Building Data Structures on Untrusted Peer-to-Peer Storage
with Per-participant Logs

Benjie Chen Thomer M. Gil

Athicha Muthitacharoen Robert Morris

MIT Laboratory for Computer Science
200 Technology Square, Cambridge, MA 02139
{benjie,thomer,athicha,rtm} @l cs.mit.edu

Abstract

L* is a technique for building multi-user distributed data
structures out of untrusted peer-to-peer distributed hash
tables (DHTSs). L* uses multiple logs, one log per parti-
cipant, to store changes to the data structure. Each par-
ticipant finds data by consulting all logs, but performs
modifications by appending only to its own log. This
decentralized structure allows L* to maintain meta-data
consistency without locking and to isolate users’ changes
from each other, an appropriate arrangement for unreli-
able users.

Applications use L* to maintain consistent data struc-
tures. L* interleaves multiple logs deterministically
so that decentralized clients can agree on the order of
completed operations, even if those operations were is-
sued concurrently. When the data structure is quies-
cent, L* guarantees that clients agree on the state of the
data structure. L* optionally provides mutual exclusion
for applications that need to ensure atomicity for multi-
step operations. The Ivy file system, built on top of L*,
demonstrates that L.*’s consistency guarantees are useful
and can be used and implemented efficiently.

1 Introduction

Recent peer-to-peer distributed hash tables (DHTSs) [}
9, 11 4, [16] promise to support a new approach to
certain kinds of network storage applications. These
DHTs provide a simple API allowing read and write
of key/value pairs (often called blocks). The DHT
typically takes care of finding a network host to store
each key/value pair; replicating data for availability; and
checking that retrieved blocks have not been tampered
with. The DHT interface is fairly low level, much like
the sector read/write interface of a disk drive. Thus, ap-
plications often build complex data structures on top of
DHTSs, with blocks containing pointers (keys) to other
blocks. For example, CFS [[I]] builds a file system on top

of a DHT, storing each file and directory in a separate
block; a directory contains a list of DHT keys referring
to the files in the directory.

While DHTs defend the availability and integrity of
individual blocks against unreliable and malicious DHT
nodes and clients, an application that uses a DHT typ-
ically has additional consistency invariants that it would
like to maintain on the data structure it stores in the DHT.
For example, a client crash during a file rename in a
DHT-based file system should not leave the file system
in an incorrect state. Because clients in a DHT-based ap-
plication typically manipulate a shared data structure in-
dependently (i.e. without sending operations to a single
server or server cluster), an application with concurrent
clients also faces the challenge of providing consistency
without direct use of serialization. Additionally, peer-
to-peer systems are often used in situations where cli-
ents do not fully trust each other; thus another problem
is how to defend against clients who maliciously dam-
age the shared data structure. Finally, DHTSs typically
replicate data in such a way that multiple partitions may
have a complete copy of the data structure if a network
outage occurs; thus applications using DHTs may exper-
ience conflicting updates in different partitions.

This paper presents L*, a set of techniques for main-
taining consistent data structures in DHTSs. L* represents
the data structure as a log of operations in the DHT, with
a separate log per client. That is, an application using
L* does not directly store its data structure in the DHT;
instead, the data structure is implied by the history of op-
erations in the logs, and L* stores log records in the DHT.
Clients communicate through L* and the DHT,; they do
not directly talk to each other or any single server. A cli-
ent updates the data structure by appending records to its
log; a client reads the current state of the data structure
by scanning all clients’ logs. Logging allows clients to
perform complex operations atomically with respect to
client failure. Logging operations, use of a log for each

client, and deterministic log ordering mean that concur-
rent updates to the same data produce some acceptable
outcome reflecting the operations, rather than a corrup-
ted data structure.

The heart of L* is its algorithm for resolving the order
of log records in different clients’ logs. This algorithm
deterministically produces a single ordering of log re-
cords. That is, L* always chooses the same order for
every two log records for all clients. This property means
clients agree on the order of completed updates, even if
those updates were issued concurrently.

At a higher level, applications use the L* API to im-
plement consistent data structures. When the data struc-
ture is quiescent, L* guarantees that clients agree on the
state of the data structure. L* optionally provides mu-
tual exclusion for applications that need to ensure atom-
icity for multi-step operations. Applications benefit from
being able to choose which consistency model to use;
strong consistency incurs higher cost and is typically not
necessary.

We built a multi-user peer-to-peer read-write file sys-
tem, Ivy [6], that uses L* to store all file system data and
meta-data. The use of per-participant logs allows Ivy to
support concurrent updates to the file system without us-
ing locks, and yet still maintain meta-data consistency.
Ivy implements most file system operations without mu-
tual exclusion; the only exceptions are file and directory
creation. File and directory creation require mutual ex-
clusion to avoid duplicate files or directories. Despite its
use of logs, L* makes it easy to build applications with
good performance; lvy caches aggressively, and checks
the validity of the whole cache just by checking whether
any logs have changed recently.

Section [describes DHash, the DHT on which L* is
layered. Section B describes the structure of per-
participant logs and L*’s API. Section Hl describes how
L* maintains consistent data structures. Section [de-
scribes how L* deals with stale-data attacks from ma-
licious DHash servers and network partition. Section
presents an example use of L* to construct a serverless,
multi-user, read/write file system. Section [1 discusses
related work and Section @8 concludes.

