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Abstract 

 
Due to recent advances, Wireless Sensor Networks are moving out of the laboratory and into the 
field. For a number of reasons, there is likely to be a significant need to be able to remotely update 
the software in sensor nodes after deployment. The need for remote software updates is driven both 
by the scale of deployment, and the potential inaccessibility of sensor nodes. This need has been 
recognized since the early days of sensor networks, and research results from the related areas of 
mobile networking and distributed systems been applied to this area. However, there still remain 
important questions to be answered. In this paper we present the first comprehensive survey of 
over-the-air WSN software updating. Based on this, we identify the need for a cohesive framework 
as the key open research question, and identify autonomic computing as a candidate solution 
technology. 

  
I Introduction  
 
Software updating has always been an important topic for sensor networks. In the 1978 Distributed Sensor Networks 
Workshop, three important functional requirements were identified: the need for dynamic modifications, the need 
for heterogeneous node support, and the need to integrate new software versions into a running system [1]. More 
recently, other functional requirements have been identified as: the need for the update to reach all the nodes, and to 
support fragmentation [2], the ability to update all the code on a node, and cope with packet loss [3], the need for 
distributed version control, bootloaders, and update builders and injectors [4], the ability to update the update 
mechanism itself, to reconfigure non-functional parameters (such as performance or dependability) without needing 
to update all the affected applications, and the need for utilities to provide users with standardized ways to manage 
online changes [5], and the need for overall management of the software update process [6]. 
 
Performance requirements have been identified as follows: unintrusiveness (i.e. remote programming), low 
overhead, and resource awareness, and especially to minimize flash rewriting [4], minimize impact on sensornet 
lifetime, and limit the use of memory resources [2], minimize processing, limit communication to save energy and 
only interrupt the application for a short period while updating the code [3], possibly meeting real-time constraints 
[7], fit within the hardware constraints of different platforms [8], cope with asymmetric links and intermittent 
disconnections, have a low metadata overhead during stable periods, provide rapid propagation, and be scalable to 
very large, high density networks [9]. 
 
Security and robustness are also key issues for remote WSN software updates. Security is critical as an insecure 
software update mechanism would provide a trapdoor to circumvent any other security measures. Three key issues 
in the secure update of distributed system software are to provide: integrity, authentication, privacy, and secure 
delegation [10], and intrusion detection [11]. Robustness is critical as the ability to download new software into a 
node introduces a whole new set of failure modes. These include identifying and handling failure (or corruption) of 
the updated application, other applications, the operating system, and of the network [12], to tolerate hardware and 
software failures, to monitor system status [5], and to meet other dependability criteria (availability and reliability) 
[13]. 
 
Ease of use and maintenance have been identified as key factors in the future success of wireless sensor networks 
[6]. Remote software updating is a core component of both, improving ease of use by providing flexibility in a 
deployed network, and directly supporting the maintenance function. 
 



In this paper we present the first comprehensive review of software updating in wireless sensor networks, and 
identify a number of future research challenges and directions.  
 
II Review of WSN Software Updating 
 
WSN software update research is described here under the three categories identified in [6]: the sensor node 
execution environment, the protocols for disseminating the update, and reducing the size of transmitted updates. 
Common issues addressed by these are power efficiency, performance, security, and dependability. The 
relationships between these categories and WSNs is summarized in Figure 1. 
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Figure 1 – Relationships between Research Categories 

 
In this survey we only consider work directly related to software updating in WSNs – noting, however, that much of 
this work is built on results from distributed systems, mobile systems, embedded systems, broadcast mechanisms, 
mobile agents, middleware, routing protocols, data dissemination and collection protocols, and software updating for 
other classes of computer systems. 
 
A) Protocols 
 
The protocols developed for disseminating a software update in a wireless sensor network are primarily based on 
data dissemination protocols, for example Directed Diffusion [14] and RMST [15]. The key differences between 
protocols for data collection and for software updating are: (a) the data flow for software updating is from the 
gateway to the nodes, and (b) the transport must be reliable. The normal pattern for dissemination protocols is a 
three-step: advertisement of available software, selection of a source, and reliable download to the target, which may 
then become a source in turn (Figure 2). This may be reversed by use of a ‘subscription’ approach, but for WSN’s 
this results in significantly increased overhead at the source/server end of the connection. 
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Figure 2 - Dissemination Protocols 

 
 
 



• Deluge [16] 
 

