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Abstract 

Increasing evidence points to a role for complex physical 
phenomena, including mechanical forces and bioelectricity, as 
drivers of patterning in development and regeneration. We 
developed a genetic algorithm-based approach to search the 
space of biophysical simulations for pattern-forming processes 
and use it to demonstrate that Turing-like patterns can arise 
purely bioelectrically, without requiring any variation in gene 
expression. We also identify several bioelectric components 
that can reinforce and enhance such patterns manifested in cell 
transmembrane voltages. 

Introduction 

From Turing through present day of gene-centric 
developmental biology, there has been tremendous success in 
elucidating the “chemical basis of morphogenesis” (Turing 
1952) – processes facilitated by gene regulatory pathways, 
maternal chemical pre-patterns, morphogen diffusion, and 
cell-to-cell interactions. Despite its earlier beginnings 
(Thompson 1945, Gurwitsch 1944, Burr and Northrop 1935), 
progress has been much slower on the physical basis of 
morphogenesis: Not merely regulatory phenomena combined 
with communication through contact and diffusion, but 
complex physics including electrophysiology and mechanical 
forces (Mammoto and Ingber 2010, Beloussov 2008). It is 
becoming increasingly clear that development is not merely a 
process of unfolding, pre-programmed, chemically-encoded 
computation that directs spatial orchestration. Evolution has 
exploited a range of rich physical phenomena to coordinate 
individual cell activity towards the creation and repair of 
complex, physically active, large-scale anatomy.  

One of the most exciting recent additions to the toolkit is 
developmental bioelectricity: communication and control of 
cell behavior through ion fluxes and voltage gradients (Funk 
2013). It is now clear that spatio-temporal patterns of 
membrane resting potential across tissues regulate subsequent 
structure and function (Levin and Martyniuk 2017, Levin 
2017, Sullivan, Emmons-Bell, and Levin 2016, Pai et al. 
2012), as well as underlie a number of patterning disorders 
such as birth defect syndromes (Masotti et al. 2015, Kortum et 
al. 2015) and cancer (Klumpp et al. 2016, Litan and Langhans 
2015, Bates 2015, Barghouth, Thiruvalluvan, and Oviedo 
2015). It is thus crucial to understand the origin of these 
patterns, the capabilities of such circuits, and ways in which 

they can be efficiently manipulated towards therapeutically 
desired goal states. 

Recent efforts have begun to model the fascinating 
relationships between bioelectric and biochemical signaling 
(Pietak and Levin 2016, Cervera, Meseguer, and Mafe 2016, 
Cervera, Manzanares, and Mafe 2015, McNamara et al. 2016). 
However, it's not always clear a priori which physical effects 
may be important and what they may be capable of. In the 
case of tissue electrophysiology, we have well-defined, highly 
conserved, modular components – channels, pumps, and cell-
to-cell gap junctions – with well-known, circuit-like effects on 
cell membrane voltage (albeit nonlinear and time-dependent) 
– but other interactions can potentially matter too, such as gap 
junction gating, chemical modulation, electrophoretic 
transport, changing ion concentrations, perhaps extracellular 
electric fields. These may lead to subtle and unanticipated 
phenomena. How can this be investigated? 

We would like to understand what these ubiquitous, pre-
existing components can do on their own, without requiring 
the assistance of gene regulation or additional chemical 
morphogens – mechanisms already well-known to be capable 
of evolving patterning phenomena. Analytical models can be 
of some assistance, but they quickly grow unwieldy as more 
physics is incorporated. To be successful, they require prior 
insight into how the system may be simplified for study. 
Alternatively, rich computational simulations incorporating a 
great deal of physics are available, but with dozens to 
hundreds of cell and tissue-dependent parameters, it's still a 
challenge to know where to look in order to demonstrate what 
patterning is possible – and harder still to convincingly 
demonstrate what is not possible. 