2 DHash

L* stores all its logs in DHash [Il]. DHash is a distrib-
uted peer-to-peer hash table mapping keys to arbitrary
values. DHash stores each key/value pair on a set of
Internet hosts determined by hashing the key. This pa-
per refers to a DHash key/value pair as a DHash block.
DHash replicates blocks to avoid losing them if nodes
crash.

DHash ensures the integrity of each block with one of
two methods. A content-hash block requires the block’s
key to be the SHA-1 cryptographic hash of the block’s
value; this allows anyone fetching the block to verify the
value by ensuring that its SHA-1 hash matches the key.
A public-key block requires the block’s key to be a public
key, and the value to be signed using the corresponding
private key. DHash refuses to store a value whose hash or
signature does not match the key. L* checks the authen-
ticity of all data it retrieves from DHash. These checks
prevent a malicious or buggy DHash node from forging
data, limiting it to denying the existence of a block or
producing a stale copy of a public-key block.

DHash offers a simple interface: put(key,value) and
get(key). L* assumes that, within any given network
partition, DHash provides write-read consistency; that is,
if put(k,v) completes, a subsequent get(k) will yield v.
The current DHash implementation provides write-read
consistency except when partitions are healing; however,
potential solutions to this problem exist [2].

DHash assumes that only one writer of a public-key
block is active at a time. Each public key block includes
a sequence number which DHash uses to prevent over-
writing newer data with stale data. Furthermore, for con-
current put(k,v) and get(k), get(k) returns either the
value before or after put(k,v).

L* is designed to also work with other untrusted net-
work storage technologies with similar properties, such
as PAST [IL1]], Tapestry [16], or Kademlia [4]].

3 Per-participant Logs

L* represents a data structure using a set of logs, one log
per participant. A log describes all of one participant’s
changes to the data structure. Each participant appends
only to its own log, but reads from all logs.

L* uses DHash content-hash blocks to store log re-
cords. Each log record contains the DHash key of the
previous log record in the participant’s log. A log record
is immutable; if a log record were changed, its content-
hash, and hence its DHash key, would have to change as
well. L* stores the DHash key of a participant’s most
recent log record in a mutable DHash public-key block,
called the log-head. Thus, a participant’s log can always
be obtained from the key used to store the participant’s
log-head. Each user of a data structure may have multiple
key pairs and log-head blocks, one for each host that the
user uses. Formally, we define a participant as follows.

Definition 1. A participant is an entity with a public-
private key pair and a log-head block. At most one in-
stance of a given participant can be active at a time.

Field Use

prev DHash key of next oldest log record
seq per-log sequence number
version | Version vector

head DHash key of the log-head

Table 1: Fields inall L* log-head objects and log records.

log-head
view block . J:[........ J:[........ Jj
log-head
........ S e e
N)
VT
log records

Figure 1: Example of a L* view and logs. White boxes
are DHash content-hash blocks; gray boxes are public-
key blocks.

Table [describes fields that appear in log-heads and
log records. The prev field contains the previous re-
cord’s DHash key. The seq field is an incrementing per-
log sequence number. The version field is a version vec-
tor [8] that L* uses to decide how to interleave multiple
logs. The head field contains the DHash key of the log-
head.

Participants that share a data structure agree on a view:
the set of logs that comprise the data structure maintained
by that application. A view is stored in a view block,
a DHash content-hash block containing pointers to all
log-heads in the view. A view block with a given key
is immutable; when a data structure’s participants decide
to accept a new participant, they must all make a con-
scious decision to trust the new participant and to adopt
a new view block, with a new key, that includes the new
participant’s log. The lack of support for automatically
adding new participant to a view is intentional.

L* uses the view block key to verify the view block’s
contents. The contents are the public keys that name and
verify the participants’ log-heads. A log-head contains
a content-hash key that names and verifies the most re-
cent log record. It is this reasoning that allows L* to
verify it has retrieved correct log records from the un-
trusted DHash storage system. Figure [ll summarizes the
structure of per-participant logs and view block.

L* provides an API that applications use to access
logs. A participant modifies the data structure by ap-
pending new log records to its log, then changing the

log-head to point to the newest log record. Multiple
participants can modify the data structure concurrently
without acquiring locks; each participant only modifies
its own log-head. A participant constructs a response to
a query on the data structure by reading all the logs. To
avoid the expense of repeatedly reading the whole log,
participants can create snapshots summarizing the data
structure.

L* needs to impose an order on log records from dif-
ferent logs. The order should obey causality (i.e. if
an update A completes before another update B, A is
ordered earlier than B) and should be the same for all
participants, even for concurrently created log records.
L* creates such an order using the version vector in each
log record.

3.1 Combining Logs

Each log record includes two pieces of information that
are later used to order the record. The seq field contains
a numerically increasing sequence number; each log sep-
arately numbers its records from zero. The version field
is a version vector. A log record r’s version vector re-
cords pointers to the most recent record in each log at the
time that r was created.

