental incompatibility between the Nooks 
architecture and the NT memory manager.  
 
4.2.3.3.  Handling User-Space Access 
 
Due to time limitations, we did not attempt to implement a complete and correct system 
for handling user-space access.  Although limited support is straightforward, supporting 
complete access to user memory in Nooks is much more complicated under Windows 
than under Linux, and thus anyone building a Nooks-like system for Windows must 
carefully consider their mechanism for user-space accesses.   
 
Under NT, access to user-space addresses through the Nooks architecture is not at simple 
as it might seem.  Unlike Linux, NT does not provide special macros or functions to 
access user addresses but instead allows kernel code to execute arbitrary instructions 
manipulating user addresses, so long as it obeys the simple precautions of calling an 
access rights verification function and wrapping accesses in a try/catch block.  
 
Because of time constraints, we did not implement proper access to user space addresses.  
This is not as much of a limitation as it might seem, however.  NT provides drivers with 
three different mechanisms to exchange data with user processes.  The simplest 
mechanism is buffered IO, where the kernel automatically double buffers user requests, 
and the driver never touches user memory.  The next method is known as direct IO, 

                                                 
6 On the other hand, the flushes associated with domain transitions impose a significant performance 
penalty of their own, since Nooks must switch address spaces and explicitly flush global pages on every 
entry and exit from a domain.  
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where the kernel provides the driver with a list of physical frame numbers to either pass 
on to hardware DMA or map into kernel address space.  Finally, under special 
circumstances, drivers may use the so called “neither IO method” and directly manipulate 
user addresses as described above.  This is relatively uncommon.  Indeed, among the 
many sample and live drivers in the driver development kit (Server 2003 edition), 
virtually none use the neither IO method to communicate with user space.  Unfortunately, 
this access method is also very difficult for Nooks to handle.  
 
Under Linux, because all accesses to user addresses must go through special macros, it’s 
straightforward to replace those macros with general purpose functions that automatically 
handle all the issues for user-space access.  Under Windows, however, arbitrary driver 
code is more like a black box, and there are no such quick fixes.  The driver’s pagetables 
must provide access to user-space as appropriate, and they must be kept in synch with 
context switches as well as address space updates.  Because the NT kernel is 
preemptable, this is difficult even on a uniprocessor, unless you are willing to maintain 
one set of pagetables for every protection domain / user process pair.  The overhead of 
implementing this directly would seem to be prohibitive.  Although we have some vague 
ideas (e.g. laziness), we do not know if there are any good solutions to this problem. 
 
One additional concern is how to set the isolation policy between drivers and user mode 
processes.  In most cases, the interfaces used between client processes and drivers will be 
standardized and wrapped, and so the memory access policy will be handled by wrappers.  
However, it’s always possible that an undocumented channel exists between a driver 
module and a user process, for example, as with an antivirus filter driver and its user-
mode counterpart.  This is not such a catastrophic situation as a hidden channel between 
drivers, because a mistake cannot crash the system, but for proper compatibility, the 
system needs a policy that allows the driver appropriate, unchecked access to the specific 
processes with which it cooperates.  Conceptually, this problem needs to be treated 
similarly to the more dangerous undocumented driver-driver interactions, where multiple 
drivers are placed in the same protection domain, but the mechanism required here is 
different. 
 
4.2.3.4.  Memory Management: Picking The Right Approach 
 
Even though we did not implement all the memory management features needed for 
Nooks, the basic TLB-based mechanisms we developed were largely capable of 
supporting them – though not necessarily efficiently.  Our design favored above all 
simplicity of implementation – a valuable goal, but one of many in practice.  Besides 
simplicity, the principal concerns we encountered for a practical, efficient 
implementation are memory overhead for storing the page tables, CPU overhead for 
keeping the page tables up to date, page locality, and address space consumption.   
 
The first main implementation consideration is memory overhead.  The current system 
uses 2MB per domain to keep separate, pre-allocated copies of the kernel portion of the 
page tables.  Though 2MB is not egregious, it can easily add up for a user wishing to 
preemptively isolate most of the drivers in their system.  In fact, however, this 2MB is 
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mostly wasted, since large portions of address space may never be mapped by the system.  
Worse, the vast majority of address space is never even accessed by any one driver.  One 
possible way to save most of this overhead is to use a more sophisticated memory 
management scheme that lazily allocates page table space when the driver first touches 
memory pages, although this may raise new concerns associated with inconveniently 
timed requests for more memory (a problem discussed more below).  Alternatively, it is 
possible to share a single, read-only copy of system’s page tables across all domains, 
creating private copies of page table pages only when a driver needs to be granted write 
access to some associated page. 
 
The next potential concern is the overhead associated with keeping domain page tables 
synchronized with changes to the system’s page tables.  In our lazy, black box 
implementation, this becomes a serious issue because of the high cost of copying 
complete page tables after TLB flushes.  It should be possible to greatly optimize this by 
invalidating en masse large chunks of the page tables rather than copying them, at the 
cost of some tricky implementation details.  Alternatively, a scheme that integrated more 
directly with the NT memory manager and synchronously updated all domains’ page 
tables together might be more efficient.  This may not be as clear a winner as it was under 
Linux, however, because unlike Linux’s rather static system address space, NT updates 
many thousands of system PTEs per second under normal load.  A third, intriguing 
possibility is to segment system address space such that isolated drivers occupy their own 
designated region.  Since no page table pages will ever map both kernel pages and driver 
pages, they can be maintained quite independently.  This maximally leverages a single set 
of read-only system page tables shared across all drivers, saving both update overhead 
and memory. 
 
