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Abstract

This paper considers the structure of addresses contained
in IP traffic. Specifically, we investigate the structural char-
acteristics of destination IP addresses seen on Internet
links, considered as a subset of the address space. These
characteristics may have implications for algorithms that
deal with IP address aggregates, such as routing lookups
and aggregate-based congestion control. We find that ad-
dress structures match a constructive multifractal model
with two parameters, which may be useful for simulations
where realistic IP addresses are preferred. We also develop
concise characterizations of that structure, including ac-
tive aggregate counts and discriminating prefizes. We find
that for a given site, our structural characterizations are
stable over short time scales, and different sites have vis-
ibly different characterizations, so that the characteriza-
tions make useful “fingerprints” of the traffic seen at a
site. Also, changing traffic conditions, such as worm prop-
agation, significantly alter these “fingerprints”.

1 Introduction

The behavior of individual flows—single connections or

streams of packets between the same source and destination—

has received extensive analysis for a number of years. How-
ever, as the Internet continues to expand in speed and
size, the gulf between such “micro-flows” and their com-
bined behavior when aggregated grows ever wider. To date,
studies of aggregate traffic have focused on questions of
behavior at a particular level of granularity: for example,
correlations in packet arrivals seen en masse on a link [12],
patterns of backbone traffic when partitioned by direc-
tionality, transport protocol, and application [21, 15] or
viewed at /8, /16 and /24 prefix granularities [2], or the
overall distributions of individual connection characteris-
tics [5, 17]. These studies have made significant progress in
understanding the structure of specific types of aggregates,
but the question of how behavior changes as aggregation
increases has received little attention beyond basic statis-
tical multiplexing models. Yet there is clearly a world of

difference between an individual TCP connection and a
Gbps backbone stream from one city to another.

Ultimately, we would like to build towards a theory of
traffic aggregation. For example, what do we get when we
merge together two already-large conglomerates, say for
traffic engineering purposes? The work described here is
modest in scope compared with this goal. We look at one
of the simplest conglomerate properties we could investi-
gate: how a conglomerate’s packets are distributed among
its component addresses, and how those addresses aggre-
gate. However, these properties form an important part of
any model of the routing behavior of conglomerates in the
network; and it turns out that even these simple properties
exhibit surprisingly rich structure.

The paper body begins with descriptions of our method-
ology and data sets (Sections 3 and 4). We then examine
the factors that give rise to an interesting property of agg-
regates, namely that the distribution of packets per desti-
nation prefix aggregate has a heavy, Pareto-like tail (Sec-
tion 5). This is related to the well-known “mice and ele-
phants” phenomenon, whereby some flows contain vastly
more packets than others. By applying different types of
random shuffling, however, we show that address struc-
ture—the arrangement of active addresses in the address
space—has a greater effect on aggregate packet counts
than the per-flow packet distribution, at least for medium-
to-large aggregates such as /16s. This motivates our inves-
tigation of address structure, since we must understand
it before we can understand the independently important
property of aggregate packet counts.

When examined spatially, as in Figure 2, the struc-
ture of the set of addresses in a trace appears broadly
self-similar: some structural features reappear at differ-
ent scales. We therefore explore fractal address models in
Section 6. It turns out that real address structures may
usefully be analyzed using a two-parameter multifractal
model. This parsimonious model captures much, though
not all, of the address structure observed in our traces,
and provides promise both as a means for accurately syn-
thesizing address structures for simulation purposes, and
for providing an analytic framework for further exploring
aggregation properties. This model is the core result of the
paper.

In Section 7, we further explore our data sets and our
model using concepts and analytic tools designed for an-
alyzing address structures. We finish in Section 8 with a
look at how address structure properties vary: over time,
from site to site, and for different types of traffic. We find



Trace Description

Ul Access link to a large university
U2 Access link to a large university
Al ISP

A2 ISP

R1 Link from a regional ISP

R2 Link from a regional ISP

W1 Access link in front of a large Web server

Time (hr) N  Packet count Sampled?
~40 69,196 62,149,043 no
~1.0 144,244 101,080,727 no
~ 0.6 82,678 33,960,054 no

1.0 154,921 99,242,211 10

1.0 168318 1,476,378 1/256

2.0 110,783 1,992,318 1/256
~20 124,454 5,000,000 no

Figure 1—Characteristics of our traces.

that the structure of aggregates seen at a site is steady over
time, that different sites exhibit distinctly different address
structures, and that broadly distributed traffic patterns
such as the Code Red 1 and 2 worms of July and August
2001 have, not surprisingly, their own striking signature.

The appendix presents supplementary graphs using ad-
ditional data sets and parameters.