Deluge is a data dissemination protocol and algorithm for propagating large amounts of data throughout a WSN 
using incremental upgrades for enhanced performance. It is particularly aimed at disseminating software image 
updates, identified by incremental version numbers, for network reprogramming. There is no support for 
heterogeneity: the same image is disseminated to all nodes in the network. The program image is split into fixed 
size pages that can be ‘reasonably’ buffered in RAM, and each page is split into fixed size packets so that a 
packet can be sent without fragmentation by the TinyOS network stack. A bit vector of pages received can be 
sent in a single TinyOS network packet. Nodes broadcast advertisements containing a version number and a bit 
vector of the associated pages received, using a variable period based on updating activity. If a node determines 
that it needs to upgrade part of its image to match a newer version, then, after listening to further advertisements 
for a time, it sends a request to the selected neighbour for the lowest page number required, and the packets 
required within that page. After listening for further requests, the sender selects a page, and broadcasts every 
requested packet in that page. When a node receives the last packet required to complete a page, it broadcasts an 
advertisement before requesting further pages – this enhances parallelisation (‘spatial multiplexing’) of the 
update within the network (as the node can now issue further requests in parallel with responding to requests 
from other nodes). The protocol keeps the state data to a fixed size, independent of the number of neighbours. 
There are no ACK’s or NACK’s – requesters either request new pages, or re-request missing packets from a 
previous page. There is no global co-ordination to select senders; heuristics are used to try and elect relatively 
remote senders in order to minimise radio network contention. Incremental updating is supported through the 
use of Complete Advertisements which indicate which pages in an image have changed since the previous 
version; requesters can then request just the changed pages. Future versions of Deluge are expected to address 
the following issues: control message suppression, running updates concurrently with applications, explicitly 
reducing energy consumption, and support for multiple types and versions of images. 

 
• Deployment Support Network (DSN) [17] 

 
An alternative to either accessing the nodes individually, or accessing them over the sensor network, is to 
provide a parallel, maintenance network – a “Deployment Support Network” (DSN). Accessing the nodes 
individually for a software update is normally impractical for two reasons: the large number of nodes, and the 
inaccessibility of the nodes. Accessing them over the wireless sensor network itself has several disadvantages: it 
relies on the network being operational, it has an impact on the performance of the sensor network, and it 
depletes the nodes’ energy. A DSN of small, mobile, temporarily attachable nodes can provide a solution to 
some of these problems. Providing virtual connections from a host PC to the individual nodes allows normal 
host tools to be used in updating the software.  
 

• Imapla/ZebraNet [18] 
 

Impala is the middleware layer of the ZebraNet wireless sensor network, which uses wildlife tracking as a target 
application in the development of a mobile wireless sensor network. Impala provides an event-based 
middleware layer, which is specially designed to allow applications to be updated and adapted dynamically 
through the use of application adapters. Events are processed by the Event Filter and then dispatched through 
these Application Adapters to the appropriate application. Zebranet nodes are intended to be situated in large 
numbers in places inaccessible to system administrators, and to support this, Zebrenet supports high node 
mobility, constrained network bandwidth, and a wide range of updates (from bug fixes, through updates, to 
adding and deleting entire applications). Applications consist of multiple, shareable modules, organized in 2K 
blocks. The Application Updater allows applications to continue running during updates, and can process 
multiple contemporaneous updates; version numbering is used to ensure compatibility of updates with existing 
modules. It also handles incomplete updates, and provides a set of simple sanity checks before linking in a new 
module. Software updates are performed in a 3-step process: firstly the nodes exchange in index of application 
modules, then they make unicast requests (using node ID as a tie-breaker) for updated modules, and finally they 
respond to requests from other nodes, by transmitting the first packet for the first requested modules. The 
backoff timer increases exponentially if all neighbours have the same software versions – this significantly 
reduces management traffic, but can delay updates when two originally separated groups of nodes (at different 
version numbers) become connected. If memory space is exhausted, then older incomplete version are deleted. 
When software reception is complete, then after performing simple sanity checks, the old version application is 
terminated, the modules in the new version are linked in, and the new application is initialised prior to use. 

 



• Infuse [19] 
 

Infuse is a TDMA-based protocol for disseminating bulk data in location-aware sensor networks. Nodes 
periodically select predecessors and successors; energy is reduced by a selective listening policy, turning off the 
receiver for other TDMA slots; the selective use of predecessors and successors also prevents broadcast storms. 
A base station broadcasts a start-download message containing a version ID and specifying the number of 
capsules in the new data sequence. It then sends the capsules in subsequent TDMA slots. Receivers forward the 
start-download message; when they receive data modules they save them to flash and forward them. When the 
last capsule is received, it signals the application that the download is complete. Two different loss recovery 
mechanisms are discussed in their paper: Go-Back-N, based on implicit acknowledgements; and Selective-
Retransmission, based on explicit, piggybacked acknowledgements. By selecting preferred predecessors, energy 
use can be reduced further. The authors claim that Infuse has more effective pipelining than Deluge, as all the 
sensors receive the data capsules at approximately the same time, avoiding the CSMA contention at the middle 
of the network seen in Deluge. 
 