Two final concerns are the locality of driver pages and the consumption of address space.  
A memory management scheme may keep a domain’s pages in special, contiguous 
regions, or it may simply use the system’s normal page allocator, leaving them scattered 
across the system address space.  Contiguous regions offer the opportunity to use large 
pages to map the domain’s memory, potentially saving on TLB misses inside the driver 
and during copy-in / copy-out.  On the other hand, they consume more memory and more 
address space, due to internal fragmentation.  System address space is a particular 
concern for NT on 32-bit machines, and with its added system memory consumption due 
to page tables and isolation overhead, Nooks does little to aid the situation.  The 
contiguous region strategy suggests a possible countermeasure, however: rather than 
mapping all drivers in memory at once, swap them in and out of a single common region 
of address space7.  Whether or not the savings justify the added complexity is debatable, 
but since Nooks causes isolated drivers to communicate through the kernel rather than 
directly among each other, swapping now becomes a viable option. 
 
If we allow ourselves to imagine some simple improvements to the x86 virtual memory 
architecture, the landscape changes dramatically.  Adding a tagged TLB would virtually 
eliminate the bursts of TLB misses due to domain transitions and, if the Nooks for Linux 
experience is any guide, result in a massive speed-up.  Moving to a 64-bit address space 
                                                 
7 This is similar to the “session space” mechanism already used in NT for multiple graphical login sessions. 
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would render address space consumption a non-issue, although page table memory 
consumption could become significantly more troublesome.  A dramatic solution to both 
TLB misses and page table memory consumption would be to separate permission 
checking from address translation at the architectural level.  Address translation 
necessarily lies on the critical path for memory I/O; permission checking does not and 
could be performed lazily before instructions commit.  Separating shared, bulky 
translation tables from private, compact permission tables should eliminate most of the 
memory overhead of protection domains and replace expensive, frequent TLB misses 
with cheap, infrequent PLB misses.  Finally, taking this to the extreme, Mondrian 
Memory Protection [Witchel02] could even eliminate much of the data copying 
associated with cross-domain calls, making lightweight protection domains almost free. 
 
Time constraints did not allow us to pursue any of the more sophisticated approaches to 
Nooks memory management, and our approach was clearly far from optimal.  In order to 
determine which design would serve best, it would be necessary to gather data on the way 
drivers utilize memory and estimate the overhead of each scheme or to implement some 
of the alternative approaches and measure which had the best tradeoffs.  Regardless, it’s 
clear there is room for substantial improvement in software beyond our current scheme, 
and even more room with hardware changes as well. So, besides the problem of user 
space access (discussed above), it appears that the memory management requirements of 
Nooks do not present any serious obstacles for NT. 
 
4.2.3.5.  Out of Memory Corner Cases 
 
Black box isolation techniques, which require cloning and tracking objects on demand, 
inherently demand memory allocations be made at arbitrary and potentially inconvenient 
times.  In particular, allocations are required when new objects from the kernel are first 
passed to the driver or when stack-allocated or driver-initialized objects are passed to the 
kernel.  Allocations are also needed on occasion for new thread stacks for the driver, new 
callback wrappers, and the like.  These allocations can be rather difficult to fulfill at high 
priority level or when the system runs out of memory.  In general, the system needs to be 
prepared to handle low memory situations gracefully.  Unfortunately, even well-hardened 
code becomes vulnerable to memory shortages when wrapped by black box isolation.  It 
is generally possible to restart the affected driver when memory runs out, but this 
potentially pushes the ill effects to user mode clients.  This memory sensitivity is thus a 
new reliability hazard introduced by adding isolation.8 
 
Although we suspect there is no practical solution to the entirety of this problem, we have 
devised (though not yet implemented) mechanisms we believe mitigate the problem to an 
acceptable level of risk.  Allocation requests at high priority level, potentially higher than 
the system allocator can correctly handle, are the easiest to handle; we simply redirect 
them to a privately maintained heap.  This then reduces the high priority problem to the 

                                                 
8 Indeed, this was one of the principal concerns about Nooks voiced by members of the NT kernel team. 
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out of memory problem, with the caveat that paging activity is impossible.9  We can 
address this out of memory problem with four different mechanisms: reserving a pool of 
memory in advance, speculatively pre-allocating memory, deferring requests, and 
gracefully downgrading protection. 
 
The standard technique for dealing with unavoidable emergency memory demands is to 
maintain a pre-allocated reserve pool.  A key difficulty with this method, however, is 
determining the right size for the pool; too large is wasteful, but too small risks running 
out.  Fortunately, for Nooks, there appears to be straightforward solution to robustly 
scaling the size of the pool.  Nooks unexpected allocations are not random; some of them 
correspond to tracking and cloning kernel resources being passed to the driver, and some 
of them correspond to driver resources being passed to the kernel. For the most part, there 
already exist readily exploitable failure paths associated with the former cases, and so 
only the latter cases present a problem.  However, the corresponding driver resources 
must necessarily reside in memory already allocated to the driver, and so the amount of 
memory currently granted to the driver is directly proportional to an upper bound on how 
much Nooks could need unexpectedly in the worst case.  Hence, by keeping in reserve a 
certain amount of memory for every page allocated to the driver, one should be able to 
satisfy unexpected allocations with reasonably high assurance. 
 
For certain cases, it’s also possible to avoid the problem of unexpected allocations by 
speculatively performing the allocations early, when the priority level is often low.  For 
example, kernel objects placed in driver-allocated memory often have an initialization 
routine and various routines for handing off the object to the kernel.  Because it’s 
possible to deallocate such an object silently by re-using or freeing its memory, Nooks 
cannot begin tracking the object immediately when initialized.  Instead, it must wait until 
the object is transferred to the kernel, which may occur at an inconveniently high priority 
level.  However, one could speculatively allocate the necessary memory at initialization, 
leveraging the common case where such objects are used repeatedly.  For drivers that do 
follow this common case, every such object now has two chances for a successful 
allocation, the first of which is usually at a low enough priority to allow paging activity.  
Only if we observe too many old, unused speculative allocations building up do we need 
to begin freeing the likely mis-speculations. 
 