In this work we demonstrate a new approach to 
investigating the patterning capabilities offered by a 
biophysical phenomenon. By combining a rich simulator with 
a simple genetic algorithm and fitness functions tuned to seek 
out elementary patterning phenomena, we're able to screen a 
library of bioelectric components for pattern-forming abilities. 
This has led to the discovery that Turing-like patterns can 
potentially arise through a purely bioelectric process in non-
neural tissue and has identified a number of additional, 
voltage-sensitive components that can assist in such 
patterning, as well as expanding on prior results in non-neural 
bioelectric memory. Ultimately, we hope to solve the difficult 
inverse problem of automatically mapping from desired 
phenotype to specific circuit components and parameters 



(Lobo and Levin 2015) – an important challenge in 
biomedicine and synthetic bioengineering. 

Background 

All healthy cells exhibit a difference in electric potential over 
the cell membrane (“membrane voltage”, or Vmem), as a 
result of the action of ATP-driven transmembrane ion pumps 
that maintain large ion concentration gradients, along with a 
variety of specialized return channels through which the ions 
leak back through, driven by the competition between 
concentration gradients and voltage differences. The 
conductivity of these channels can be internally modulated by 
membrane voltage itself, as well as by chemical ligands and 
other signals. The resulting complex bioelectric phenomena 
are most well known in “excitable” neural and muscle cells, 
where transient opening of voltage-sensitive sodium channels 
leads to a rapid depolarization that propagates along the 
membrane. But, the basic mechanisms are present in all cells, 
even if lacking the characteristic combinations of channels 
that lead to excitability and consequent complex behavior in 
transient voltage excursions. Indeed, the exploitation of 
bioelectric circuits for information processing was discovered 
by evolution long before its speed-optimization as nervous 
systems, and even before multicellularity (Humphries et al. 
2017, Prindle et al. 2015, Kralj et al. 2011). 

The steady-state membrane voltage is affected by a variety 
of cellular processes, and in turn affects other cellular 
processes, as well as the voltage of neighboring cells. This 
resting potential is known to modulate calcium influx 
(Deisseroth et al. 2004), MAPK signaling (Zhou et al. 2015), 
and the transport of charged substances, among other effects.  

Cells are selectively coupled to their neighbors via gap 
junctions, which provide a direct cytoplasmic bridge through 
which ions and small molecules can flow (Mathews and Levin 
2017). These gap junctions, when open, allow cells to exercise 
a direct influence on the resting potentials of their neighbors. 
A wide variety of gap junctions proteins exist, selective in 
permeability for different small molecules, and regulated 
variously by trans-junction voltage, chemical ligands, and 
other signals (Harris and Locke 2009).  

Investigative approach 

Given the emerging significance of spatial pre-patterns of 
membrane voltage – patterns that anticipate subsequent 
morphogenesis – we naturally wish to understand how they 
might arise. Are they simply downstream effects of traditional 
chemistry- and regulation-centric patterning? Or are there 
processes by which the natural physics of tissue bioelectricity 
can create these patterns entirely on their own? 

Some initial insight came through the development of the 
BETSE simulator (Pietak and Levin 2016), a sophisticated, 
publicly available numerical simulator specialized for tissue 
(non-neural) bioelectricity. BETSE models connected clusters 
of cells, incorporating a wide variety of detail not found in 
common bioelectric circuit models: separate treatment of each 
ion species, nonlinear GHK transport, a global electrical 
model, and, notably, voltage-gated modulation of gap 
junctions and electrophoretic transport of biologically active 

small molecules, among other features. BETSE can also 
model experimental interventions, such as surgical cuts, 
channel blocks, and alterations to membrane permeability. A 
BETSE configuration specifies channels, pumps, and gap 
junctions, tissue geometry, intracellular and extracellular ion 
concentrations, chemical ligands (if any), continuum 
parameters like diffusion rates and ion leakage rates (via 
channels and mechanisms left unspecified), and also 
experimental interventions. BETSE's output includes a map of 
transmembrane voltage across the cell cluster over time, 
among other variables. 