Each vector contains a tuple (u,v) for each log in the
view (including the participant’s own log). u is the
DHash key of the log-head of the log being described,
and v is the DHash key of that log’s most recent record
at the time the version vector is created. L* saves DHash
keys rather than just sequence numbers so it can recover
from corrupted logs and from a malicious participant ret-
roactively changing its log by pointing its log-head at a
newly-constructed log. For simplicity, the rest of this pa-
per replaces u with the name of the participant and v with
a numeric value that refers to the sequence number con-
tained in the record pointed to by a tuple.

Definition 2. For a version vector x and participant i,
x[i] is either the sequence number recorded in z for par-
ticipant ’s log, or 0 if ¢ does not appear in z.

Definition 3. Version vector comparison: If z and y
are two version vectors, then = >, y iff for every parti-
cipant 4, z[¢] > y[i], and there exists a participant j such
that z[j] > y[j]. « and y are concurrent, or x =, v, if
x Fyyandy F, x. x>, yiffx >, y,orzisy, or
T Ry, Y.

For simplicity, for two log records r and s, this paper
uses r >, s, 7 >, s, and r =z, s to expression relation-
ship between their version vectors. For example, r >, s
is short for r.version >, s.version.

order (list of log-heads H, callback cb)
list of log records R
sort H in decreasing order by DHash key
for (i := 0;4 < H.size ();it++)
RJ[i] := DHash :: get (H|[i].prev)
for (3})
int latest
log record r := nil
8 for (i := 0;4 < R.size ();it++)
9 if (R[i] = nil)
10 continue
11 if (r =nil OR RJ[i] >,)
12 r:= RJi]
13 latest :==1
if (r =nil)
break
else
int retv := cb (r)
if (retv #0)
return retv
if (r.prev = nil)
RJ[3] :=nil
else
RJ[i] := DHash :: get (r.prev)
if (R[i] = nil)
fatal (“cannot load block”)
return0

Figure 2: order() interleaves multiple logs in re-
verse order, starting with the most recent log record.
order() calls application callbacks for each log record.

Because a log record contains only a pointer to the
next oldest log record, L* traverses each log in reverse
chronological order, starting from the most recent log re-
cord. An applications uses L* to read the logs record by
record until it finds the information it needs.

L* orders log records based on causality. If two log
records r and s have version vectors » >, s, then s
must have been in a participant’s log when r was created.
Thus >, reflects the causality between these two log re-
cords. When participants update their logs concurrently,
the new log records contain concurrent version vectors.
An application must tolerate whatever order L* chooses
to impose on concurrent log records, but the application
may depend on L* always ordering any two records in
the same way for all the participants. Figure 2 describes
the order() procedure that, given a list of log-heads, in-
terleaves multiple logs in reverse order, starting with the
most recent log record. order() takes in a callback func-
tion from the application; order() calls this function for
every log record. order() is similar to merging sorted

version_vector latest /I local to each participant
traverse (callback cb)
version_vector v
list of log-heads H
for each participant ¢ € the current view
h; := DHash :: get (i.key)
v[i] := hs.seq — 1
H.push_back (h;)
if (v >, latest)
latest := v
return order (H, cb)

append (log-head h,, list of log records R)
foreachr € R
r.seq := hg.seq
r.wersion = latest
r.prev := hg.prev
r.head := hq.head
hq.seq := hq.seq + 1
ha.prev := SHA(T)
latest[a] := hq.seq — 1
DHash :: put (hq.prev,r)
DHash :: put (SHA(hq.key), ha)

Figure 3: L* API: applications use traverse() and
append() to maintain their data structures.

lists.

order() works in three phases. In the first phase,
order() sorts the log-heads by the DHash key of each
log-head, highest key first. It then fetches the most recent
log record from each log into an array R, in the same or-
der as the log-heads. In the second phase, order() it-
erates through R, looking for the most recent log re-
cord r. Because R is ordered by the DHash keys of the
log-heads, L* essentially orders log records with con-
current version vectors based on their log-head keys. In
the third phase, order() passes r to the callback func-
tion. If the callback function does not stop log traversal,
order() fetches r.prev from DHash. order() repeats
the second phase until all the log records have been pro-
cessed.

32 L*API

L* offers asimple API with two procedures, traverse()
and append(). An application uses traverse() to per-
form lookup operations on its data structure. It con-
structs a response to each lookup after traversing logs.
Applications use append() to append new log records
and then update the log-head. A call to append|(), in es-
sence, modifies the data structure. Figure Bl describes the

traverse() and append() procedures.

A program typically modifies a data structure after
performing a lookup. For each new log record, append|()
uses a version vector, latest, created by the previous
traverse() call. latest, maintained internally by L*,
captures the most recent state of each participant’s log.

Because log-head fetch requests arrive at different
DHash servers at different times, when several parti-
cipants concurrently update their logs, it is possible that
a participant’s call to traverse() initially includes only
a subset of the concurrent updates. A short time later, an-
other call to traverse() includes the remaining updates,
but some of which are ordered before the first subset.
Section @ describes how to cope with this brief period of
inconsistency.

3.3 Network Partition

In the case of a network partition, L*’s design maximizes
availability at the expense of consistency by allowing up-
dates to proceed in all partitions. This approach is similar
to that of Ficus [[7].