Another possible solution to handling out-of-memory when a new request is passed to the 
kernel is to leverage NT’s ubiquitous asynchrony and defer processing the request until 
later.  For example, when memory is scarce, objects such as work items, deferred 
procedure calls, and IRPs can be chained onto a private linked list for later processing, 
rather than immediately allocating memory and transferring them to the kernel.  Some of 
these requests can be deferred indefinitely, in hopes of more memory being available.  
Others can be deferred to low priority level, allowing paging activity to resume.  Either 
way, deferral gives the system more opportunities to find enough memory to allow Nooks 
to satisfy the request. 

                                                 
9 A particularly troublesome case, allocation of stacks at high priority level, actually disappears entirely. 
Since thread context switching is disabled at high priority levels, we simply pre-allocate one stack per 
processor for use at high priority. 
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In cases where enough memory simply isn’t available, a final possible choice is to 
gracefully downgrade protection.  Certain allocations, such as object clones and private 
thread stacks, are necessary for proper protection but not for correctness.  If memory is 
unavailable for a clone, it is often possible to share the original instead, at the expense of 
diminished integrity guarantees.  If such steps are taken, it may no longer make sense to 
assume that the system is adequately protected from driver faults such that automatic 
recovery is safe.  However, even when all else fails, this largely eliminates the problem of 
unexpected memory allocations introduced by Nooks. 
 
4.2.4.  Asynchrony 
4.2.4.1.  NT Asynchrony 
 
NT is, by design, a highly asynchronous and concurrent system.  Unlike Linux, 
multiprocessing support was included in the kernel from the very beginning.  Also, the 
driver model and IO request processing are totally asynchronous, using the IRP 
mechanism.  Asynchrony and concurrency significantly change the landscape and the set 
of tools available within the system.  They are often challenging to work with, though 
except for one concern, by and large they do not introduce any fundamental changes to 
the Nooks approach.  In some cases, native asynchrony even presents new opportunities 
for optimization.  
 
4.2.4.2.  Synchronization Interoperability & Asynchrony Safety 
 
Although the Nooks code base is relatively simple and lightweight, it cuts across many 
layers of the system and levels of synchronization.  Core services such as the object 
tracker must run at an extremely high synchronization level, since they may be invoked at 
any time by drivers running at arbitrary synchronization levels.  In particular, NT assigns 
each processor a synchronization priority level known as the Interrupt Request Level 
(IRQL), a sort of fine-grained generalization of the interrupt enable flag.  IRQLs are the 
primary global synchronization mechanism exposed to drivers, representing a series of 
concentric per-processor locks.  Because drivers may demand Nooks services from a high 
IRQL, Nooks must synchronize against that level internally.  This makes the affected 
Nooks code trickier to construct, but more importantly, the cross-cutting nature of Nooks 
means that kernel services which were never expected to be needed at a high priority 
level must somehow be shoehorned in. 
 
One particularly troublesome example is the recovery and garbage collection code.  
Because recovery may be invoked from an extremely high synchronization level, and 
because the garbage collector must synchronize with the object tracker, many recovery 
and garbage collection routines must run at high IRQL.  Unfortunately, few kernel 
routines for freeing resources were written with this requirement in mind.  Also, many 
important library routines, such as those for manipulating Unicode names, are capable of 
running only at low priority level.  These constraints have an important impact on how 
Nooks services are structured, demanding an intricate dance between high and low 
priority levels.  Although we managed to work around the specific instances of this 



 24

problem we faced, there seems to be no guarantee that a subsystem as cross-cutting as 
Nooks will never encounter unsolvable cases. 
 
4.2.4.3.  Asynchrony in the Driver Model 
 
The heavy use of asynchrony in the driver model, combining both threaded and event-
driven programming, represents a significant source of complexity.  Basic request 
processing is tricky, but the semantics of complications such as IO request cancellation, 
Plug & Play, and power management are nightmarishly intricate in the asynchronous 
framework [Oney02] [Maffeo04] [Oshins04].  The state machines for drivers and 
associated objects are thus incredibly difficult to implement correctly, representing a 
significant source of driver bugs.  Although these bugs are generally straightforward to 
handle in Nooks, it is rather challenging to properly implement the wrappers and 
validation code to enforce correct driver behavior.  
 
4.2.4.4.  Leveraging Asynchrony to Reduce Domain Transitions 
 
In one respect, however, heavy use of asynchrony in the standard NT driver model may 
prove to be an asset.  As with most hardware-based isolation schemes, given the present 
state of commodity hardware, the single most expensive operation for Nooks is the 
domain transition.  Hence, the principal goal in optimizing such an isolation system is to 
reduce the number of domain transitions.  One effective way to do this is to batch 
requests, amortizing the cost of a single domain transition across multiple requests.  This 
is only possible if the semantics of the requests allow them to be deferred, however.  
Fortunately, these are precisely the semantics of IRPs, the principal mechanism both for 
issuing requests to drivers and for driver-driver communication.  Other common 
asynchronous mechanisms, such as “deferred procedure calls” and thread pool “work 
items”, also may be deferred and batched with later requests.  How much of an 
improvement such batching would provide in practice depends on what proportion of 
cross-domain calls are deferrable and also how often drivers synchronously wait on the 
results of such requests, but we suspect the improvement could be significant.  This may 
be an interesting question for future implementation work. 
 
4.2.4.5.  Kernel Preemptability and SMP Support 
 
Because NT was designed with fine-grained concurrency and SMP support from the 
beginning, we made an effort to determine just what would be necessary to make Nooks 
fully compatible with such an environment.  In particular, Nooks must synchronize with 
the rest of the system and synchronize within itself; simply disabling interrupts is no 
longer adequate.  As it turns out, however, for internal synchronization, what we ended 
up having to do amounted to almost the same thing.  As discussed before, because Nooks 
must support the driver executing at its device’s IRQL, it must synchronize against that 
IRQL.  This leaves most device interrupts disabled, except for the most crucial ones such 
as the clock.  Furthermore, because Nooks must synchronize across all processors, and 
because blocking synchronization is impossible at such a high IRQL, it must use 
spinlocks instead.  Thus, we protect internal structures such as the object tracker by 
raising the IRQL extremely high and acquiring a domain-wide spinlock.  Of course, we 



 25

try to hold such locks for as short a time as possible, but it’s conceivable they could be 
become a bottleneck for multiprocessor scalability. 
 