2 Related Work

We are are not aware of similar previous work on char-
acteristics of IP address structure. More broadly, much ef-
fort has gone into modeling the structures of traffic bursts
in the Internet; measured traffic appears to be self sim-
iliar [22, 12] and exhibit multifractal characteristics [7].
Attempts have also been made to model other aspects of
the Internet, such as the the power law relationship of the
Internet topology [6]. Krishnamurthy and Wang [11] have
previously investigated the properties of client addresses
aggregated according to BGP routing prefixes. Their re-
sults indicate that client cluster size has a heavy-tailed dis-
tribution. Recently, researchers have started to investigate
IP address prefix based aggregate properties for aggregate
congestion control [13].

3 Destination Prefix Aggregation

We begin with the fundamental definition of what makes
up a traffic aggregate. In this paper, two packets are in the
same aggregate iff the first p bits of their destination ad-
dresses are equal. (Different aggregate sizes use different
p.) Destination address prefix makes a good aggregate def-
inition for several reasons:

— IP addresses were built for prefix aggregation. The ini-
tial IP specification divided addresses into classes based
on 1- to 4-bit address prefixes. Depending on class, an
8-, 16-, or 24-bit network prefix determined where a
packet should be routed [19]. Classless inter-domain
routing [8], which replaced this system as address blocks
became scarce, kept the notion of identifying networks
by address prefixes, but allowed those prefixes to have
any length.

— IP routers make their routing decisions based on des-
tination address prefix—a longest-prefix-match lookup
on all routes keyed by the packet’s destination address.
Therefore, the characteristics of observed destination-

prefix-based aggregates intimately affect route cache
strategies.

— Other router algorithms that work on aggregates, such
as aggregate-based congestion control [13], often define
aggregates by destination prefix, since routers already
use them for route lookup.

— Address allocation proceeds in prefix-based blocks. IANA
delegates short prefixes (which contain many addresses)
to other organizations, which then delegate sub-prefixes
to their customers, and so forth. This property can re-
late other aggregate definitions—geographic location or
round-trip time, for instance—back to address prefixes.

Nevertheless, one could usefully define aggregates in many
other ways, such as by destination geographic area or ap-
plication protocol.

We use CIDR notation for prefixes and aggregates.
Given an IP address a and prefix length p, with 0 <
p < 32, “a/p” refers to the p-bit prefix of a or, equiva-
lently, the aggregate containing all addresses sharing that
prefix. An aggregate with prefix length p is called a p-
aggregate, or, sometimes, a “/p”. A p-aggregate contains
232=P addresses, so aggregates with short prefix lengths
contain more addresses; the single 0-aggregate contains all
addresses and a 32-aggregate is equivalent to a single ad-
dress. We use the terms “short” and “long” when referring
to prefixes, and “small” and “large” when referring to agg-
regates; short prefixes correspond to large aggregates, and
long prefixes to small aggregates.

4 Data Sets

Our packet traces originate at locations that generally
see a lot of traffic aggregation, including access links to
universities (Ul and U2) and Web sites (W1), ISP routers
with peering, backbone, and client links (A1 and A2), and
links connecting large metropolitan regions with a major
ISP backbone (R1 and R2). The traces date from between
1998 and 2001. Their durations range from 1 to 4 hours;
their packet counts range from 1.4 million to 101 million.
We write N for the number of distinct destination ad-
dresses in a trace; it ranges from 70,000 to 160,000. Some
traces were pseudo-randomly sampled at the packet level.
Figure 1 presents high-level characteristics of these data
sets.
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Figure 2—The address structure of data set Ul, with two succes-
sive 32X magnifications. We draw a box for every nonempty address
prefix; the Y axis is prefix length. A single address would generate a
stack of 33 boxes, each half the width of the one below. The topmost
boxes are extremely thin!

192.0.0.0 255.255.255.255

Trace duration 1 hour
Sampling ratio 1/256
Number of packets 1,476,378
Number of non-TCP/UDP packets 36,445
Number of TCP/UDP flows 680,663
Number of active addresses (N) 168,318
Number of active 16-aggregates 5,785

Figure 3—Characteristics of trace R1.

Many of our traces have been anonymized as if by
tepdpriv —A50 [16]. This applies an anonymization func-
tion f to every IP address in the trace. The function pre-
serves prefix relationships, so given addresses a and b and
any prefix length p, a/p = b/p iff f(a)/p = f(b)/p. All
our analysis methodologies are indifferent to this kind of
anonymization.