L* is not directly aware of partitions, nor does it dir-
ectly ensure that every partition has a complete copy of
all the logs. Instead, L* depends on DHash to replicate
data enough times, and in enough distinct locations, that
each partition is likely to have a complete set of data.
Whether this succeeds in practice depends on the sizes
of the partitions, the degree of DHash replication, and
the total number of DHash blocks involved in an applic-
ation’s data structure. The particular case of a user inten-
tionally disconnecting a laptop from the network could
be handled by instructing the laptop’s DHash server to
keep replicas of all the log-heads and log records; there
is currently no way to ask DHash to do this. When a
partition does not contain all the blocks needed by L*,
L* stops working.

When network partitions, DHash does not provide
write-read consistency. A get() in one partition does not
return the value written by a put() in another partition.

After a partition heals, the fact that each log-head was
updated from just one host prevents conflicts within in-
dividual logs; it is sufficient for the healed system to use
the newest version of each log-head. Section B describes
recovery from partition in more detail.

4 Consistency

This section describes how L* maintains consistent data
structures. L* interleaves multiple logs deterministic-
ally so that decentralized clients can agree on the or-
der of completed updates, even if those updates were is-

sued concurrently. When the data structure is quiescent,
L* guarantees that clients agree on the state of the data
structure. L* optionally provides mutual exclusion for
applications that need to ensure atomicity for multi-step
operations (e.g. checking if a file exists, then create it
if it does not). Applications benefit from being able to
choose which consistency model to use; strong consist-
ency incurs higher cost and is typically not necessary.
This section assumes cooperating DHash servers and
full network connectivity. Recall that under these as-
sumptions, DHash provides write-read consistency.

4.1 Ordering of Log Records

An application that uses a single server or server cluster
to maintain its data structure depends on the server or
server cluster for data structure consistency. Typically,
a single server executes operations serially, thus parti-
cipants can always agree on the state of the data structure
after each operation. A server cluster often guarantees
that within a bounded time, distributed participants agree
on the state of the data structure. It would be impossible
to maintain data structure consistency unless L* offers
similar guarantees to its applications.

When multiple participants are in the middle of up-
dating their logs, it is possible that some calls to
traverse() see some of the updates, while others see
a different set of updates. Consequently, L* does not
guarantee that participants see the same set of log re-
cords at any given time. L* ensures, however, that
order() passes log records to the callback function in
the same order for every participant. Therefore, parti-
cipants always agree on the order of completed updates
even if the updates were issued concurrently. We prove
this property below.

For simplicity, we use z >, y when order() passes =
to the callback function before it passes y to the callback
function. We use big X to refer to log record z’s log.
Recall that, in order(), R[X] contains the most recent
log record in X that order() has not passed to the call-
back. Also recall that R is sorted based on the keys of
the log-heads.

Lemmal. If x and y are two log records such that = >,
y, then order() always orders = >, y.

Proof. Proof by contradiction. Assume that order() or-
ders y >, . Thus at some point prior to cb(z), y is in
R. We consider two cases, when z.head > y.head and
vice versa. For each case, we look at how the inner loop
compares each of R[:] against r (lines 8-13).

First, assume that z.head > y.head. When the inner
loop variable ¢ refers to y’s log, the loop has already ex-

amined z’s log, so r >, R[X]. Because cb(z) has not
been called, r >, x. Because = >, v, it is also the case
that » >, y. Hence » # y at the end of the inner loop.
Therefore y >,. = is impossible. Contradiction.

Next, assume that y.head > z.head. Fory >, =z,
it must be that, at some point, » = y when the inner
loop variable 4 refers to z’s log. Because R[X] >, y as
long as cb(x) has not been called, R[X] replaces y as the
value of r, as long as cb(x) has not been called. Hence y
cannot be ordered before x. Contradiction. O

Lemma 2. Let x and y be two log records with con-
current version vectors. If order() orders z >, y, and
y.head > x.head, then there exists another log record
z,suchthat z >, z and z.head > y.head, and z >, y.

Proof. Because x >, y, at some point prior to cb(y),
is in R. Because y.head > x.head, when the inner loop
variable i refers to s log, r >, R[Y]. We look at three
possible values of r at this point in time.

First, r is from Y. Because cb(y) has not been called,
it must be that » >, y or r is y. In this case, » >, z, and
hence r # z at the end of the inner loop. Thus, « cannot
be ordered ahead of y. Contradiction.

If r is not from y’s log, either » >, y, or r =, y and
r.head > y.head. In the former case, because x =, v,
r >, x, and hence r # z at the end of the inner loop.
Thus 2 cannot be ordered ahead of y. Contradiction.

Finally, we are left with r.head > y.head and r ~,, y.
For z >, y to happen at some point, >, r in one of
the instances of the inner loop before we return to the
first case. Thus r fits the criteria for . O

Theorem 1. If order() ever orders two log records x
and y as ¢ >, y, then it cannot order y >, z for any
participant at any time.

Proof. From Lemmall if x >, y or y >, z, then the
theorem holds. This proof shows that when x =, y, the
theorem also holds. Without loss of generality, assume
y.head > z.head. We will show, using proof by con-
tradiction, that it is impossible to have both 2 >,. y and
Y >y .