Another key concern on multiprocessor systems is the ability to bail out and restart a 
driver regardless of how many different CPUs it may be running on.  In general, it is 
crucial to prevent old driver code from continuing to run after reload, because it could 
interfere with the restarted driver on the hardware.  Furthermore, it is desirable to unwind 
as quickly as possible all threads that called into the driver, so that resources associated 
with the domain can be freed and lost user requests can be properly aborted.  On a 
uniprocessor system, aborting and unwinding other threads involves a somewhat tricky 
and messy process, but it is guaranteed that all other threads are waiting.  On a 
multiprocessor system, one must also be able to abort running threads, located on other 
processors.  Fortunately, although we have not tested this, it does not seem too 
challenging, because all threads are probed periodically by timer interrupts, and a thread 
can easily be unwound during an interrupt handler epilogue.  In NT, driver code almost 
never disables interrupts, relying on IRQLs to restrict them instead.  In the case of a very 
stubborn driver thread that had interrupts illicitly disabled, one could un-map and 
overwrite all of its memory, which would boot it out in short order. 
 
4.3.  Evaluation and Limitations 
 
Although a lot of work went into the project, there simply wasn’t enough time to 
complete a full Nooks implementation.  Instead, we followed a bottom-up approach, 
emphasizing the key infrastructure components and adding skeleton implementations of 
the higher layers sufficient to demonstrate a functional system.  Basic infrastructure 
components we completed include the loader and associated interposition mechanisms, 
protection domains and cross-domain control transfer, object tracking, and garbage 
collection.  On top of this we built a substantial library of wrappers and added object 
lifecycle logic for a number of core objects, including IRPs.  These were sufficient to 
demonstrate complete crash recovery for the i8042prt driver (PS2 keyboard/mouse) and 
partial functionality for null, beep, and mouhid (USB mouse).  We also made substantial 
progress towards supporting el90xbc5 (3com EtherLink), notable because it was an NDIS 
miniport driver, not a native driver, and because we did not have access to driver source 
code.   
 
The principal limitations of our implementation were significant but mostly due to time 
constraints.  Most notably, our memory management component provided very little 
isolation, and we allowed drivers to work directly with kernel objects, rather than cloning 
them.  We also did not support multiple driver modules per protection domain, in spite of 
the strong argument we developed for its necessity.  Our selection of wrappers and fully 
tracked objects were limited as well, though this is a task of arbitrary size; each additional 
driver demands a few, and each additional interface demands a significant number.  We 
also cut corners on performance and did not make any rigorous measurements.  Finally, 
had we had more time and been able to address the licensing issues, we would have also 
liked to try implementing shadow drivers [Swift04], a mechanism for protecting client 
applications from the disruption associated with the loss of driver state during a restart.  
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Our goal originally was to complete most of the above and conduct rigorous performance 
and reliability measurements of the resulting system, so that we could make concrete 
claims about the commercial viability of Nooks beyond the UNIX world.  Unfortunately, 
our time proved too limited.  In particular, we were unable to complete proper memory 
isolation and object marshalling, the two most critical components for meaningful 
performance measurements.  Hence, we did not attempt any formal measurements, 
although our informal tests seemed reasonable and the system was usable, despite the 
lack of tuning.  While we did not reach our original goal, we did manage to demonstrate 
most of the basic building blocks, and we believe our experience suggests that the 
remainder would not be too difficult to implement.  
 
5.  Expanding the Scope: Flyweight Isolation 
5.1.  Introduction 
 
In addition to our work applying the fundamental components of Nooks to NT, we also 
examined ways to modify the Nooks architecture to be more appealing to commodity 
system vendors and consumers.  Unfortunately, our Windows implementation was not 
complete enough to support meaningful modifications and comparison measurements, 
but we were able to perform preliminary experiments on Linux.  We noted that, while the 
performance of Nooks on Linux is generally very good, its overhead is not entirely 
negligible.  For some groups, particularly the benchmark-sensitive commodity OS 
vendors, it may yet be too large.  Given the incredibly high success rate of Nooks 
recovery, we decided to investigate whether weaker forms of isolation could provide 
reasonable reliability improvements with significantly reduced performance costs.  Our 
initial results proved quite encouraging.  The crucial questions, then, are how much 
isolation is truly necessary to provide solid reliability improvements, and how much 
performance can reduced isolation buy? 
 
We propose that operating systems can tolerate driver faults without memory isolation, in 
spite of driver code written in type-unsafe languages.  By executing drivers only on 
copies of kernel data structures, and by segregating driver memory from kernel memory, 
drivers are unlikely to corrupt the kernel when they fail.  Existing Nooks recovery 
techniques can then recover the failed driver and allow the system resume execution. 
 
5.2.  Justification 
 
Fundamentally, tolerating driver failures requires that the OS first detect driver failures 
and then recover from the failure.  Failures can be detected in many ways, including 
hardware memory protection, explicit software checks on memory accesses, or higher 
level checks interposed at the kernel-driver interface.  Recovery requires that the system, 
as a whole, be moved to a clean, un-corrupted state.  This may be done by rolling 
backwards and undoing any corruption caused by a failed driver, or by rolling forwards 
and repairing any corruption.  
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Memory isolation, as provided by Nooks and other systems, provides error detection by 
trapping illegal memory accesses, and aids recovery by limiting the scope of corruption 
to data within the driver’s protection domain.  Hence, failure recovery consists of 
discarding the contents of the driver’s domain and then recreating its contents by 
restarting the driver.  However, memory isolation alone is not sufficient to ensure that the 
corruption is limited to the driver’s domain.  Data passed out of the driver could still 
cause corruption in the OS or applications, because driver interfaces do not strictly check 
for all possible bad outputs. 
 