• MNP [10] 

 
MNP is targeted at MICA2 motes running TinyOS and uses the XNP boot loader along with a dedicated 
network protocol to provide multi-hop, in-network programming. The MNP protocol operates in 4 phases: 
1. Advertisement/Request, where sources advertise the new version of the code, and all interested nodes make 

requests. Nodes listen to both advertisements and requests, and decide whether to start forwarding code or 
not (this acts as a suppression scheme to avoid network overload); 

2. Forward/Download, where a source broadcasts a StartDownload message to prepare the receivers, and then 
sends the program code a packet at a time (in packet-sized segments) to the receivers to be stored in 
external memory (EEPROM) – there is no ack, the receiver keeps a linked-list of missing segments in 
EEPROM to save RAM space; 

3. Query/Update, where the source broadcasts a Query to all its receivers, which respond by unicast by asking 
for the missing packets (segments) – these are then rebroadcast by the source node, and then another Query 
is broadcast until there are no requests for missing packets. The receivers, having received the full image, 
now become source nodes and start advertising the new program; 

4. Reboot, entered when a source received no requests in response to an advertisement, where the new 
program image is transferred to program memory, and the node reboots with the new code. 
A node sends a download request to all senders, this assists in sender selection, and also allows the hidden 
terminal effect to be reduced (as other potential senders can overhead this request). The sender selection 
algorithm attempts to allow only one active sender in a particular neighborhood. Flow control is rate based, 
determined by the EEPROM write speed (of the MICA2 mote).  

 
• MOAP [2] 
 

MOAP is a multi-hop, over-the-air code distribution mechanism specifically targeted at MICA2 motes running 
TinyOS. It uses store-and-forward, providing a ‘ripple’ pattern of updates; lost segments are identified by the 
receiver using a sliding window, and are re-requested using a unicast message to prevent duplication; a keep-
alive timer is used to recover from unanswered unicast retransmission requests – when it expires a broadcast 
request is sent. The basestation broadcasts publish messages advertising the version number of the new code. 
Receiving nodes check this against their own version number, and can request the update with subscribe 
messages. A link-statistics mechanism is used to try to avoid unreliable links. After waiting a period to receive 
all subscriptions, the sender then starts the data transfer. Missing segments are requested directly from the 
sender, which prioritises these over further data transmissions. Once a node has received an entire image, it 
becomes a sender in turn. If a sender receives no subscribe messages, it transfers the new image to program 
memory from EPROM, and reboots with the new code. Sliding window acknowledgements reduce power 
consumption (reduced EEPROM reads) at the cost of reduced out-of-order message tolerance. There is no 
support for rate control, or suppressing multiple senders (apart from link statistics). 
 

• Trickle [9] 
 
Trickle runs under TinyOS/Mate – it acts as a service to continuously propagate code updates throughout the 
network. Periodically (gossiping interval τ) using the maintenance algorithm every node broadcasts a code 
summary (‘metadata’) if it has not overheard a certain number of neighbours transmit the same information. If a 



recipient detects the need for an update (either in the sender or in the receiver) then it brings everyone nearby up 
to date by broadcasting the needed code. Trickle dynamically regulates the per-node, Trickle-related traffic to a 
particular rate (rx+tx), thus adjusting automatically to the local network density. This scales well, even with 
packet loss taken into account. A listen-only period is used to minimise the short-listen problem (where 
desynchronised nodes may cause redundant transmissions due to a shift in their timer phases). The CSMA 
hidden-terminal problem does not lead to excessive misbehaviour by Trickle, as long as the traffic rate is kept 
low. By dynamically changing the gossip interval, Trickle can propagate changes rapidly, while using less 
network bandwidth when there are no known changes. Programs fit into a single TinyOS packet. 