From LemmaP if = >, y, there exists another log re-
cord z, such that x >,, z, z >, v, and z.head > y.head.
Because © >, z, if a participant sees x, it must also
see z. Otherwise we have loss of data and the system
halts. |l We examine what happens when order () orders
y >, x. Because y.head > x.head, at some point in
time, » = y when the inner loop variable i refers to z’s

1Because log-head writes are not atomic, before the log-head write
that makes z visible completes, it is possible that a participant sees =
but not z. Because x refersto z in z'slog, the participant knows that a
stale version of z'slog has been fetched and re-tries until it sees z.

log. Then, for all w in R such that w.head > y.head,
y >, w. But this contradicts with the existence of z,
since z.head > y.head and z >, y. O

Theoremd implies that participants agree on the order
of completed updates, even if these updates were issued
concurrently. Theorem [l also implies that after partition
heals, updates issued in separate partitions are ordered
deterministically as well.

4.2 Relaxed Fetch-Modify Consistency

A common consistency model that distributed systems
use is fetch-modify consistency [55], which totally orders
all fetches and modifies on the same object and guaran-
tees that a fetch sees the results of all modify operations
ordered before it. traverse() and append() offer sim-
ilar, but slightly weaker, semantics.

Definition 4. The issue time of traverse() is when the
participant issues the first log-head fetch request. The
completion time of append() is when the log-head write
completes in append().

Definition 5. A call to append() occurs before a call
to traverse() iff append()’s completion time is earlier
than the traverse()’s issue time.

Lemma 3. If a call to append() occurs before a call
to traverse(), then when traverse() calls order(),
order() sees all the log records written by the append().

Proof. Let x be the participant that issued the append().
Because append() occurs before traverse(), when
traverse() issues a fetch request for 2’s log-head, z’s
log-head has already been changed to point to the new
log records. Because DHash offers write-read consist-
ency, order() sees all the log records written by the
append)(). O

Lemma [deviates from fetch-modify consistency [5]
because a call to traverse() may also return log re-
cords appended after the issue time of traverse(). Even
worse, because log-head fetch requests arrive at differ-
ent DHash servers at different times, when multiple par-
ticipants are in the middle of updating their logs, calls
to traverse() by different participants may return dif-
ferent log records. Many shared memory models offer
similarly weak concurrency semantics: concurrent pro-
cesses only agree on the order of updates by one process,
but not on the order of updates by concurrent processes.
L*differs from these models in that while concurrent up-
dates are first seen at different times, participants agree
on the ordering of the updates, and therefore the final
state of the data structure, eventually.

Theorem 2. If an application uses traverse() and
append() to perform operations on a data structure,
then, with full network connectivity, after all updates
have been completed, every participant sees an identical,
up-to-date, state of the data structure.

Proof. From Lemma[@and Theorem [O

In practice, different participants typically update dif-
ferent parts of the data structure. If at the application
level these updates do not conflict with a concurrent
lookup (e.g., the update modifies files in a different dir-
ectory), then Theorem 1 holds for the lookup.

Theorem B is adequate when operations that affect
each other are issued serially. Applications that need
atomicity for multi-step operations must use L*’s mutual
exclusion algorithm.

4.3 Mutual Exclusion

traverse() and append() do not provide strong con-
currency guarantees. For example, a call to traverse()
may not see log records written by a call to append()
if append() does not occur before traverse(). As a
result, concurrent updates to the data structure can take
place without one noticing the effects of the others. This
behavior can result in non-sequential execution traces.
Applications can cope with this weak concurrency se-
mantics with mutual exclusion, also implemented us-
ing traverse() and append(). The mutual exclusion
algorithm uses three non-data structure specific log re-
cords. A participant appends a Prepare log record to an-
nounce its intention for mutual exclusion. The Prepare
specifies a handle that identifies a part of the data struc-
ture. A participant appends an Exclusive log record if it
achieves mutual exclusion. Finally, a Cancel log record
cancels the previous Prepare or Exclusive log record.

Definition 6. A Prepare or Exclusive log record r in
participant a’s log is invalid iff

1. ThereisaCancel log record calsoin a’slog, ¢ >,
r, and ¢ and r identify the same handle. Or,

2. N seconds have passed since r was first seen.

Otherwise, r is valid.

The mutual exclusion algorithm works in two phases.
In the first phase, a participant = checks if another parti-
cipant wants to or already has mutual exclusion. If not, x
announces its intention for mutual exclusion by append-
ing a Prepare log record. Otherwise, x backs off for a
random amount of time and re-tries. In the second phase,

acquire (handleh)
log record p := null
check_conflict (logrecord r) {
if (r is a valid Prepare(h) or
Exclusive(h))and r # p
returnl
return0

}

int r := traverse (check_conflict)
if (r=1)
backoff for r seconds, r := (0, 10]
return acquire (h)
p := Prepare(h)
append (p)
r := traverse (check_conflict)

if (r=1)
append (Cancel(h))
backoff for r seconds, r := (0, 10]
return acquire (h)

append (Exclusive(h))

return OK

release (handleh)
append (Cancel(h))

Figure 4: Participants use acquire() and release() to
implement mutual exclusion. acquire() passes a call-
back to traverse() that checks for contention.

x checks other participants’ logs again. If another par-
ticipant wants to or already has mutual exclusion, then
x backs off and re-tries. Otherwise, = achieves mutual
exclusion and appends an Exclusive log record. The
mutual exclusion algorithm assumes synchrony. That is,
it does not work if network delay (i.e. latency to DHash
servers) or processing delay (i.e. latency of code protec-
ted by the mutual exclusion) exceeds N seconds. This
section assumes this is not the case. Figure H] presents
the pseudocode of the algorithm.