All of the traces are omnidirectional. That is, each trace
contains all packets passing by the trace location, regard-
less of whether the packets were heading “towards” or
“away from” the trace point. This choice was mandated by
the anonymization of some of our traces. However, we ex-
perimented with algorithms to extract likely unidirectional
traces from omnidirectional ones. On seeing a packet with
source address a and destination address b, we can assume,
modulo spoofing and misrouting, that a is on one side of
the link and b is on the other. Running trace R1 through a
conservative algorithm based on this insight yielded three
address sets: 12% of addresses were “internal”, 68% were
“external”, and 21% could not be classified. The structural
metrics (see Section 8) of the whole trace follow those of
the “external” addresses, probably because there are rela-
tively few “internal” addresses.

Given omnidirectional traces at locations with symmet-
ric routing, we would expect the set of source addresses in
the trace to roughly equal the set of destination addresses.
Still, we examine only destination addresses.

Figure 2 shows the destination addresses present in
trace Ul. We draw a box for each aggregate containing at
least one address present in the trace. Other traces look
generally similar.

5 Importance of Address Structure

We now turn to the distributions of the number of pack-
ets per TCP/UDP flow, destination address, and destina-
tion address aggregate for trace R1. These packet count
distributions are significant for congestion control and fair-
ness applications, for example. We see that all three dis-
tributions are heavy-tailed, and demonstrate that address
structure is the most important factor affecting aggregate
packet count distributions for medium-sized aggregates.

Figure 3 summarizes relevant characteristics of trace

R1.
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Figure 4—Log-log complementary CDF of packet counts for R1
flows, addresses, and 16-aggregates. All are consistent with power-
law distributions. The fit lines have slopes —1.46, —1.16, and —1.13,
respectively.

5.1 Packet count distributions

Log-log complementary CDF graphs form a well-known
test for heavy-tailed, or power-law tail, distributions. These
plots show, for a given x, the fraction of entities that have
weight & or more, with both axes in log scale. Power-law
distributions appear as straight lines for sufficiently large
x.

Figure 4 presents a log-log complementary CDF of the
packet counts of TCP/UDP flows, addresses, and 16-ag-
gregates in the R1 data set. The graph’s X axis marks the
number of packets attributed to an entity—flow, address,
or aggregate. (The largest entities in the trace are visi-
ble as the endpoints of the lines. The largest flow in the
trace contains 3,727 sampled packets, the largest destina-
tion address has 27,020 sampled packets, and the largest
16-aggregate has 187,227 sampled packets.) All three dis-
tributions appear to have power law tails. That is, the
chance that an entity has weight greater than x is propor-
tional to £~ with 0 < a < 2; here, « is approximately 1.46
for flows, 1.16 for addresses, and 1.13 for 16-aggregates.
These values were calculated by least-squares fit to the
upper 10% of the distributions’ tails, less the last 5 points.
Other traces have similar packet count distributions, al-
though some have less heavy tails.

We might have expected TCP/UDP flow packet counts
to appear heavy-tailed, as they in fact do. Prior work has
shown that Web flow weights follow a heavy-tailed distri-
bution [4], and 70% of R1’s packets, and 89% of its flows,
use ports 80 (http) or 443 (https). However, we might also
have expected large aggregates to appear less heavy-tailed
than flows or addresses. Each 16-aggregate can contain
tens of thousands of flows; the sum of so many finite dis-
tributions would tend to converge, however slowly, to a
normal distribution. This is not what we see in Figure 4.
Why does the 16-aggregate packet count distribution ap-
pear, if anything, more heavy-tailed than the flow packet

count distribution?

5.2 Factors affecting aggregate packet counts

Conceptually, aggregate packet counts depend on three
factors:

1. Address packet counts: How many packets are there
per destination address?

2. Address structure: How many active addresses are
there per aggregate? (We call a destination address
active when its packet count is at least one. Thus,
address structure measures where packets are headed
without differentiating between popular and unpop-
ular destinations.)

3. The correlation between these factors: Do addresses
with high packet counts tend to cluster together in
the address space? Or do they tend to spread out?
Or neither?

Obviously, the per-address packet count distribution will
dominate the packet counts of small aggregates. A 30-ag-
gregate, for example, can contain at most four addresses,
so address structure and correlation have minimal impact
on aggregate packet count. But what about medium-to-
large aggregates, such as /16s?

We can determine the relative importance of the three
factors by altering each factor in turn, then comparing the
resulting aggregate packet count distributions with those
of the real data R1.

1. “Random counts”: This transformation replaces all
address packet counts in the data set with numbers
drawn uniformly from the interval [0, 17.54]. This de-
stroys address packet counts and correlation while
keeping address structure the same. (17.54 is twice
R1’s mean address packet count.)

2. “Random addresses”: To alter address structure, we
randomly choose 168,318 addresses from the address
space, then assign R1’s address packet counts to those
addresses. This preserves the address packet count
distribution while destroying address structure and
correlation.

3. “Permuted counts”: To destroy any correlation be-
tween the two distributions while preserving the dis-
tributions themselves, we keep the original addresses,
but randomly permute their packet counts.