Hand-crafted configurations run in BETSE demonstrated 
intriguing effects involving membrane voltage, including 
spontaneous axis induction (i.e. a gradient of polarization) and 
regeneration of severed gradients (Pietak and Levin 2016, 
2017). These results were tantalizingly suggestive, but what is 
bioelectric patterning really capable of? What kinds of 
bioelectric components does it take to produce a pattern – 
whether in evolution’s hands or our own? Rather than hand-
crafting endless BESTE configurations, we developed a 
genetic algorithm to search automatically, in parallel, for 
configurations that would yield patterning phenomena of 
interest. The genetic algorithm, termed GABEE (Genetic 
Algorithm for Bio-Electric Exploration) (Brodsky 2017), 
follows a generic, “fill in the blanks” approach to evolving a 
template configuration file. Starting from a template, GABEE 
alters the combinations of channels and parameters to produce 
a population of distinct “individuals”, which are simulated in 
parallel on a compute cluster and then evaluated based on the 
Vmem patterns that they produce. “Interesting” individuals 
are preferentially retained, mutated, and evaluated again. 

A key challenge here, however, is defining what is meant 
by “interesting”. Novelty selection (Lehman and Stanley 
2011), aiming to map out the space of possible spontaneous 
patterns, appears intriguing but seems difficult to apply, given 
the natural run-to-run variation in simulation results and the 
need to avoid selecting for numerical artifacts. Alternatively, 
prior work searching for and classifying patterns in cellular 
automata often used entropy methods (Wuensche 1999, 
Suzudo 2004), but these are not a natural fit for noisy, real-
valued physical variables, particularly so when computational 
limitations ensure simulations are far too small to estimate the 
underlying spatial probability distributions. 

The simplest analogue for entropy selection might instead 
be selecting for the amplitude of voltage variation – for 
example, the standard deviation of Vmem across all cells. 
This indeed encourages the development of interesting 
spontaneous patterns, but it also turns up also a variety of 
artifacts: numerically unstable simulations, boundary effects, 
and transient behaviors such as progressive depolarization 
caught partway through the act. Amplitude selection also 
gives only a limited view of the space of possible patterns, 
being completely insensitive to spatial structure.  

Instead, we use a set of several, more complex fitness 
functions, each designed to incorporate three elements: 

 
 Amplitude selection 
 Penalties for pathological behavior 
 Preference for some particular spatial (or 

spatiotemporal) structure 
  



These fitness functions are all hand-coded in a simple, 
Python-based combinator language provided by GABEE. 

For scoring spontaneous patterning, we evaluate the 
amplitude and structure at the very end of the simulation. In 
this case, the most important penalty is simply an aggressive 
cost applied to dVmem/dt as the simulation ends (measured in 
RMS). This encourages stable patterns, avoiding transients 
and most instabilities. We also penalize voltages outside of 
reasonable physiological ranges, regardless of when in the 
simulation they appear; this catches both physiologically 
unreasonable configurations and additional instabilities. 
Together, these penalties lead to substantially cleaner results. 

We can then evaluate the capabilities of a bioelectric 
system in terms of which types of structures it can 
successfully produce and how effectively. In this study, we 
examine three kinds of structure: spots, stripes, and bistable 
memory. The spot and stripe assays are both aimed at 
identifying spontaneous Turing-like patterns, while the 
memory assay tests whether the tissue can remember a patch 
of cells that has been experimentally depolarized and retain 
this state through the end of the simulation. The memory 
assay can be scored fairly easily, by measuring how well the 
cells match a uniform initial state prior to the depolarizing 
intervention and how well they match the intervention stencil 
long after the intervention is removed. The spot and stripe 
assays, on the other hand, are more subtle, since they must 
accept a wide range of pattern shapes. 

For the spot and stripe assays, we would like to select for 
well-formed patterns indicative of generalized pattern forming 
capabilities, and not degenerate special cases. Pattern features 
no larger than a single cell are dubious and do not clearly 
demonstrate coordinated patterning across multiple cells. On 
the other hand, features as large as the entire cell cluster are 
ambiguous in their identity and may even reflect the effects of 
boundary conditions, rather than any intrinsic process. Thus, 
we want to select for a particular band of wavelengths, not too 
short, not too long. We also need to run simulations that are 
large enough such that spots, stripes, and different 
wavelengths can be distinguished. 