 
• XNP [21] 

XNP provides a single-hop, in-network programming facility for TinyOS. A special Boot Loader must be 
resident in a reserved section of program memory, and the xnp protocol module must be wired into an 
application (to allow for subsequent XNP updates). A host PC application xnp loads the image, via a base 
station mote running TOSBase (this acts as a serial-to-wireless bridge) to one (mote-id specific) or many 
(group-id specific) nodes within direct radio range of the base. The image is sent in capsules, one per packet; 
there is a fixed time delay between packet transmissions. In unicast mode, xnp checks delivery for each capsule; 
in broadcast mode, missing packets are handled, after the full image download has completed, using a follow-up 
query request (nodes respond with a list of missing capsules). The program is loaded into external (non-
program) memory. Applications are halted during the program download.When a reboot command is issued 
(via the xnp host program), then the boot loader is called: this copies the program from external to program 
memory, and then jumps to the start of the new program. 

 
B) Size Reduction 
 
Size reduction is important for software updates: it has a direct impact on the transmission power used, and thus on 
sensornet lifetime. The two main approaches for optimizing power usage in this way are (a) by providing modular 
software, so that just the necessary modules need to be transmitted, and (b) incremental updates, so that just the 
changes from the previous version need to be transmitted. These approaches have been addressed in other domains, 
for example the rsync algorithm [22], dynamic software updating [23], and software updating using mobile agents 
[24]. 
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Figure 3 - Size Reduction Approaches 

 
• Reijers [3] 
 

The code distribution scheme described is principally concerned with reducing the image size – it does this by 
generating and propagating a diff script, rather than the entire image. The script is downloaded as a series of 
packets, each of which is self contained and states the address range which it builds (allowing for immediate 
processing of each packet, and easy identification of missing packets). The script is applied against the currently 
running program, progressively building a new image in external memory (EEPROM). A boot loader copies 
this into code memory (Flash), and then control is transferred to the new image. Packets can be processed out-



of-order; missing packets can be identified afterwards, during a verification phase, and the binary data requested 
from its neighbours. As of 2003, network flooding was not supported, and the script is loaded into EEPROM in 
its entirety before processing. The major limitation of this algorithm is that the scripting language developed is 
cpu-specific. 

 
• Rsync [25] 

 
This mechanism uses the Rsync algorithm to provide incremental software updates. It differs from Reijers work 
in that the algorithm is processor independent – in fact it does not require any knowledge of the program code 
structure. Energy is saved by sending software updates as a ‘differences script’. The script can either specify an 
unmodified block to be copied (possibly to a new address), or can contain a modified form of S-Records for the 
new program image. The sender asks the receiver for the checksums of its current blocks, and after the receiver 
responds, it sends only the changed blocks. The script commands are disseminated using the XNP protocol, and 
are stored by a node in external memory during the Download operation; the host then queries the node for 
missing commands; finally a Decode command is sent. The program images are stored in two sections of 
external memory (EEPROM), one for the old image, and one for the new image (a third is used for the script). 
The network programming module passes a parameter to the bootloader (modified from XNP) to select the 
image to read into program memory at boot time. 

 
• Remote Incremental Linking [4] 
 

This is a modular updating system, designed for the mica2 mote, support static and dynamic updates. A 
program is built from a number of functions, reserving space at the end of each function to allow for some 
future expansion (‘slop space’). These functions are linked remotely from the target nodes, at a more capable 
node such as the base station: this reduced overhead at the sensor nodes, but increases it at the base station, 
which may need to keep per-node address maps. The new version of a function can be written in program 
memory at the same start address, as long as it fits, without the need to update references to this function 
elsewhere in the program. Otherwise, either adjacent functions or the new function are moved: whichever 
minimizes page writes. The new version is delivered in an incremental manner, using diff scripts generated by 
the Xdelta algorithm. The diff target size is set as the program memory page size, allowing single pages to be 
updated, thus reducing the need for RAM use, and allowing the script for the next page to be downloaded while 
the previous page is being written (using the read-while-write functionality of the ATMega128’s NVRAM). 
Both parameter values/data and code can be updated in this manner. The linking and compression are done on a 
base station, while a boot loader interprets the scripts and updates the program memory pages. The memory 
management policy attempts to minimize slow NVRAM page writes. The system is probably more suitable for 
minor, incremental upgrades, and the need to retain the capability for full system upgrades is identified by the 
authors. 