While simplifying recovery, full memory isolation comes at a cost, which is a result of 
the domain transition required on every call form the kernel to a driver.  In Nooks for 
Linux, given the current state of commodity hardware support, nearly half of the 
overhead is due to memory isolation.  The total overhead is negligible for most drivers 
(0-15%), but in particularly demanding drivers this cost may be too high.  Full memory 
isolation is also complex and resource intensive, because it requires maintaining either a 
whole virtual machine running a separate kernel [Erlingsson05] [Fraser04] 
[LeVasseur04] or a copy of the kernel page tables.  In both cases, providing memory 
isolation requires substantial code and many megabytes of kernel memory. Finally, full 
memory isolation may pose compatibility problems for devices or components that use 
non-standard, memory-based interfaces, because they may no longer have access to user 
memory and shared objects or, in the case of virtual machines, may access the wrong 
object, i.e. in the guest instead of the host system. 
 
Even without full memory isolation, recovery is possible for the wide variety of common, 
non-corrupting driver failures [Microsoft03] [Maffeo04] or if the scope of corruption is 
limited to the driver’s private data structures.  External manifestations such as bad 
parameter usage, violations of protocols, unresponsiveness, corrupted private heap 
headers, and invalid memory accesses can be detected at the interface between the driver 
and the kernel.  The existing recovery mechanisms from Nooks are still able to unload, 
reload, and restart a failed driver.  For errors that are detected before the kernel or 
application is corrupted, the recovery ability is equivalent with and without memory 
isolation. 
 
In general, then, if corruption is confined to a driver’s private data, the OS can recover by 
unloading and reloading the driver.  As a result, it is possible to greatly improve system 
reliability by executing drivers on private copies of kernel data, but without the expense 
of full memory protection.  We call this limited isolation flyweight isolation. 
 
5.3.  Supporting Data 
 
For flyweight isolation, we rely on separating in space the driver’s working data from 
kernel data, giving the driver separate thread stacks, a separate heap, and private copies 
of shared kernel data structures.  Whenever data is passed between kernel and driver, we 
use wrappers and the cross-domain calling mechanism to carefully validate all 
parameters, translating and synchronizing between kernel and driver copies of shared 
objects as necessary.  The removal of memory isolation may seem rather dangerous, but 



 28

this approach makes for a reasonable strategy because most memory errors are not in fact 
random “wild writes” [Sullivan91], and most instances of wild corruption turn out to be 
harmless [Messer01].  Instead, most significant corruption occurs within data structures 
already being manipulated or in nearby blocks of memory, the manifestations of common 
bugs like off-by-one errors, buffer overrun/underrun, dangling references, and race 
conditions.  By separating driver data from kernel data, we protect against the first-order 
effects of these errors, confining the corruption to within the driver.  As long as the faults 
are then detected before multiple external manifestations begin to appear, the driver can 
be swept away and the system can continue running without any adverse consequences. 
 
In a first attempt to compare how flyweight isolation behaves compared to Nooks we 
performed two experiments. First, we conducted synthetic fault injection experiments 
demonstrating that flyweight isolation detects and recovers from most of the failures 
detected by full memory isolation.  Second, we compare the performance of flyweight 
isolation to Nooks to demonstrate the performance benefits of flyweight isolation over 
full isolation. Both of these tests were done under Linux. 
 
In the first tests, we performed a set of random fault injection experiments on the pcnet32 
100Mb Ethernet driver.  We chose this driver because it is emulated by VMware, 
allowing us to perform these tests within a virtual machine.  We loaded the driver into 
memory, injected five realistic bugs into the program text, and then tested the system to 
see if it failed.  We performed these tests on three platforms: Native Linux, a system 
without any isolation or recover, Nooks, a system with the Nooks driver-fault isolation 
subsystem, and flyweight Nooks, a system with Nooks object tracking and recovery 
mechanisms but no memory isolation.  We performed 900 hundred fault injections across 
9 different types of synthetic bugs injected into the driver.  
 
  Native 

Linux 
Nooks Flyweight 

Nooks 
Crashes 163 2 3 

Table 1 – Fault injection outcomes. 
 
Table 1 shows the number of system crashes experienced on the three platforms.  The 
flyweight Nooks system experienced only one additional crash beyond Nooks and 
prevented 160 crashes as compared to native Linux.  These results demonstrate that full 
memory isolation is not required for tolerating at least a large number of driver failures.  
Rather, fault detection and recovery are the critical ingredients. 
 
To evaluate the performance benefits of flyweight Nooks, we ran a driver on the same 
three platforms and compiled the Linux kernel source tree.  These tests were done on a 
1.7 GHz Pentium 4 with 900 MB of RAM.  Because the pcnet32 driver uses little CPU, 
we instead chose the VFAT file system driver (although, unfortunately, we were unable 
to perform new reliability tests on it).  We note that compared to most drivers, VFAT is a 
worst case because of the amount of sharing with the operating system, and hence the 
amount of data copying.  In Table 2 we show the number of seconds spent in the kernel 
on our three test platforms (the time spent in user mode was unchanged).  The results 
demonstrate the savings of removing lightweight kernel protection domains with their 
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inherent page table changes and subsequent TLB misses.  The cost of the remaining 
flyweight Nooks isolation mechanisms is not negligible, however, because it still requires 
many additional data copies and lookups in the object tracker. 
 
 Native 

Linux 
Nooks Flyweight 

Nooks 
Time in 
Kernel 

38 s. 105 s. 67 s. 

Table 2 – Time spent in kernel mode when compiling the Linux kernel. 
 