Explicitly spectral methods such as filter banks and Fourier 
transforms are somewhat complicated by the hexagonal mesh, 
irregular boundaries, and small domain sizes found in typical 
BETSE simulations. Other classical image processing 
techniques are applicable, however. We found that total 
variation, defined as ∫ |∇V| dA – a generalized measure of 
perimeter (and hence selective for short wavelengths) – 
applied to a moving average filter over cells (selective for 
long wavelengths), was an effective amplitude selection 
measure favoring mid-range wavelengths. 

The final key element is distinguishing between spots and 
stripes. For simple patterning systems, the skewness of the 
amplitude distribution is one easy measure for distinguishing 
spots and stripes (Shen and Jung 2005): stripes have a 
symmetric distribution of amplitudes, and spots have a highly 
skewed distribution. To select for stripes, we penalize 
skewness, and to select for spots, we favor absolute skewness, 
albeit fed through a saturation curve to discourage it from 
becoming too extreme. 

Because of the computational heft of the BETSE simulation 
(a few CPU-minutes per run) and thus long GA generation 
times, iteratively developing and testing the fitness functions 

was a challenge. To ease the design process, we substituted a 
much simpler simulation using the Swift-Hohenberg pattern-
forming model system (Rabinovich, Ezersky, and Weidman 
2000) as a fast and easy test case until the fitness functions 
behaved satisfactorily. We settled on a stripes assay with a 
moving average radius of approximately one cell diameter and 
a spots assay with radius of two cell diameters (and also 
excluded the boundary cells). 

Interestingly, it turns out that the spot and stripe assays are 
not equal in difficulty; given appropriate initial conditions, 
rough spot-like patterns can be produced from a broader class 
of systems than stripes, including those lacking a strong 
mechanism for lateral inhibition. Random snow-like patterns, 
possibly with some progressive coarsening or filtering, can 
sometimes come out looking like passable, albeit irregular 
spots. The stripes assay appears to be more stringent, at least 
as behaved on the systems tested here, with satisfactory, 
numerically stable solutions emerging only through local 
activation, lateral inhibition mechanisms.  

Methodology details 

The simulation template used in the experiments here includes 
the following ion channels with adjustable levels of 
expression: 
  
Passive channels – Na

+
 and K

+
 membrane leaks 

  
Voltage-gated channels – 

 Nav1.6 (persistent NaV, “NaP”)1 
 Kv1.1, Kv1.2, Kv1.3, Kv1.5, Kv2.1, KSlow, KFast

2 
 Kir2.1, Kv3.4, Kv3.32 

  
Ligand-gated channels – 

 HCN2 (sensitive to cAMP)3 
 rod-type CNG (sensitive to cGMP) 
 a hypothetical olfactory-like, cAMP-sensitive CNG4 

  
The following parameters are also adjustable: 
  
Chemical kinetics – independent cAMP and cGMP 
production/decay kinetics & gap junction diffusion rates 
  
Gap Junctions – GJ ion permeability and voltage gating 
sensitivity (threshold and maximum closure) 

 
BETSE is configured with a 200μm world size and a 

regular hexagonal cell lattice. Simulations are initialized as 
per the standard BETSE initialization procedure, starting with 
uniform membrane voltage and chemical concentrations. 
BETSE's static and dynamic noise features are enabled 
(parameter values 5.0 and 10

-7
, respectively) to inject 

                                                             
1 Most other (non-persistent) varieties of NaV contribute to excitable 
behavior and do not appear to assist in the steady-state assays used here 

2 Due to BETSE limitations, channels in each of these two sets may be 

individually enabled, but expression levels are adjusted only as a group 
3 Ligand sensitivity modeled by interpolating with an n = 2 Hill function 