The rest of the section describes properties of
acquire() and release(). For now, we assume parti-
cipants only update one part of the data structure. That is,
Prepare, Exclusive, and Cancel use the same handle.

Lemma 4. If r and r’ are log records of two different
participants such that » >, +/, then prior to append(r’),
no traverse() call by the same participant calls the
callback with r.

Proof. Let = and y be participants who wrote r and r’.
Assume that prior to append(r’), there is a traverse()
call by y that passed r to the callback. Hence after
traverse(), y.latest[x] > r.seq > r.version[z]. If

this is true, then r’.version|x] > r.wersion[z], which
contradicts with r» >, »’. O

Lemma 5. Let 2 and y be two participants. Let e, and
ey be x and y’s Exclusive records. If ¢, is a log record
that invalidates e, and ¢, is a log record that invalidates
ey, then one and only one of the following is true,

1 ocp >y €0 24 ¢y >0 €y O,
2. Cy >y ey >y Cp >y Eg.

Proof. Itis clear that ¢, >, e, and ¢, >, e,. We show,
using proof by contradiction, that ¢, >, e, >, €, is
impossible. Then, by similar argument, ¢, >, e, >, e,
is impossible as well.

Assume ¢, >, e, >, e, is possible. Let p, and p,
be the Prepare records for e, and e, respectively. We
look at what happens in z’s call to acquire().

From LemmaH, we know that, prior to append(e.),
neither traverse() call passed ¢, to the callback. This
in turn implies that neither traverse() call passed e, or
py 1o the callback, because otherwise append(e,) would
not execute.

If the traverse() call prior to append(e,) did not
pass p, to the callback, then the completion time of
append(p,) must occur after the issue time of that
traverse(). This also means that the completion time
of append(p,) must occur after the completion time
of append(p,). If this is the case, however, DHash
write-read consistency guarantees that the traverse()
call after append(p,) passes p. to the callback. Hence
append(e,) would not execute. Contradiction. O

Definition 7. A critical region is a sequence of opera-
tions surrounded by calls to acquire() and release()
that protect these operations. The critical region ex-
ecutes after acquire() succeeds. The duration of the
critical region extends from the issue time of the first op-
eration in the sequence to the completion time of the last
operation in the sequence.

The following theorem proves that acquire() and
release() provides mutual exclusion for critical re-
gions.

Theorem 3. Assuming network and processing delays
do not exceed IV seconds, if X and Y are two critical
regions protected by the same handle, then durations of
X and Y do not overlap.

Proof. Let the first and last operations in X be x, and
x1, and the first and last operations in Y be yq and y;.
Let e,, cu\ €y, and ¢, be Exclusive and Cancel log
records that protect X and Y. Without loss of generality,

assume ¢, >, e, >y ¢y >, ey (from Lemmaf). This
means xq is issued after append(e,), and y; is issued
before append(c,). Therefore, g is issued after y;. O

5 Forking

So far this paper has focused on the semantics of L* as-
suming DHash provides write-read consistency. This as-
sumption breaks under two scenarios. First, while cryp-
tographic techniques are useful for checking integrity of
data returned from untrusted DHash servers, they do not
ensure freshness of the data. An untrusted server can
mount a stale-data attack [5] by serving an old copy of
a log-head block. Second, participants can also receive
stale data if they operate in different network partitions.
We call both scenarios “forking”. This section describes
how to detect stale-data attacks and how to recover from
forking.

5.1 Detection

A DHash server mounts a stale-data attack by serving an
old copy of a log-head block. To observe what happens
during a stale-data attack, suppose there are three parti-
cipants, z, y, and z, and the participant’s log-heads A,
hy, and h each has sequence number 3. This means the
most recent log record in each log has sequence number
2. Let s, sy, and s, be the DHash servers that serve b,
hy, and h, respectively. We consider the following two
cases.

First, suppose s, mounts a stale-data attack by giving
h’ to x, where h’.seq = 2, and h, to y and z. In ef-
fect, s, tricks z into believing that the most recent log
record written by z has sequence number 1 instead of
2. While z cannot detect this attack immediately, the at-
tack is evident if y appends a log record to y’s log, and
x subsequently fetches a new h,. Because s, is not ma-
licious, h,.prev.version[z] = 2. z then notices that
hy.prev.version[z] # h',.prev.seq.

In general, a stale-data attack by some but not all of the
servers can be detected by checking for inconsistencies
between logs. If log records in one log disagree with
another log’s log-head on the most recent log records in
the second log, the log-head of the second log is stale.
Because log-head writes are not atomic, a participant can
also temporarilly fetch stale log-heads in absence of a
stale-data attack.