Figure 5 shows the results for 16-aggregates. All three
generated sets differ from the real data, but unlike “ran-
dom counts” and “permuted counts”, the “random ad-
dresses” line differs significantly across the entire range of
values. This underlines the importance of address struc-
ture: for medium-to-large aggregates, address structure
has a greater effect on aggregate packet counts than ad-
dress packet counts.!

1For 20-aggregates and smaller, “random counts” matches less well
than “random addresses”—at first for the largest aggregates, then
eventually, with increasing prefix length, for almost all aggregates.



1 [y =79 T T T T 1]
0.1 \\\\ —
|- \\
L \\
[a) \
(@) r 5 |
> 001 . ]
I} X
< N
2 YA L
E [ N N .
(7] 5
o 0.001 VA i
O \\
L SR |
0.0001 R1 ]
[ -~ Permuted counts
------- Random counts g
Random a}ddresses ‘ ‘ ‘ |

1 10 100 1000 10000 100000 1e+06
Aggregate packet count

Figure 5—Complementary CDF of 16-aggregate packet counts for
R1, R1 with random address packet counts, R1 with random ad-
dresses, and R1 with permuted address packet counts (but the same
addresses).

6 Multifractal Model

Figure 2 shows that real address structures look broadly
self-similar: meaningful structure appears at all three mag-
nification levels. We now validate that intuition by present-
ing a multifractal model for observed address structures.
Of course, true fractals have structure down to infinitely
small scales, while addresses bottom out at prefix length
32. Nevertheless, this is enough depth to make fractal mod-
els potentially valuable.

6.1 Fractal dimension

An address structure can be viewed as a subset of
the unit interval I = [0,1), where the subinterval A4, =
[a/232, (a + 1)/23?) corresponds to address a. Considered
this way, address structure might resemble a Cantor dust-
like fractal [14, 18]. Cantor dusts have fractal dimension
between 0 and 1. What would be the dimension of our
address structure?

The lattice box counting fractal dimension metric nat-
urally fits with address structures and prefix aggregation.
Lattice box counting dimension measures, for every p, the
number of dyadic intervals of length 27P required to cover
the relevant dust. These dyadic intervals correspond ex-
actly to our p-aggregates.

Given a trace, let n, be the number of p-aggregates
that contain at least one address present in the trace as a
destination (0 < p < 32). Any nonempty trace will have
no = 1, since the single 0-aggregate covers the entire ad-
dress space, and n3z = N is the number of distinct destina-
tion addresses present in the trace. Furthermore, since each
p-aggregate contains and is covered by exactly two disjoint
(p + 1)-aggregates, we know that n, < npy1 < 2n,. Using
this notation, lattice box counting dimension is defined as
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Figure 6—n, as a function of prefix length for several traces, with
a least-squares fit line for R1’s 4 < p < 14 region (fit slope 0.79).

In other words, if address structures were fractal, log n,,
would appear as a straight line with slope D when plotted
as a function of p. We would actually expect to see startup
effects for low p (higher slope than the true dimension)
and sampling effects for high p (lower slope than the true
dimension, because there’s not enough data to fill out the
fractal). Figure 6 shows a log plot of n, as a function of p;
we find that, for a reasonable middle region 4 < p < 14,
n, curves do appear linear on a log-scale plot. For R1, a
least-squares fit to this region gives a line with slope 0.79.
Thus, R1’s nominal fractal dimension is D = 0.79.

6.2 Multifractality

Adaptations of the well-known Cantor dust construc-
tion can generate address structures with any fractal di-
mension. Starting with the unit interval, one repeatedly
removes the middle portion of all subintervals. The rela-
tive size h of the removed portion determines the Hausdorff
dimension of the resulting set:

_ log 2
logi(1—h)

(For the canonical Cantor dust, h = /3 and D = log 2/ log 3.)
Any address interval A, containing a point of the resulting
dust could represent an active address.

Such Cantor dusts can capture the global scaling be-
havior of aggregate counts. However, real address structure
is more complicated than what they can predict. Dusts
have the same local scaling behavior everywhere in the ad-
dress space, modulo sampling effects. Traces, on the other
hand, populate portions of the address space quite differ-
ently, as can be seen in Figure 2. This results in different
local scaling behavior, the essence of multifractality.