4  A more accurate olfactory CNG model would be simultaneously 
sensitive to both cAMP and cGMP (Kaupp and Seifert 2002) 



randomness into the simulations and to reduce the influence of 
boundary effects. BETSE defaults are used for the remaining 
model parameters. BETSE is configured with a simulation 
time step of 0.5ms (necessary to avoid instability with Na

+
 

channels) and a well-mixed extracellular environment. The 
slow chemical timescales of cAMP and cGMP are artificially 
accelerated by several orders of magnitude in order to make 
simultaneous simulation with voltage-gated channels 
computationally feasible. Analytical modeling suggests this 
should not substantially impact the steady-state results 
(Brodsky 2018). Simulations are run for 2 seconds of 
simulated time, which corresponds roughly to several hours of 
real time taking into account the accelerated timescale.  

GA runs use populations of 89 individuals with 3-
tournament selection. Mutations of real-valued parameters are 
normally distributed with a standard deviation of 10% of the 
total range for linearly scaled traits and 20% for 
logarithmically scaled traits. Crossover did not significantly 
improve performance and so was left disabled, leaving an 
asexual GA. Relatively high mutation rates (expected 3 per 
individual) and long evolutionary trajectories (400 
generations) are chosen so that most trajectories approach a 
steady state and most with a template capable of solving the 
assays here do indeed find plausible solutions.  

“Knockout” derivative templates are constructed based on 
the master template by disabling one or more bioelectric 
components. Their parameters remain as neutral degrees of 
freedom. Knockouts are chosen in attempt to narrow down 
which bioelectric components are necessary for good fitness 
and for particular visually identifiable properties. The 
different templates are separately initialized and run several 
times over for each assay, producing small collections of final 
best individuals.  
 
The fitness functions are given as follows (detailed language 
documentation is available with GABEE (Brodsky 2017)): 
  
Stripes: 
# Filtered total variation: 

reduce_avg(absvariation(movingavg(15)))  

# Skewness penalty: 

    / (0.1 + reduce_stat_moment(3) ** 2) 

# Excessive depolarization penalty 

    * (1 - reduce_avg(tanh(defval))) / 2  

# dV/dt pentalty: 

    / (1 + reduce_rms(deltaval))  

# Out-of-range penalty: 

    / (1 + time_sum(reduce_sum(1 + 

                        tanh(abs(defval) - 100)))) 

  
Spots: 
# Boundary exclusion: 

within(neighborcount >= 6,   

# Filtered total variation: 

        reduce_avg(absvariation(movingavg(25))) 

# Skewness bonus: 

          * abs(tanh(reduce_stat_moment(3)))) 

# Excessive depolarization penalty 

    * (1 - reduce_avg(tanh(defval))) / 2 

# dV/dt pentalty: 

    / (1 + reduce_rms(deltaval)) 

# Out-of-range penalty: 

    / (1 + time_sum(reduce_sum(1 + 

                        tanh(abs(defval) - 100)))) 

  

Memory: 
# Stencil-restriction: 

within(imagemask(“spot.png”, 200),  

# Saturated, range-restricted average delta: 

      reduce_avg((1 + tanh(defval / 100 + 0.3))  

      * (1 - tanh((defval - 10) / 10)) / 2)) 

# Inverse stencil-restriction: 

  * within(1 - imagemask(“spot.png”, 200), 

# Saturated average delta: 

      reduce_avg(1 - tanh(defval / 100 + 0.3))) 

# Pre-intervention: 

  * atframe(3, 

      reduce_avg(1 - tanh(defval / 100 + 0.3)))  

# dV/dt pentalty: 

  / (1 + reduce_rms(deltaval)) 

 
For each assay, abject failure is usually easy to distinguish 

– consistently low scores and a lack of any plausible solutions 
under visual inspection. A somewhat arbitrary cutoff score 
could be picked to denote “success”. However, solutions often 
seem to cluster in gradations of quality and not merely 
frequency of success, so relative comparisons based on score 
are of interest. By contrast, frequency of success reaching 
some threshold or number of generations to success seem to 
be rather noisy signals. Sometimes, templates with fewer 
adjustable components seem to have higher frequency of 
success – perhaps because there are fewer interesting local 
minima to get trapped in. To make meaningful sense of the 
knockout experiments, we would prefer to use only measures 
that monotonically improve as the number of adjustable 
parameters increases.  