 
C) The Execution Environment  
 
The execution environment impacts on how the software update may be propagated and executed. The software 
update functionality will always need some low-level support to write to program memory, but the rest of the 
functionality may be implemented in device-specific firmware (e.g. Scatterweb), in the operating system (e.g. SOS), 
in a middleware layer (e.g. Agilla), or as an application (e.g. MOS). Mobile agents also provide potential software 
upgrade mechanism, though probably more suited to the insertion of new code than the upgrading of existing code. 
These are usually supported in  a middleware layer to allow access to global data.  Network-query approaches (e.g. 
TinyDB/TAG [26]) are not included  unless there is a direct reprogramming aspect. We also do not directly consider 
hardware-specific aspects; a good overview of WSN platforms is given in [27]. 
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Figure 4 - Execution Environments 

 
• Agilla [28] 

 
Agilla is middleware layer that runs on TinyOS and supports mobile agents for WSNs. It is based on Mate, and 
provides a virtual machine for agent code, but a more controlled migration of agents within the network (as 
opposed to flooding in Mate), and with support for larger agent code sizes. The agents communicate via remote 
access to local tuple space on each node, and can migrate via move and clone instructions. Migration uses small 
packet sizes (less than 41 bytes) and a store-and-forward mechanism to reduce the impact of packet loss. 
Currently only assembly language programming is supported, with the obvious disadvantages. Applications are 
deployed by injecting mobile agents into the WSN, but there is no explicit support for code versioning or 
updating of agent code. Agents can be stopped, so software updates could probably be achieved on top of 
Agilla, but this would require explicit application support (in the mobile agent code). 

 
• COMiS [29] 

 
COMiS is an component-based, generic middleware layer developed as part of the TinyMaCLaS project. It 
allows components to be loaded onto particular nodes based on the application semantics, and supports 
network-wide software updating. Applications are written in the DCL (Distributed Compositional Language) 
scripting language. Software components are registered locally, and then available for discovery by other 
components, using a broadcast algorithm, and subsequent connections. Both middleware and application 
components can be updated. Compiled component binaries are deployed into the network (through unspecified 
host tools) and installed (registered) at deployment nodes. Connection is established with (a subset of) nodes in 
the network using the discovery component. Then the update method is used to deploy the code to these nodes. 
On receiving an update, the COMiS listener component checks that the version number is greater before 
installing and relinking the new component, which is then restarted. There is no flooding control of the 
broadcast packets (except a hop count/TTL field), or rate control of the software updates (which are unicast to 
each node from the selected deployment nodes). 

 
• Contiki [30] 
 

Contiki provides a core kernel, and supports loadable applications and services that can be dynamically replaced 
at runtime. These execute as processes, and share a single address space. The core is a single binary image, and 
typically consists of the kernel, the program loader, commonly used libraries, and a communication stack. It 
cannot generally be modified after deployment. The kernel supports both event-based programming, and pre-
emptive multithreading. Typically programs are downloaded into the system over the communication stack, and 
stored in EEPROM before being loaded/linked into the system using a runtime relocation function a relocatable 
binary format. When a service process is replaced, its process ID can be retained to support continuity of 
service; service state can also be transferred to the new version of the program. Over-the-air programming is 
supported by a simple protocol that allows new binaries to be downloaded to selected concentrator nodes using 
point-to-point communication (over the communication stack). When the entire binary has been received, it is 
broadcast to neighboring nodes; these use negative acknowledgements to request retransmissions. There are 
plans to support an improved protocol in the future, perhaps using the Trickle algorithm. The version number of 
a service interface (supported by a service process) and of a service stub library (linked into the calling 
application process) must match; also version numbers are used to support replaceable service processes, so that 
incompatible versions of a service will not try to load the stored service state.  



 
• cSimplex [31]  
 

The software architecture cSimplex is concerned not so much with the distribution of software updates, but with 
assessing the stability of code updates, and providing fault detection and error recovery. Simplex was developed 
for the reliable upgrade of control software for mission-critical systems; cSimplex is an extension of this work 
to communication software in sensor networks. Although cSimplex is targeted at group communication 
software, the principles would apply for any software functionality. A cSimplex system has a well tested, 
reliable ‘core’ communication module (the safety module); in addition an experimental new communication 
module may be loaded. These may have both system and application level components. The application level 
components may be loaded at runtime. Semantic checks are made at the application level on the execution of 
the experimental module: these checks consist of checks to data messages and management messages between 
nodes. If the statistics collected using the Multiple Period Method (MPM1) indicate faults, then the system can 
revert to the core module. Management messages are sent to peer nodes to synchronise the startup and 
termination of experimental modules.  

 
• Mantis/MOS [32] 

 
The MANTIS operating system (MOS) is a lightweight, UNIX-style O/S with support for threads. These 
threads can be user application threads; the network stack is also implemented as a set of user threads. The 
MOS operating system library provides support to write a new code image to EEPROM. A commit function 
may then be called to write a control block for the bootloader, which then installs the new code on reset. Any 
part of the code image (except for the bootloader) may be updated, from a simple patch, to one or more thread, 
to the entire image. No specific tools are provided to build an update (except for an entire image), and an 
application-specific protocol would be needed to transfer the update over the network, apply the update, and 
reboot the system. MOS thus provides a framework to enable remote software updating, rather than an actual 
implementation. 
 