To test if a data set is consistent with the properties of
multifractals, we use the Histogram Method to examine its
multifractal spectrum [18]. Let pp(a) denote the “mass” as-
sociated with the dyadic interval of length 277 containing
a. For us, this is the probability that a randomly chosen
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Figure 7—Multifractal spectra for R1 and Cantor dusts, p = 16.

active IP address is contained in the aggregate a/p. Let
op(a) denote the number of active addresses in the aggre-
gate a/p; then p,(a) = op(a)/N. When pp,(a) > 0, the
local scaling exponent a,(a) is defined as follows:

oy (a) = 108120 __log(0p(a)/N)

~ log2—P plog2

To calculate a multifractal spectrum, first compute a his-
togram of a,. That is, decide on a set of evenly-sized his-
togram bins, and for each bin B;, calculate F;, the number
of aggregates a/p whose «y,(a) value lies within that bin.
The multifractal spectrum plots f,(B;) = log F;/p versus
the binned scaling exponents.? For multifractal data, this
spectrum will collapse onto a single curve for sufficiently
large p. Our data sets are dominated by sampling effects
for large p, however, so we examine medium p instead. The
solid line in Figure 7 shows R1’s multifractal spectrum at
p = 16; spectra at nearby prefixes are similar. It covers a
wide range of values. The dashed line corresponds to an
address structure sampled from a Cantor dust with fractal
dimension 0.79, the same as R1’s nominal fractal dimen-
sion. 168,318 addresses were sampled, giving the dust the
same number of addresses as R1. The resulting structure’s
multifractal spectrum is narrow compared to that of R1.

6.3 Model

The original Cantor construction can be easily extended
to a multifractal Cantor measure [10, 20]. Begin by assign-
ing a unit of mass to the unit interval I. As before, split
the interval into three parts where the middle part takes
up a fraction h of the whole interval; call these parts I,
I, and I>. Then throw away the middle part I, giving
it none of the parent interval’s mass. The other subin-
tervals are assigned masses mg and mo = 1 — mg. Re-
cursing on the nonempty subintervals Iy and I» generates
four nonempty subintervals Iyg, Ip2, I20, and Iss with re-
spective masses mg?, moma, mamg, and mo?. Continuing

2Strictly speaking, the multifractal spectrum is continuous; this is a
binned approximation.
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Figure 8 —Multifractal spectra for A2 and its model, p = 16.

the procedure defines a sequence of measures ujp where
e (Iey  e,) =me, X --- X myg, (each g; is 0, 1, or 2); these
measures converge weakly towards a limit measure p. To
create an address structure from this measure, we choose
a number of addresses so that the probability of selecting
address a equals j(A,). If mg = ma = Y, this replicates
the Cantor construction. If mg and msy differ, however, the
measure y is multifractal. Although the set of mathemat-
ical points with nonzero mass equals the original Cantor
set, and has the same basic fractal dimension, the mea-
sure’s unequal distribution of mass causes the sampled set
of addresses to exhibit a wide spectrum of local scaling
behaviors.

We constructed another set of addresses, the “R1 Model”,
by generating 168,318 addresses according to a Cantor
measure with basic fractal dimension D = 0.79 and with
mo = 0.8 (chosen to fit the data). The dotted line on Fig-
ure 7 shows its multifractal spectrum. The single param-
eter myg is sufficient to make the model match real data
fairly well at all scaling exponents.

We created similar models for several other traces, us-
ing fractal dimensions and mg as follows:

Trace D mo Trace D mo
R1 0.79 0.80 A2 0.80 0.70
Ul 0.73 0.72 W1 0.83 0.75

Each trace’s fractal dimension D was measured as the
slope of the least-squares fit line on a graph of log, n,
versus p for 4 < p < 14. Each trace’s mass proportion my
was chosen so that the model’s multifractal spectrum cov-
ered a similar range as that of the trace. Figure 8 shows
the multifractal spectra for A2 and its model at p = 16.
All of these models broadly match the real data’s mul-
tifractal spectra. The trace spectra cover different ranges
of scaling exponents, but modifying mg seems sufficient to
capture this variation. In particular, raising mg increases
the range of scaling exponents on the spectrum, as one
would expect. We also experimented with fixing mg at our
optimal guess and varying D. As D rose above the mea-
sured dimension, the model’s fractal spectrum fragmented



into more spikes; as it lowered below the measured dimen-
sion, the model’s spectrum smoothed out, but also covered
a narrower range of scaling exponents and fell below the
real spectrum.

6.4 Causes

Why might IP addresses appear to be multifractal?
This area needs more investigation, but there is an attrac-
tive, intuitive explanation. Multifractals can be generated
by a multiplicative process or cascade that fragments a set
into smaller components recursively—for example, taking
out the middle subinterval as in a Cantor set—while re-
distributing mass associated with these components ac-
cording to some rule—for example, a higher probability
of further populating the resulting left subinterval. This
brings to mind the way IP addresses are allocated: ICANN
assigns big IP prefixes to the regional registrars, the regis-
trars assign blocks to ISPs, who further assign sub-prefixes
to their customers, and so forth. For social and histori-
cal reasons, many of these allocation policies may share
a simple basic rule—for example, left-to-right allocation.
Together, these processes would generate a cascade, and
multifractal behavior.