Ideally, we would measure “best achievable fitness” for 
each template. If the GA is well-behaved, best achievable 
fitness should behave monotonically. However, such a 
maximum is difficult to determine accurately without large 
numbers of runs. Instead, one might compare by mean fitness, 
median fitness, or top quartile fitness. Given the skewed 
distribution of scores and small sample count, common 
parametric statistical tests are not applicable for comparing 
different templates, but a nonparametric test such as Mann-
Whitney can be used to substantiate observed differences. To 
compare different templates, we score individual GA runs by 
the average of each generation's best individual fitness over 
the final 10 generations and then compare different 
populations of GA runs with Mann-Whitney. (Care must be 
taken to use an exact Mann-Whitney test (Marx et al. 2016) 
rather than an approximation valid only in the limit of large 
populations.) 

Suspicious GA runs are spot-checked by rerunning all top-
scoring individuals with a new random seed and a halved 
BETSE time step. In general, the fitness score based on the 
final 10 generations falls in most runs by up to 30%, reflecting 
natural variability and selection bias in having picked the best 
results. Robust, stable solutions may fall only a few percent, 
while numerically flimsy results fall more. GA runs where the 
score falls by more than a factor of 10 are discarded as 
spurious, likely indicating strong selection for numerical 
artifacts. Few runs are found to fall by intermediate amounts. 

Example runs 

In this section we consider a few sample runs of the GA, 
illustrating several kinds of bioelectric patterns it finds. Figure 



1 shows three different examples evolved using the spots 
assay with the complete bioelectric template, while Figure 2 
shows examples from all three assays, evolved under different 
templates. As the spots and stripes assays show, the 
bioelectric physics is indeed quite capable of forming intricate 
spontaneous patterns, exhibiting repetitive features at a 
characteristic scale, without requiring any involvement of 
gene regulatory networks. The memory assay also shows that 
the physics can be made to remember a pattern imposed by 
external means (in this case, a circle). The patterns show sharp 
bipartite regionalization, distinguishing cells through 
membrane voltage and the concentration of diffusible ligands 
– completely independent of the cell’s transcriptional state. 

The leftmost example in Figure 1 shows a typical, high-
scoring spot pattern, while the other two examples show some 
less common results, which also happen to be less favored by 
the fitness function (convenient, though not always the case). 
The fitness trajectories show that a reasonable level of 
convergence was attained within the allotted number of 
generations, although there certainly are occasional 
exceptions. 

All three trajectories show a nontrivial rate of “failure” – 
where the numerical simulation failed to complete 
successfully for some individuals. The left two examples are 
fairly typical for failure rate (for NaV-containing trajectories), 
while the rightmost example is unusually fragile. Such failures 
are usually due to numerical instability detected within 
BETSE itself: despite the bounds configured in the template, 
the parameters provided by the GA were too aggressive and 
caused blow-ups when simulated. Often, the situation can be 
remedied by a smaller time step, but this increases simulation 
time proportionately. Since generation time is limited by the 
slowest individual, adjusting the time step per individual is 
not helpful. Instead, a global trade-off needs to be made, 

selecting a time step that can successfully simulate a wide-
enough range in the physical parameters, without being 
impractically slow. In these simulations, NaV channels, with 
their fast transition rates, seem to be the limiting constraints 
on stability. In other circumstances, a common culprit is high 
diffusion rates. It is often observed that trajectories like the 
rightmost one, with high failure rates, erratically varying 
fitness, and unusual voltages, are dancing on the edge of 
numerical feasibility and may be actively selecting for 
numerical artifacts; such results should be cross-checked by 
running winning individuals under an altered time step 
(successfully, in this case). 