Overall, these experiments demonstrate first, that flyweight isolation can provide a 
tangible benefit to system reliability by recovering from non-corrupting failures.  Second, 
they demonstrate that there can be a sizeable performance benefit to removing hardware-
based memory isolation, because it avoids the single largest overhead source in isolation 
systems. 
 
5.4.  Conclusions 
 
Although the concept of flyweight isolation shows promise, as yet it raises more 
questions than it answers.  Most fundamentally, how often do wild writes occur across 
drivers in general, and how many distinct external manifestations do typical faults cause?  
Is it reasonably safe to conclude the first external manifestation observed is in fact the 
first one experienced?  These are basic questions about the behavior of commodity code 
reacting to type-unsafe corruption, for which only rough hints exist in the literature. 
 
Another important question flyweight isolation raises is the issue of policy.  Most 
operating systems today treat failure handling as a matter of pre-ordained mechanism.  
NT, for example, immediately halts the system and writes a crash dump when it detects a 
null pointer dereference.  Linux, on the other hand, responds to the exact same fault by 
terminating the active process and printing a message to the console.  What accounts for 
the difference?  Not any documented difference in robustness to corruption, as far as we 
are aware.  Rather, we contend that this illustrates that failure handling behavior is an 
issue of policy, not mechanism, and that different user communities have different 
preferences.  Nooks adds the option of driver isolation, but it comes at a performance 
cost, which may be unacceptable for some users.  High-end, video-intensive applications 
may be a perfect example, very sensitive to driver performance but also plagued 
incessantly by driver bugs.  Flyweight isolation adds a new point in the reliability 
spectrum, allowing users to reap most of the reliability advantages of Nooks with 
significantly less cost.  Of course, as with any policy, someone must be prepared to make 
the choice. 
 
6.  Future Work  
6.1.  Nooks Performance 
6.1.1.  Breakout Access 
 
One intriguing possibility for improving Nooks performance despite the lack of hardware 
support for low-cost domain transitions is to leverage the lightweight nature of the 
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protection domains to allow partial domain exits.  Consistent with Nooks’ best effort 
design, entry and exit from a lightweight protection domain are voluntary.  The procedure 
does not depend on special secure traps or call gates but rather on a particular sequence of 
privileged operations extremely unlikely to be executed by accident.  In this vein, it’s also 
reasonable to consider partial transitions, which when invoked allow partial write access 
to kernel memory.  By exploiting obscure aspects of the x86 architecture, it is possible to 
implement such mechanisms, unlikely to be triggered by accident, but much faster than 
completely switching page tables and flushing the TLB.  Possible mechanisms include 
segment limits – reloading the segment registers could allow access to the top of memory 
– and toggling the processor’s write-protection-enable bit.  This could then be exploited 
to provide accelerated implementations of critical-path system services or cross-thread 
synchronization inside the protection domain, without the overhead of full domain 
transitions.  Whether this might be worthwhile would depend on the particular 
mechanism chosen, the particular hot spots of interest, and how sensitive their 
implementations would be to the integrity of the execution context.  If hardware 
manufacturers continue to disregard efficient support for lightweight protection, this may 
be an interesting question for implementers of Nooks-like services to explore. 
 
6.1.2.  Memory Reservation Service 
 
An interesting possibility for reducing the performance impact of memory reserved for 
unexpected allocations is to allow reserved pages to be used for non-dirty pageable 
memory while they’re not needed.  This could be encapsulated as a “memory reservation 
service,” which would allow clients to reserve quantities of memory and then guarantee 
its availability at any time, any priority level, regardless of free memory levels.  When the 
number of free or non-dirty pages in the system exceeded the sum of all reservations, the 
memory would be utilized as normal.  Only when the number of claimable pages dropped 
to the number reserved would the pages be explicitly evicted, allocated, and locked down.  
While we don’t necessarily expect a large amount of memory to be required to render 
negligible the risk from unexpected allocations in Nooks, this service could be useful 
generally, as well as helping to make the cost of Nooks more palatable to the most 
demanding of users.  
 
6.1.3.  Video Drivers 
 
Although not fundamentally different from other devices, isolating video drivers 
represents an important unexplored direction, since video drivers are notoriously 
complex, buggy, and extremely performance sensitive.  Early attempts at isolating video 
drivers using Nooks for Linux were abandoned, because Linux’s split video driver 
architecture, involving both kernel modules and a user mode X11 library, makes adapting 
the Nooks mechanisms unnecessarily complicated.  Fortunately, NT video drivers appear 
to be amenable to the ordinary Nooks isolation mechanisms, but whether the performance 
will be adequate or whether it might require special considerations such as flyweight 
isolation remains unanswered. 
 
6.2.  Quality and Generality of Isolation 
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An important question left unanswered by our work under NT is, how often do real-
world, third party drivers violate the basic interface specifications, working only by virtue 
of system implementation details?  In principle, Nooks can provide virtualization for 
most any interaction, but if every driver used its own, distinct hacks, the complexity of 
supporting most drivers could quickly become overwhelming.  Until Nooks became 
widely deployed and driver writers had to test against it, this issue might represent a 
serious practical obstacle. 
 
A related question is, how much does a cleaner, more naturally isolatable interface help 
Nooks?  Typical driver interfaces make heavy use of shared data structures and cross-
domain pointers, client-allocated memory, mutator macros, and other unpleasant 
complications for isolation.  Cleaner interfaces designed around opaque handles and 
abstract data types, such as the new WDF interface, could potentially eliminate many 
kinds of hacks and driver misbehaviors, simplify the complexity of Nooks, and, at the 
same time, reduce its overhead.  How large these possible benefits prove to be is a 
question of significant practical importance. 
 