7 Metrics

We have seen that a surprisingly simple model of ad-
dress structure captures the multifractal behavior of real
data. Now, we test that model against generic structural
metrics that describe how addresses are aggregating. Our
goal is to test whether the multifractal model matches
real data in simple summary metrics with real-world rel-
evance, in addition to the multifractal spectrum. We in-
troduce three characterizations: active aggregate counts,
which measure where nontrivial aggregation takes place;
discriminating prefixes, which measure the separation be-
tween aggregates; and aggregate population distributions,
which show how addresses are spread across aggregates.

7.1 Active aggregate counts (n, and 7p)

One measurement of how densely addresses are packed
is simply how many aggregates there are. A trace con-
taining 10,000 distinct destination addresses might have
a single active 16-aggregate, if the addresses were closely
packed, or 10,000 different 16-aggregates, if they were max-
imally spread out. The active aggregate counts n,, intro-
duced in Section 6.1, capture this notion by counting the
number of active p-aggregates for every p. For instance, nig
is the number of active 16-aggregates: the number of /16s
that contain at least one address visible in the trace as a
destination. A model of active aggregate counts might af-
fect the design of algorithms that keep track of aggregates
by showing how many aggregates there are on average.

The ratio v, = npy1/np is often more convenient for
graphing than n,, itself. Figure 9 shows the values of -, for
R1, A2, and our multifractal model tuned for R1; Figure 10
additionally shows the model for A2. v, drops vaguely lin-
early from 2 to 1, corresponding to exponential growth
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in aggregate counts that gradually flattens out as prefixes
grow longer. (7, always lies between 1 and 2.) The models’
plots are smoother than the real data for p > 6 or so, but
they do match in broad outline. For example, note how the
plots for A2 and its model dip lower than those for R1 and
its model at p > 18. The bumps in v, at p = 8, 16, and 24
are probably caused by traditional class-based address al-
location, still visible in +, years after the introduction of
CIDR [9].

Some properties of trace locations may be inferred from
graphs of «,. For example, A2’s ~, is lower than RI1’s
around p = 18 to 24, but higher for p > 26. This means
that more of A2’s aggregation takes place at long prefixes:
active addresses are closer to one another than in R1. We
hypothesize that A2’s location, at an ISP with both peer-
ing and customer links, accounts for this; maybe A2’s di-
rect customers have relatively many closely-packed active
addresses.?

3We note that our algorithm for identifying “internal” and “exter-
nal” addresses in omnidirectional traces, which classified 79% of R1’s
addresses, was able to classify only 21% of A2’s addresses. This might
indicate a complex conversation pattern, such as high levels of com-
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Figure 11—Discriminating prefix example with 4-bit addresses. The
top boxes are active addresses; lower boxes represent active aggre-
gates, as in Figure 2. Each active address’s discriminating prefix is
shown inside its box.

7.2 Discriminating prefixes

Active aggregate counts measure address density, but
cannot always characterize address separation. An address
might be the only active address in its half of the address
space, in which case we would call it well-separated from
other addresses, or it might be part of a completely popu-
lated 16-aggregate. The n, and 7, metrics cannot always
distinguish between cases where all 16-aggregates (say) are
equally populated, so all addresses are equally separated,
and cases where some 16-aggregates are fully populated
and others are sparsely populated, so some addresses are
more separated than others. To measure address separa-
tion, we introduce a new metric, discriminating prefixes.

The discriminating prefix of an active address a is the
prefix length of the largest aggregate whose only active
address is a. Thus, if the discriminating prefix of an ad-
dress is 16, then it is the only address in its containing
16-aggregate, but the containing 15-aggregate pulls in at
least one other active address. Figure 11 demonstrates this
concept on an example set of 4-bit-long addresses. If many
addresses have discriminating prefix less than 20, say, then
active addresses are generally well separated, and we’d ex-
pect aggregates to contain small numbers of active ad-
dresses.

We turn discriminating prefixes into a metric by calcu-
lating m,, the number of addresses that have discriminat-
ing prefix p, for all 0 < p < 32. Since every address has
exactly one discriminating prefix, > 7, = N.