Figure 2 demonstrates all three assays both under the 
complete template and under more limited, “knockout” 
templates. Unsurprisingly, there exist knockouts that eliminate 
the original patterning capability entirely (right column) – in 
this case, the removal of the CNG channels for spots and 
stripes, and the removal of both CNG and NaP for memory. 
An alternative mechanism for poor quality spots remains 
(employing NaP), while stripes are eliminated entirely. 
Interestingly, however, there also exist knockout templates 
that do not eliminate patterning but instead merely weaken it, 
producing recognizable yet qualitatively altered patterns of 
lower fitness. In the middle column, we have soft-edged spots 
and filamentous stripes, lacking sharp borders and showing 
weaker distinction between cells inside and outside the pattern 
regions. The memory assay remains rather resilient when 
stripped down, but the spot and stripe patterning mechanisms 
were apparently able to exploit a variety of different voltage-
sensitive components in order to improve pattern intensity and 
regionalization. This will be examined further in the next 
section. 

Figure 1 – Example spot-selected runs evolved under the complete template, showing final generation’s best individual (top) and fitness 

trajectory (bottom). Left: A typical, high scoring spot pattern. Middle and right: Two examples of uncommon, lower scoring spot patterns. 
Simulation failure rates (red ‘x’ marks, right vertical axis), largely due to numerical instability, are typical in the left and middle examples 

but noticeably elevated in the right example, possibly due to its heavy reliance on the voltage-gated sodium channel (present in all three 

but more prevalent in the third by at least an order of magnitude).  



Results 

Here we summarize the results of approximately 150 runs of 
the GA under different assays and templates. The fitness 
scores for the runs are illustrated in Figure 3, with the 
complete template on the left and various knockouts of 
increasing magnitude following it. The spread among 
solutions is broad, with a mixture of both good and mediocre 
solutions even among the results of the complete template. 
There are, however, some strongly significant differences 
among the knockouts, pointing to key roles played by several 
different types of bioelectric components. 

Inspection of individual solutions shows that a great many 
employ the NaP channel when available, and it appears to be 
central to good-quality memory solutions. Every knockout 
lacking NaP, and only knockouts lacking NaP, show a 
statistically significant drop in fitness on the memory assay. 
The knockout lacking both NaP and CNG shows consistent, 
complete failure. It appears that NaP is both necessary and 
sufficient among the variables considered here for the best-
scoring type of memory solution (while CNGs also allow a 
lesser-quality solution, similar to spontaneous spots). The 

mechanism is presumably along the lines suggested by 
Cervera, Mafe, et. al. (Cervera, Manzanares, and Mafe 2015, 
Cervera, Alcaraz, and Mafe 2016), where the positive 
feedback of a sodium channel's voltage gating – opening in 
response to the depolarization, and causing depolarization by 
opening – yet not subsequently slamming shut like classical 
NaV channels do – leads to “negative resistance” and cell-
autonomous Vmem bistability.  

On the other hand, this mechanism alone is clearly 
insufficient for good quality spots and stripes, where CNGs 
appear to be critical among the components included in our 
template. All CNG knockouts show dramatic drops in fitness 
on the spot and stripe assays, with performance bordering on 
complete failure. 

Inspection of individual solutions shows that the high-
scoring spot and stripe results seen here employ high 
concentrations of one or both CNGs, often at the upper limit. 
The mechanism appears to be a form what we have dubbed 
“autoelectrophoresis” – where a charged ligand gates an ion 
channel in such a way that the electric potential becomes more 
attractive to the ligand, which then electro-diffuses inward 
through gap junctions from neighboring cells. This increases 

Figure 2 – Example results for each of the three assays under the complete template (left), a knockout template demonstrating weaker 

performance (middle), and a different knockout template leading to complete failure (right). Top: Spots assay under full (+NaP +KIR 

+Kv +VGGJ +CNG), minimal (+CNG), and insufficient templates (+NaP +KIR +Kv +VGGJ); run scores 31.9, 21.8, 4.3. Middle: Stripes 
assay under same full, minimal, and insufficient templates; run scores 879, 578, 17.4. Bottom: Memory assay under full, intermediate 

(+NaP +VGGJ +CNG), and insufficient templates (+Kv +VGGJ); run scores 2.48, 2.27, 1.16. 