• Maté/Bombilla [33][9] 
 

Maté is a communication-centric middleware layer for WSNs, based on a virtual machine architecture, which 
runs on TinyOS; Bombilla is a virtual machine that runs under Maté. Code is divided into 24-instruction 
capsules; larger programs can be supported using subroutine capsules (currently limited to 4). Programs 
communicate via message passing, in a similar way to TinyOS. Code capsules are flooded through the network 
via viral programming - code capsules can be marked as self-forwarding, and such capsules are flooded 
throughout the network based on 32-bit version numbers. Every node broadcasts a summary of capsule versions 
to its neighbours based on a random timer: if a node hears an identical summary, it supresses its own next 
transmission; if it hears a version summary with older capsules than it has itself, it broadcasts the newer 
modules. This flooding continues even after the entire network has been updated. (An earlier version of Mate 
supported a forw instruction to initiate code propagation, but experiments showed that this could easily lead to 
network saturation.) There is support for injecting new modules (or new module versions) into the network via a 
capsule injector. Currently only assembly language/bytecode level programming is supported. Further studies 
have shown that density aware transmission rates provide an efficient tradeoff between response time and 
avoiding network saturation. 

 
• REAP [34] 

 
REAP (Remote Execution and Action Protocol) supports a Reactive Sensor Network (RSN) where the network 
is reprogrammed by packets passing through the network. REAP, originally implemented to support WSNs, is 
supported by a lightweight mobile code Daemon. Packets contain code and data, and can be sent by TCP/IP or 
Directed Diffusion to other nodes. An efficient object serialization class is provided for high performance 
transfer of objects. An index system provides a distributed database of resources. The database can be searched 
for polymorphic algorithms, allowing nodes to select an algorithm that matches their architecture and operating 
system, thus providing heterogeneity support. The packet router determines multihop paths through broadcast 
requests, gradually increasing the TLL until a limit is reached or the destination is found. Results are cached in 

                                                 
1 This provides a way to incorporate history into the error rate measurement while discounting past errors  
(identifying both bursts of errors, and constant low-rate errors). 



routing tables, and can be used to reply to a request. There is no mechanism to flush old  code versions, but they 
could voluntarily terminate during a code update. 

 
• SINA [35] 

 
SINA is a database-style approach, supporting reprogramming through downloaded scripts. The SEE (Sensor 
Execution Environment) dispatches incoming messages and executes contained scripts. These are in an 
extended form of SQL called SQTL – this adds event-based procedural programs, that can be explicitly 
propagated around the network using the execute primitive, which can select a subset of nodes to propagate the 
script to. There is no built-in version control, or limits to traffic. 

 
• SP (Spatial Programming) [36] 
 

Spatial Programming is a network-wide programming model. Script based programs propagate around the 
network in Active Messages [37]; so in principle a new version of a program can be injected using an Active 
Message. Programs reference global data through a space/tag tuple defining the geographic scope and a content-
based name. Spatial reference bindings are maintained per-application, and There is no built-in mechanism to 
terminate old scripts – but they can be terminated at the application level (by exiting) – so an application could 
support self-upgrading using the SP mechanisms. 
 

• Szumel et al’s Mobile Agent Framework [38] 
 

This framework is built on top of Maté and runs under TinyOS. It provides a ‘breadcrumb’ model for 
communication, where agents may leave per-node data behind them for future agents to access (though an 
agreed index). An agent’s per-agent state is propagated along with the agent code. The agent propagation is 
under the control of the agents, and supported by a number of FwdAgent functions in the framework. These 
support reliable, unicast, and broadcast forwarding requests. Agents may terminate their own execution on a 
node by exiting, or may continue indefinite execution in a loop structure with sleep statements. New agents may 
be easily introduced; in principle a new version of an existing agent can be introduced, but there is no direct 
support for updating of existing agent code, and this would have to be provided with the agents. 
 

• Pushpin [39] 
 

Pushpin supports a dynamic process fragment model, similar to mobile agents – the fragments each support an 
update function is called repeatedly. The Bertha operating system can load and unload these ~2K size fragments 
dynamically. A process fragment contains state and code, and may transfer or copy itself to neighbouring 
Pushpin systems: each fragment supports install and deinstall functions to support this. The fragments 
communicate through a local bulletin board system – nodes also maintain a synopsis of neighbouring bulletin 
boards, which can be used by a fragment to decide to request a move. The Pushpin IDE supports the 
development and downloading of process fragments to an attached Pushpin node (serial connection). An 
example program is included in [ref] that shows how a pushpin fragment can propagate itself throughout a 
network. 