Figure 12 graphs m, for R1, A2, and our R1 model.
The traces’ discriminating prefixes range widely, indicat-
ing wide variability in address separation. Discriminating
prefixes get surprisingly low: one R1 address has a discrim-
inating prefix of 6 (since mg > 0), meaning that some active
6-aggregate contains exactly one active address. (However,
the majority of addresses have discriminating prefix 26 or
higher.) The model captures this range in discriminating
prefixes, although it does not create discriminating prefixes
as low as the real data. Simpler models, such as random
address assignment, sequential address assignment, and a
monofractal Cantor construction, create much narrower
ranges of discriminating prefixes.

munication among A2’s customers. Intuitively, such a communica-
tion pattern—for example, if several of A2’s customers were differ-
ent campuses of a single organization—might correlate with closely-
packed active addresses.
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7.3 Aggregate population distributions

Aggregate population distributions provide a more fine-
grained measurement of how addresses are aggregating at
a given prefix length. The population of an aggregate is
the number of active addresses contained in that aggre-
gate. (In Section 6.2, we expressed this as op(a).) All p-
aggregates might have similar populations, meaning ad-
dresses are spread evenly among the active aggregates.
Given our experience with the other metrics, however, we
would expect p-aggregates to exhibit a wide range of pop-
ulations for short-to-medium p. (Longer-prefix aggregates
contain fewer addresses, so there isn’t as much room for
variability.)

Figure 13 graphs 8- and 16-aggregate population distri-
butions for R1 and our R1 model on a log-log complemen-
tary CDF: for a given z, the Y axis measures the fraction
of aggregates with population at least x. (This is the same
kind of graph as the aggregate packet count distributions
in Section 5.1.) As expected, aggregates exhibit a wide
range of populations. The multifractal model echoes the
real data, particularly in the tail region.
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It is worth noting that aggregate population distribu-
tions are the most effective test we have found to differ-
entiate address structures. For example, before generating
our multifractal model, we developed an algorithm that
generates a random address structure exactly matching a
given set of v, values, discriminating prefixes, and even
discriminating prefixes for aggregates. Despite the fitting,
the aggregate population distributions generated by the
model were far off the real data, much farther off than our
current multifractal model.

Aggregate population distributions also demonstrate
our model’s limitations. Figure 14 shows distributions for
A2 and its model. The model is pretty far off. Overall, the
models for R1 and W1 match their traces’ aggregate pop-
ulation distributions well, while the models for A2 and Ul
do not. The most obvious difference between these sets of
traces can be seen on plots of v,. A2 and Ul have lower
amounts of aggregation at medium-to-long prefixes than
R1 and W1, but higher amounts of aggregation at long
prefixes. In Figure 9, for example, A2’s v, dips apprecia-
bly below that of R1 for 18 < p < 25, only to rise above
it for p > 27. Our current multifractal model does not
achieve both these properties simultaneously; if a model
has low ~, for 18 < p < 25, it has low v, for p > 27.

8 Properties of v,

We now turn from the multifractal address model to the
vp metric itself. In particular, we investigate 7,’s proper-
ties as a concise characterization, or “fingerprint”, of the
traffic visible at a location. Is vy, dominated by the sheer
number of active addresses (N)? Does the 7, graph change
over short time scales at a single location? And how do un-
usual events, such as heavy worm propagation, show up in

Tp ?

8.1 Sampling effects

All of our structural characterizations depend, to some
degree, on N, the total number of active addresses ob-
served. Sampling gives a useful analogy. Think of an ad-
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Figure 15—, for Ul, and for longer and shorter traces from the
same data.

dress trace as a sampling of an underlying discrete prob-
ability distribution, where each destination address has a
fixed probability. N, then, resembles a sample size. How
much do n, and 7, depend on this sample size? For ex-
ample, if we sampled shorter or longer sections of a trace,
how would that affect ~y,?

We vary N by examining contiguous sections of a 24-
hour trace containing Ul as a 4-hour-long subset. These
shorter and longer sections effectively represent differently-
sized samples of the same underlying probability distribu-
tion, assuming the distribution didn’t change significantly
over the 24-hour period.*

Figure 15 shows v, for Ul traces with durations rang-
ing from 24 hours to 6 minutes. The number of active ad-
dresses varies over more than an order of magnitude, from
161,560 to 11,838. We would expect the v curve to shift
downward as N decreases, since N is the product of the
v¥ps. For small sample sizes, and the 6-minute trace in par-
ticular, the shape of the curve also changes significantly—
the characteristic bumps at p = 16 and 24 have disap-
peared and the curve turns up significantly for p > 24,
a property not visible in any other section.> The other
curves, however, resemble one another, and differ visibly
from other data sets. (Compare Figure 9, for example.)

8.2 Short-term stability

For address structure characterizations to be useful as
traffic “fingerprints”, they must not vary too much on the
order of minutes or even one hour under normal traffic
conditions. We will see that this is indeed the case.

To examine +,’s stability over time, we break traces
U2, A1, and A2 into sequential nonoverlapping segments,
each containing 32,768 addresses. That is, we process the

4The distribution almost certainly does change but, as Figure 15
shows, not enough to affect the argument.