Next, consider an attack that involves every DHash
server that stores a log-head. For example, suppose s,
sy, and s, collude so that s, and s, return A, and h; to
z, Where h),.seq = 2 and h;,.seq = 2, and the latest copy
of h, and hy, to x and y, and that s, returns i/, to x and

y, where h/..seq = 2, and the latest version of i, to z.
x, y, and 2’s logs remain consistent because the attack
partitions all of = and y’s updates from z, and vice-versa.
Fortunately, such an attack can be detected using out-
of-band communication, such as e-mail notification after
updates. This scenario is similar to that described in [5].

5.2 Recovery

After stale-data attacks or network partition merge, par-
ticipants see all the log records written during the fork,
but most have concurrent version vectors. L* orders such
version vectors using order(), so participants will agree
on the state of the data structure after the partition heals.

Assuming that a participant writes only in one par-
tition, a data structure’s meta-data, the set of per-
participant logs, remains internally correct after the parti-
tion heals. That is, log records that appear in logs before
the partition or added during the partition remain access-
ible after the partition.

At the application level, however, some partitioned up-
dates may have affected program correctness. L* leaves
conflict detection and resolution to the application; it
only notifies the application when it sees log records with
concurrent version vectors.

6 Experience

We built a multi-user peer-to-peer read-write file system,
Ivy [6], using L*. Each lvy log record contains inform-
ation about a single file system modification. For ex-
ample, a Link log record contain information such as
“link file f oo into directory bar ”. To avoid unneces-
sary conflicts from concurrent updates by different par-
ticipants, Ivy log records contain the minimum possible
information. For example, a Write log record describes
data written to a file. Each Write record contains the
newly written data, but not the file’s new length or modi-
fication time. These attributes cannot be computed cor-
rectly at the time the Write record is created, since the
true state of the file will only be known after all concur-
rent updates are known. Ivy computes that information
incrementally when traversing the logs.

vy uses traverse() and append() to implement
most file system operations. To answer a lookup, Ivy
calls traverse(), stopping scanning the log once it has
gathered enough data to handle the request. For ex-
ample, to perform a directory listing, vy accumulates
all file names from relevant Link log records, taking
more recent log records that remove or rename files into
account. lvy modifies the file system using append().
Most modify operations follow lookups. For example,

create (string n, handle dir)
check_exists (logrecord r) {
if file or directory named n exists
returnl
return0

acquire (dir)
int r := traverse (check_conflict)
if (r=1)
release (dir)
return EXISTS
R := list of log records to create n in dir
append (R)
release (dir)
return OK

Figure 5: lvy uses mutual exclusion to implement file
creation. Applications then create lock files to serialize
operations to the same file or directory.

prior to creating a new file, Ivy checks if the file exists
already.

Ivy implements most file system operations without
mutual exclusion. This design choice does not affect
program correctness when users use these operations to
modify different files or directories. Concurrent updates
to the same file or directory, however, may result in non-
sequential execution history. For example, if one pro-
gram issues r enane(f 1, f 2) while another program
concurrently issues unl i nk(f 1), both operations may
succeed. If these two operations execute sequentially,
one fails. In either case, however, the file system remains
consistent; it looks as if the system calls were correctly
executed in one order or the other.

Ivy uses mutual exclusion to implement file and dir-
ectory creation (Figure B). File and directory creation
require strong concurrency semantics so programs can-
not create duplicate files or directories. Also, applica-
tions can create lock files to serialize conflicting updates,
such as the concurrent r ename and unl i nk described
above.

Ivy achieves good performance [[6] through aggress-
ive client-side caching. Each participant’s vy software
caches the entire state of the file system. Use of logs
allows lvy to easily validate an entire cache; if the log-
heads have not changed since the cache was updated, the
cache is up-to-date. A typical Ivy operation involves
fetching log-heads from DHash, fetching new log re-
cords (if any), and then completing the operation entirely
from the local cache.

7 Related Work

Sprite LFS [10] represents a file system as a log of oper-
ations, along with a snapshot of i-number to i-node loc-
ation mappings. LFS uses a single log managed by a
single server in order to to speed up small write perform-
ance. L* uses multiple logs to let multiple participants
update a data structure without a central server or server
cluster.

Existing systems, such as Bayou [[14] and Conit [15],
have explored the idea of merging operation logs from
multiple clients in order to resolve concurrent updates to
a data structure. The novel contribution of L* is to use
this idea to implement real-time access to a shared data
structure.

Bayou [14] represents changes to a database as a log
of updates. Each update includes an application-specific
merge procedure to resolve conflicts. Each node main-
tains a local log of all the updates it knows about, both
its own and those by other nodes. Nodes operate primar-
ily in a disconnected mode, and merge logs pairwise
when they talk to each other. The log and the merge
procedures allow a Bayou node to re-build its database
after adding updates made in the past by other nodes.
As updates reach a special primary node, the primary
node decides the final and permanent order of log entries.
L* differs from Bayou in a number of ways. L*’s per-
client logs allow nodes to trust each other less than they
have to in Bayou. L* uses a distributed algorithm to
order the logs, which avoids Bayou’s potentially unre-
liable primary node. L* ensures that updates leave the
data structure consistent, while Bayou shifts much of this
burden to application-supplied merge procedures. Fi-
nally, L*’s design focuses on providing useful semantics
to connected clients, while Bayou focuses on managing
conflicts caused by updates from disconnected clients.