Another possible direction for the future might be to solicit assistance from drivers 
themselves to facilitate isolation, error detection, and recovery.  If drivers explicitly 
identified what other drivers and user processes they shared fate with and communicated 
with over nonstandard interfaces, it would eliminate the problem of deciding which 
modules to isolate together.  Alternatively, if drivers employed self-describing RPC-like 
interface styles, automatically isolating drivers in spite of proprietary, one-of-a-kind 
interfaces might be possible.  Drivers might even provide lightweight integrity or 
functionality probes, signaling Nooks to restart them more promptly, minimizing 
downtime and the internal spread of corruption. 
 
A final practical question not yet addressed is how to decide which drivers to isolate at 
all.  Ideally, one might imagine isolating all drivers, but this is neither necessary nor 
practical.  Anecdotal evidence suggests some drivers are significantly more reliable than 
others; isolating them incurs a small performance hit in exchange for no real benefit.  
Furthermore, there will always be some number of drivers incompatible with Nooks, and 
attempting to isolate these drivers will cause them to fail.  In some cases Nooks will be 
able to detect these failures, but it other cases they may be too subtle.  What other 
techniques are available to help determine which drivers to isolate, besides trial and 
error?  Perhaps online repositories could provide compatibility information, or 
collaborative aggregation of fault data could help determine which drivers are most bug-
prone? 
 
6.3.  Integrity Beyond Domains 
 
How do Nooks and other isolation and recovery systems behave in the presence of 
genuine hardware problems, kernel bugs, or other unconstrained sources of corruption?  
Do they provide any benefit, helping to keep corruption confined?  Or, do they make the 
situation worse, by recovering and continuing to run when the system should be shut 
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down, masking the true problem while allowing damage to propagate?  Is it even possible 
to recognize the difference between isolated and global corruption? 
 
One interesting solution to this problem might be to attempt kernel data structure 
integrity checking.  Besides being useful for offline crash dump analysis, integrity 
checking could be a valuable online tool, serving a complementary role to Nooks.  
Integrity checking could help distinguish local, isolated corruption from global problems, 
informing Nooks whether to reboot the system or to continue recovery with confidence.  
Integrity checking could also complement flyweight isolation, allowing the system to 
perform only minimal isolation and decide after the fact whether outside corruption had 
occurred.  Integrity checking might even be a helpful debugging and analysis tool, 
shedding light on when and where corruption first appears. 
 
7.  Conclusion 
 
Operating system reliability remains a serious problem.  Over the past several years, 
much work has gone into improving the reliability of Windows and its device driver 
ecosystem.  In spite of this, device drivers remain the number one cause of crashes and a 
principal source of other, less well quantified failures including hangs and loss of 
functionality.  In this thesis, we investigated the viability under Windows of the Nooks 
approach to withstanding driver failures.  As with Nooks on Linux, we implemented a 
best effort system for handling the most common driver failure scenarios, with the 
potential to make a drastic improvement in the overall health of the system. 
 
Nooks for NT had essentially the same subsystem components as Nooks for Linux, with 
most of the implementation differences stemming from the vastly more complex 
operating system environment and driver ecosystem in Windows.  While substantial work 
remains to demonstrate a commercially viable implementation of Nooks on NT, we 
believe our work has shown that the basic Nooks architecture is equally applicable to NT 
as it was to Linux.  We successfully demonstrated the core functionality for wrappers and 
protection domains, resource tracking, garbage collection, and recovery.  Challenges 
remain, but it appears that most of the basic problems can be overcome.  Binary 
compatibility, though tricky, appears to be solvable.  Driver-driver communication 
introduces new issues, but these issues can for the most part be handled.  Isolation-
induced out of memory cases cannot be solved perfectly, but with sufficient attention 
they need not cause unnecessary disruptions. 
 
We also highlighted some of the key uncertainties and difficulties that remain.  
Synchronizing with the system in spite of the cross-cutting nature of Nooks, though 
tamed so far, remains a potential snag.  Providing drivers direct access to user space 
addresses is an outstanding problem.  Inferring proprietary communication relationships, 
though easily solvable with metadata, remains tricky for existing driver binaries.  Finally, 
drivers that misuse and abuse the interfaces could furnish a long string of headaches.  We 
are optimistic at the prospects for handling these challenges, however.  At worst, it would 
mean only a subset of legacy drivers would be supported under Nooks, and driver writers 
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would need to make some changes going forward.  We suspect the reality will be 
substantially better. 
 
While a large amount of work remains to produce a commercially viable version of 
Nooks for Windows, the benefits are likely to be substantial.  Even as crashes become 
less frequent with ongoing reliability improvements elsewhere, other Nooks-amenable 
problems such as driver hangs, power management and shutdown disruption, and loss of 
device functionality remain as serious as ever.  We believe the argument for lightweight 
driver isolation and recovery is a persuasive one.  Now, Nooks removes backward 
compatibility as an excuse. 
 
 
 
 



 34

Bibliography 
 
 
[Bershad95] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E. Fiuczynski, D. 

Becker, C. Chambers, and S. Eggers. Extensibility, safety and performance in the 
SPIN operating system. In Proceedings of the 15th ACM Symposium on Operating 
Systems Principles, Copper Mountain, CO, Dec. 1995, pages 267–284.  

 
[Butler02] Butler Group. Organizations lose five weeks in a year. OpinionWire. 04 April 

2002. 
 
[Chou01] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler. An empirical study of 

operating system errors. In Proceedings of the 18th ACM Symposium on Operating 
Systems Principles, pages 73–88, Oct. 2001. 

 
[Chou97] T. C. Chou. Beyond fault tolerance. In A. Somani and N. Vaidya, 

Understanding Fault Tolerance and Reliability. IEEE Computer, 30(4) pages 45-50, 
1997. 

 
[DV05] How to Use Driver Verifier to Troubleshoot Windows Drivers. Q244617, 

Microsoft Corp., 2005. Available at http://support.microsoft.com/?kbid=244617.  
 
[Engler95] D. R. Engler, M. F. Kaashoek, and J. O'Toole Jr. Exokernel: an operating 

system architecture for application-specific resource management. In Proceedings of 
the Fifteenth ACM Symposium on Operating Systems Principles, Copper Mountain, 
CO, Dec. 1995. 