5 A possible explanation: Like all our traces, Ul contains bidirectional
data. At long time scales, the large variety of external sites visited
will dominate visible address structure. At short time scales, that
variety cannot express itself, so the structural dynamics of internal
addresses become more important.
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traces in temporal order, collecting addresses and packet
counts; but just before recording the 32,769th address, we
output the current section of the trace and start a new
one. The traces break into about 10 sections each. The
segments from a given trace all last for about the same
duration; the average duration is 6.7 minutes for U2, 5.5
minutes for Al, and 7.5 minutes for A2. We would like
sections from the same trace to resemble one another, and
to differ from sections from other traces.

First, we calculated the average number of addresses
that adjacent sections have in common. If 32,767 addresses
are the same, then obviously the sections will have similar
characteristics. In fact, about half of the addresses change
from section to section; the first and second Al sections,
for example, share just 15,239 addresses.

Despite this major address turnover, Figure 16 demon-
strates that the shape of the 7, curve remains quite stable,
especially for medium-to-large p. Each line shows the av-
erage 7, for the sections of some trace; the error bars on
that line show the maximum and minimum -, values in
any section of that trace. For much of the address space,
the error bars from different traces do not even overlap.
Note that N is identically 32,768 for every section on the
graph: differences between traces are caused purely by ad-
dress structure.

8.3 Worms

Up to this point, we have examined the characteristics
of address structures under normal network conditions.
Now we consider how worm propagation, and specifically
the propagation of Code Red 1 and 2, affects address struc-
ture.

The Code Red worm [3] exploits a buffer overflow vul-
nerability in Microsoft’s IIS webservers. In order to spread
the worm (version 1 and 2) to as many hosts as possi-
ble, the worm generates a random list of IP addresses and
tries to infect each one in turn. Code Red 1 picks addresses
completely randomly. Code Red 2, by contrast, attacks ad-
dresses with greater probability that lie within the same

10

I ‘ ‘ : ‘
2 18 Jul, pre-Code Red
A 19 Jul, Code Red 1 —---- s
' 3 Aug, pre-Code Red 2 ------
4 Aug, Code Red 2 -
1.8 -
1.6 -
=
1.4
12 -
1 L
| | | | | | ‘
0 4 8 12 16 20 24 28 2

Prefix length p

Figure 17—, for external addresses before and after Code Red 1
and 2.

aggregates as the infected host. (Three-eighths of the time,
it chooses a random address within the same /16; one-half
of the time, it chooses within the same /8; one-eighth of
the time, completely randomly.) This reduces the time that
the worm wastes on dead addresses.

We would expect this behavior to completely change
address structure observable at the edge of the Internet.
Any site has a usual probability distribution for the ad-
dresses that might be expected to access it in a given
time; Code Red would add all infected hosts to that dis-
tribution. Also, the sheer magnitude of Code Red would
change the address structure by changing the rate at which
new addresses enter the system. We examine the address
structure not to advocate its use for worm detection, but
to demonstrate network behavior very different from the
normal conditions described elsewhere in this work.

We obtained hour-long flow traces from a national labo-
ratory taken the day before Code Red 1 hit (July 18, 2001,
N = 2,332); the first day of Code Red 1’s widespread in-
fection (July 19, 2001, N = 167,563); the day before Code
Red 2 hit (August 3, 2001, N = 79,563; Code Red 1 was
still active); and the first day of Code Red 2’s widespread
infection (August 4, 2001, N = 63,954). Unlike our other
traces, these contain only the addresses of hosts outside
the laboratory that attempted to open connections inside
the laboratory. This avoids effects from the lab’s own in-
fected hosts.

As expected, Code Red wildly changed the structure
of addresses seeking to contact the lab. Figure 17 shows a
plot of ~y, for the four traces. The July 18 line is represen-
tative for connections predating Code Red: small IV, small
vp. After Code Red, a much broader range of addresses
contact the lab, raising NV and the aggregate ratio. The
aggregate packet count distribution, shown in Figure 18,
changes as well; it drops, since many aggregates have been
added that contain only unsuccessful probes. Figure 18
may also demonstrate a distinction between Code Red 1
and Code Red 2. There are more medium-sized aggregates,
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perhaps because Code Red 2’s locality means that net-
works near the lab in IP space tend to probe it more of-
ten.

9 Conclusion

This paper demonstrates that address structure is key
to understanding interesting properties of large aggregates,
such as their packet count distributions. We presented a
multifractal model of observed addresses, and showed that
it well models many properties of the address structures
we collected. We developed specific structural character-
izations to examine how addresses aggregate at different
levels. Finally, we demonstrated that address structure dif-
fers between sites, yet is relatively insensitive to sample
size and stable over short time scales.
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