TDB [3], S4 [13], and PFS [12] use logging and (for
TDB and PFS) collision-resistant hashes to allow modi-
fications by malicious users or corrupted storage devices
to be detected and (with S4) undone; L* uses similar
techniques.

8 Conclusion

This paper presents L*, a set of techniques for main-
taining consistent data structures in DHTs. L* repres-
ents the data as a log of operations in the DHT, with a
separate log per participant. Participants communicate
through L* and the DHT; they do not directly talk to each
other or any single server. A participant updates the data
structure by appending records to its log; a participant
reads the current state of the data structure by scanning
the other participants’ logs. Log structure, and use of a

10

log for each participant, means that concurrent updates to
the same data result in new log records in multiple logs,
rather than a corrupted data structure.

L* interleaves multiple logs deterministically so that
decentralized clients can agree on the order of completed
updates, even if those updates were issued concurrently.
When the data structure is quiescent, L* guarantees that
clients agree on the state of the data structure. Applic-
ations can also implement mutual exclusion using L* to
achieve stronger concurrency semantics.

We built a multi-user peer-to-peer read-write file sys-
tem, lvy, that uses L* to store all file system data and
meta-data. With aggressive client-side caching, Ivy
achieves good performance.

References

[1] F. Dabek, M. Frans Kaashoek, D. Karger, R. Morris, and
I. Stoica. Wide-area cooperative storage with CFS. In
Proc. of the ACM Symposium on Operating System Prin-
ciples, October 2001.

N. Lynch, D. Malkhi, and D. Ratajczak. Atomic data ac-
cess in content addressable networks. In Proc. of the First
International Workshop on Peer-to-Peer Systems, March
2002.

U. Maheshwari, R. Vingralek, and W. Shapiro. How
to build a trusted database system on untrusted storage.
In Proc. of the USENIX Symposium on Operating Sys-
tems Design and Implementation, pages 135-150, Octo-
ber 2000.

P. Maymounkov and D. Maziéres. Kademlia: A peer-
to-peer information system based on the xor metric. In
Proc. of the First International Workshop on Peer-to-Peer
Systems, March 2002.

D. Maziéres and D. Shasha. Building secure file systems
out of Byzantine storage. In Proc. of the Twenty-First
ACM Symposium on Principles of Distributed Computing
(PODC 2002), July 2002.

A. Muthitacharoen, R. Morris, T. M. Gil, and B. Chen.
Ivy: A read/write peer-to-peer file system. In Proceed-
ings of the 5th USENIX Symposium on Operating Systems
Design and Implementation (OSDI ’02), Boston, Mas-
sachusetts, December 2002.

T. Page, R. Guy, G. Popek, and J. Heidemann. Architec-
ture of the Ficus scalable replicated file system. Technical
Report UCLA-CSD 910005, 1991.

D. Parker, G. Popek, G. Rudisin, A. Stoughton,
B. Walker, E. Walton, J. Chow, D. Edwards, S. Kiser, and
C. Kline. Detection of mutual inconsistency in distributed
systems. In IEEE Transactions on Software Engineering,
volume 9(3), pages 240-247, 1983.

S. Ratnasamy, P. Francis, M. Handley, R. Karp, and

S. Shenker. A scalable content-addressable network. In
Proc. ACM SGCOMM, pages 161-172, August 2001.

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

M. Rosenblum and J. Ousterhout. The design and imple-
mentation of a log-structured file system. ACM Transac-
tions on Computer Systems, 10(1):26-52, 1992.

A. Rowstron and P. Druschel. Storage management and
caching in PAST, a large-scale, persistent peer-to-peer
storage utility. In Proc. of the ACM Symposium on Op-
erating System Principles, October 2001.

C. Stein, J. Howard, and M. Seltzer. Unifying file system
protection. In Proc. of the USENIX Technical Conference,
pages 79-90, 2001.

J. Strunk, G. Goodson, M. Scheinholtz, and C. Soules.
Self-securing storage: Protecting data in compromised
systems. In Proc. of the USENIX Symposium on Operat-
ing Systems Design and |mplementation, pages 165-179,
October 2000.

D. Terry, M. Theimer, K. Petersen, A. Demers, M. Spreit-
zer, and C. Hauser. Managing update conflicts in Bayou,
a weakly connected replicated storage system. In Proc.
of the ACM Symposium on Operating System Principles,
pages 172-183, December 1995.

H. Yu and A. Vahdat. Design and evaluation of a
conit-based continuous consistency model for replicated
services. ACM Transactions on Computer Systems,
20(3):239-282, August 2002.

B. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An in-
frastructure for fault-tolerant wide-area location and rout-
ing. Technical Report UCB/CSD-01-1141, Computer
Science Division, U. C. Berkeley, April 2001.

11

	Introduction
	DHash
	Per-participant Logs
	Combining Logs
	L* API
	Network Partition

	Consistency
	Ordering of Log Records
	Relaxed Fetch-Modify Consistency
	Mutual Exclusion

	Forking
	Detection
	Recovery

	Experience
	Related Work
	Conclusion