 
[Erlingsson05]  U. Erlingsson, T. Wobber, P. Barham, and T. Roeder. VEXE'DD: Virtual 

EXtension Environments for Device Drivers. Available at 
http://research.microsoft.com/research/sv/vexedd. 

 
[Fraser04] K. Fraser, S. Hand, R. Neugebauer, I. Pratt, A. Warfield, and M. Williamson. 

Safe hardware access with the Xen virtual machine monitor. In Proceedings of the 
Workshop on Operating System and Architectural Support for the On- Demand IT 
Infrastructure, Oct. 2004. 

 
[Gray86] J. Gray. Why do computers stop and what can be done about it? In Proc. 5th 

Symposium on Reliability in Distributed Software and Database Systems, Los 
Angeles, CA, 1986. 

 
[Herder06] J. Herder, H. Bos, and A. Tannenbaum. A Lightweight Method for Building 

Reliable Operating Systems. Vrije Universiteit Technical Report IR-CS-018, January 
2006. 

 



 35

[Hunt97] G. Hunt. Creating user-mode device drivers with a proxy. In Proc. 1997 
USENIX Windows NT Workshop, Seattle, WA, Aug. 1997. 

 
[LeVasseur04] J. LeVasseur, V. Uhlig, J. Stoess, and S. Götz. Unmodified device driver 

reuse and improved system dependability via virtual machines. In Proceedings of the 
6th USENIX Symposium on Operating Systems Design and Implementation, Dec. 
2004.  

 
[Maffeo04] G. Maffeo and N. Ganapathy. Driver Hangs – Detection and Prevention. 

Windows Hardware Engineering Conference 2004. Slides available at 
http://download.microsoft.com/download/1/8/f/18f8cee2-0b64-41f2-893d-

a6f2295b40c8/DW04011_WINHEC2004.ppt.  
 
[Messer01] A. Messer, P. Bernadat, G. Fu, D. Chen, Z. Dimitrijevic, D. Lie, D. D. 

Mannaru, A. Riska, and D. Milojicic. Susceptibility of Modern Systems and Software 
to Soft Errors. HPL-2001-43. Computer Systems and Technology Laboratory, HP 
Laboratories Palo Alto, 2001. 

 
[Microsoft03] Microsoft Corp. Common Driver Reliability Issues. 2003. Available at 

http://www.microsoft.com/whdc/driver/security/drvqa.mspx. 
 
[Microsoft06] Microsoft Corp. Windows Driver Foundation. Available at 

http://www.microsoft.com/whdc/driver/wdf/default.mspx. 
 
[Microsoft05] Microsoft Corp. Kernel Enhancements for Microsoft Windows Vista and 

Windows Server Longhorn. 2005. Available at 
http://download.microsoft.com/download/9/c/5/9c5b2167-8017-4bae-9fde-

d599bac8184a/kernel-en.doc. 
 
[Microsoft05_2] Microsoft Corp. Introduction to the WDF User-Mode Driver 

Framework. 2005. Available at 
http://www.microsoft.com/whdc/driver/wdf/umdf_intro.mspx. 

 
[Oney02] W. Oney. Programming the Microsoft Windows Driver Model, Second Edition. 

Microsoft Press, 2002.  
 
[Oshins04] J. Oshins and D. Holan. WDF - Overview of PnP and Power Management 

Model. Windows Hardware Engineering Conference 2004. Slides available at 
http://download.microsoft.com/download/1/8/f/18f8cee2-0b64-41f2-893d-

a6f2295b40c8/DW04036_WINHEC2004.ppt. 
 
[PREfast03] PREfast for Drivers. Microsoft Corp. Available at 

http://www.microsoft.com/whdc/devtools/tools/PREfast.mspx. 
 
[SDV06] Static Driver Verifier. Microsoft Corp. Available at 

http://www.microsoft.com/whdc/devtools/tools/sdv.mspx. 
 



 36

[Seltzer96] M. I. Seltzer, Y. Endo, C. Small, and K. A. Smith. Dealing with disaster: 
Surviving misbehaved kernel extensions. In Proceedings of the 2nd USENIX 
Symposium on Operating Systems Design and Implementation, Oct. 1996, pages 213--
227.  

 
[Semack04] M. Semack. Linux's (Lack Of) Driver Architecture. 2004. Available at 

http://www.semack.net/Articles/LinuxsDriverArchitecture.html. 
 
[Shah04] A. Shah. High Memory In The Linux Kernel. 2004. Available at 

http://kerneltrap.org/node/2450.  
 
[Sullivan91] M. Sullivan and R. Chillarege. Software defects and their impact on system 

availability-a study of field failures in operating systems. In Proceedings of the 1991 
Symposium on Fault Tolerant Computing (FTCS), pages 2-9. IEEE, June 1991. 

 
[Swift04] M. M. Swift, B. N. Bershad, and H. M. Levy. Recovering device drivers. In 

Proceedings of the 6th USENIX Symposium on Operating Systems Design and 
Implementation, San Francisco, CA, Dec. 2004. 

 
[Swift05] M. M. Swift, B. N. Bershad, and H. M. Levy. Improving the reliability of 

commodity operating systems. ACM Transactions on Computer Systems, 23(1), Feb. 
2005. 

 
 [Wabhe93] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham. Efficient software-

based fault isolation. In Proceedings of the 14th ACM Symposium on Operating 
Systems Principles, Dec. 1993, pages 203–216. 

 
[Wang04] Landy Wang, Distinguished Engineer, core operating systems division, 

Microsoft Corp. Private communication. 
 
[Witchel02] E. Witchel, J. Cates, and K. Asanovic. Mondrian memory protection. In 

Proceedings of the Tenth International Conference on Architectural Support for 
Programming Languages and Operating Systems, pages 304–316, Oct. 2002. 

 
 
 
 