 



the ligand's concentration locally while depleting it elsewhere 
– a form of local activation, lateral inhibition. This effect has 
been observed theoretically in earlier work with BETSE 
(Pietak and Levin 2016), and in a companion work, inspired 

by early results from the GA, we demonstrate with a 
specialized analytical model that the mechanism is indeed 
capable of producing rich, Turing-like patterns (Brodsky 
2018). The mechanism is shown to be closely analogous to the 
aggregation of bacteria via chemotaxis, as captured in the 
classic Keller-Segel model (Hillen and Painter 2008). Here, 
our results indicate that a set of real, well-characterized 
channels – the CNGs – are physically capable of performing 
this patterning feat, in conjunction with their ligands cAMP 
and cGMP. 

It is likely that other ligand-gated channels are also capable 
of autoelectrophoretic patterning – but not all of them. HCN2 
(also gated by cAMP), which we have included in our models, 
does not seem to share this ability. In nearly all examples 
here, it is strongly down-selected. This is despite experimental 
evidence that it is important in development (unpublished); 
presumably its significance lies in considerations not captured 
by our model or fitness functions. Because of its low 
expression and the lack of plausible solutions in the absence 
of CNGs, we did not attempt to manipulate HCN2 in the 
knockout experiments, anticipating little effect. 

Interestingly, the spot and stripe assays show a much more 
subtle trend across the other knockouts. No single component 
other than CNG causes a statistically significant loss of fitness 
when removed. However, the simultaneous removal of NaP, 
KIR, Kv, and voltage-gated gap junctions (VGGJs) causes a 
very significant loss of fitness, giving rise to “weaker” results 
of the sort depicted in the middle column of Figure 2. These 
components are quite heterogeneous – NaP is a depolarizing 
channel, while KIR and Kv are hyperpolarizing, and VGGJs 
are neither, instead affecting the communication between 
neighboring cells. An obvious commonality is that they are 
sensitive to voltage – but so is HCN2. These components each 
seem to have different ways of enhancing regionalization, and 
apparently any one alone is often sufficient. The components 
and their effects share some similarities with previously 
observed “contrast-enhancing” components (Pietak and Levin 
2017) but are even broader. NaP presumably works through 
its negative resistance, tuned to a lesser level than in the 
bistability results. VGGJs, which in their own way have a 
negative resistance-like property, presumably work by 
providing sharp isolation between neighboring cells once the 
voltage difference reaches a certain threshold. It is not yet 
clear how the K+ channels help, or even which ones are 
responsible. Analytical modeling suggests they might work by 
providing a high effective impedance for the CNG channels 
(Brodsky 2018) – in circuit terms, an active pull-up. These 
voltage-gated adjuncts may also be useful even in traditional 
gene-regulatory patterning mechanisms for Vmem; further 
investigation is needed. 

Conclusion 

We have demonstrated the use of a simple genetic algorithm 
to screen a bioelectric physical simulation for pattern forming 
phenomena. This also serves as a proof-of-principle for the 
important and difficult inverse problem of translating desired 
outcomes into bioelectric mechanisms. We uncovered several 
different kinds of patterns, including the first demonstration of 
Turing-like bioelectric patterns, and identified the CNG and 
NaP channels as examples of key drivers among our ensemble 

Figure 3 – Fitness scores for multiple GA runs of each assay under 
different templates. Top: Spots. Middle: Stripes. Bottom: Memory. 

Shaded regions indicate statistically significant distinguishability 

from full template (leftmost column), all cases p < 0.01 one-tailed 
Mann-Whitney. Dashed lines indicate distinguishability from 

adjacent column, p < 0.05 two-tailed Mann-Whitney. 



of test components. We also showed that a wide variety of 
voltage-gated components could assist in such patterning, 
leading to stronger, sharply regionalized patterns.  
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