 
• ScatterWeb [40] 
 

Scatterweb is a distributed, heterogeneous platform for the ad-hoc deployment of sensor networks. Software is 
divided into a firmware core and modifiable tasks to provide a secure update environment. Tasks can register 
callbacks with the firmware to handle sensor events or received packet types. If software fails (endless loops or 
crashes), then the hardware can flush the software and wait for a new download. The software is fragmented 
into small packets to minimize packet loss. Lost packets are recovered in a two-step process: first 
retransmission is requested from local nodes, if this fails retransmissions can be requested from the gateway. 
The update is first copied into EEPROM, and then written into flash. This allows the integrity of the received 
code to be checked, and allows synchronization of updates across the network (using a flash command, or a 
timestamp). A host tool supports over-the-air reprogramming via a USB/radio stick (ScatterFlasher) or via a 
www gateway (Embedded Web Server). Supported protocols, such as Directed Diffusion, can be used to 
distribute an update. 
 
 



• SensorWare [41] 
 

SensorWare is a heavyweight active sensor framework (i.e. supporting code mobility) designed for relatively 
large memory nodes (e.g. 1MB Program Memory/128 KB RAM). It supports programming through a high-level 
scripting language based on tcl, and provides a runtime environment for dynamic control scripts (static 
applications can coexist, and use O/S services directly). SensorWare is an event driven framework; the network 
communication model is based on message passing. Scripts can be injected by ‘external users’; scripts can 
contain a replicate command that causes the script to be replicated on another node (an intention to replicate 
message is sent first to determine whether the script needs to be transferred first). Scripts can be replicated to a 
specific list of nodes, or broadcast to all neighbours (via an empty list). Whereas the SensorWare code itself has 
support for different software variants, there is no explicit support for this in the script replication functionality. 
There is no support for different versions of a script; though this could probably be achieved at the application 
level. 

 
• SOS [42] 

 
SOS is a microkernel-style operating system, supporting ‘C’ programs, with support for dynamic module 
loading and unloading. Device drivers, and kernel services are provided in SOS: other services (such as routing, 
applications etc.) are provided as dynamic modules. Modules provide handlers for initialization, finalization, 
timers, sensor readings, and message reception. Synchronous communication between modules is provided 
through registered functions: functions can be called by another module via pointers in a function control block 
(FCB) which stores information on the function prototype and version as well as the address. New module 
advertisements contain the version number, and if this is an updated version, and there is space, the module is 
downloaded. For an update, the final message is sent to the old module, which is then unlinked from the FCBs, 
before the new version is loaded and init called to repopulate the FCB. If an unavailable function is called, then 
kernel provides a stub to return failure (and do any required deallocation). If a function prototype changes, then 
new calls to get_handle must provide the new prototype in order to access the function. SOS does not support 
update of the core kernel image. 

 
III Open Research Questions 
 
There are a number of open research problems common to all the classes: 
 

1. Planning – before initiating an update, it would be invaluable to be able run a model (such as a 
simulation) to determine the energy cost of different update options on the current network 
configuration, and thus allow the user to make informed tradeoffs against energy. For example: which 
is the best injection strategy for the current configuration? What size reduction technique will result in 
the quickest update? etc. 

2. Size reduction – there is not yet a definitive answer to the best way to reduce the size of updates, with 
modular, differences-based, and straightforward compression all showing promise in different 
circumstances. Also the question of incremental vs monolithic updates is still open. In order to provide 
future-proofing and flexibility, it is possible that software update might include a small code module to 
correctly apply the update. 

3. Injection strategies – there are a number of different injection strategies in use: simulating a base 
station, sending the update to a base station for dissemination, sending the update to a number of seed 
nodes for further dissemination, and sending the update individually to each node. 

4. Dissemination protocols – there have been many recent advances in these protocols, in fact this is 
probably the most advanced area of the field. As in other WSN protocols, it is likely that an energy-
aware approach will have to be taken in order to respond to current energy patterns in a sensornet (ref. 
energy-aware MAC layers, and energy-aware Routing). 

5. Activation control – there is little work on controlling the activation of software updates following 
download. In most cases the software update is either automatically activated (perhaps after a timeout), 
or manual activation is required. Impala provides for rule-based switching of protocols: this 
mechanism might also be suitable for rule-based activation. In order to support the various possible 
patterns in which software updates may be received, and to support any requirements for backwards 
and forwards version compatibility, tighter control over the order of node activation will be required. 

6. Dependability – there are a number of aspects of this which are not directly related to software 
updating, but the key ones which are related are: checking the downloaded software before activation 
(integrity, version mismatches, platform mismatches) and dynamically checking the operation of the 



downloaded software after is has been activated. It is likely that further advances will be necessary in 
this area, probably using techniques from autonomic computing, to increase the robustness of software 
updates. 

7. Monitoring – there is a need for tools to monitor the ‘version’ state of a WSN and report status and 
problems to an operator/user. These will be able to use existing techniques for fusing data to reduce the 
overhead, and for tracking update-related faults. 

8. Security – this is going to be a key concern for software updates in the field, with the normal issues of: 
key-distribution, authentication, secrecy, integrity, and authorisation needing to be addressed. Results 
from existing WSN security research will be needed, along with other work specific to the software 
update problem. 

9. Support for very small nodes – it is likely that large WSNs will be deployed with very small nodes, 
with very limited code memory, and perhaps almost no RAM or EEPROM for storing new code. In 
this case, techniques will be need to be developed to allow for incremental building of new code 
straight into code memory (usually FLASH-RAM). This technique would also be useful for reducing 
the power consumption of a software update – EEPROM writes are an expensive option for temporary 
code storage. 

10. Version control – this is already support by some systems, with SOS having quite a sophisticated 
mechanism. Further developments in this area will be needed to ensure that there is full control over 
what software versions are downloaded/activated, and to prevent version mismatch (both inter-node 
and intra-node) problems. 

11. Heterogeneity support – it is likely that deployed networks will have a mix of platforms, for cost 
reasons, and perhaps for robustness also. A strategy of a small number of high powered nodes for a 
‘Spine’/data backbone (shown to be optimal for data delivery) and a large number of lower powered 
nodes (for data collection) seems a very likely scenario. In this case, the backbone nodes will have to 
handle not only different versions of their own codebase, but different codebases also. 

12. Performance – there is very little direct control over the update time in current systems, and no 
capability of trading off time against energy (perhaps in an emergency situation). It seems likely that 
research into supporting tradeoffs, and also provision of closed-loop control of total network-wide 
update time ill be needed. 

13. Energy reduction – the protocols used need to be energy-aware, so that the current energy-state of both 
individual nodes and the entire network can be taken into account during an update. 

14. Recovering from faulty updates – some initial work in both checking the new software before 
execution and during execution has been done. 

 
IV Conclusions 
 
This review identifies the large number of different dissemination protocols have been developed for WSN software 
updates. Many of these have features designed for particular platforms or execution environments, or for particular 
types of network configuration. This review identifies three different classes of how software updates are executed 
(or made available for execution): static/monolithic updates, dynamic/modular updates, and dynamic/mobile agent-
based updates. This review also identifies two classes of update format: incremental updates (which are dependent 
on the current version), and full updates (which are not). Finally this review has identified two connectivity 
solutions: using the sensor network itself, and using a parallel maintenance network. 

 
Overall this progress through discrete solutions reveals the fundamental research challenge in WSN software 
updating: to bring all this together into a cohesive framework. Most of the discrete solutions are optimal in some 
situations, but not in others, and thus a framework needs the flexibility to react to the current state of the WSN in 
order to operate dependably, efficiently, effectively, and securely. The inaccessibility and scale planned for sensor 
networks argue for an autonomic approach [43] to solving the software update problem. Users will, at least in the 
short-to-medium term, still need to implement the code for software updates; but once injected into the sensornet, 
the software updates should be handled with minimal user intervention (see Figure 5). In particular, the WSN as a 
whole should recover from failures associated with the software updates. Identifying failures is not an easy task, and 
lessons can be learned from the Simplex system [12] in monitoring the software for entry into inadmissible states, 
and differentiating between experimental (high performance) and baseline (high assurance) software to provide for 
recovery. 
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Figure 5 - The Autonomic WSN 

 
Once available, software update functionality is likely to be heavily used in order to optimize the use of deployed 
networks. To support more frequent reprogramming energy consumption models, such as those presented in [44] 
and [45], need to be developed to allow the energy costs of different update policies to be compared, either 
analytically or through simulation, prior to the initiation of an update. The dissemination and execution policies then 
need to be controlled through power-aware protocols [46], as has been found to be effective in the development of 
datalink and routing protocols for wireless sensor networks. Power-awareness will provide one of the feedback paths 
required to provide an intervention-free software update environment for wireless sensor networks. 
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