Serving DNS using Chord
(or Pastry, or ...)
Good idea, bad idea?

Russ Cox
Athicha Muthitacharoen
Robert Morris

rsc,athicha,tm@pdos.Ics.mit.edu

IPTPS '02
March 8, 2002



Motivation

Before DNS, there was a globalsts. txt.

DNS is an attempt to distribubests. txt but:

Configuring DNS properly is tedious and time-consuming.
Everyone has to be a DNS admin.

| can’t have a domain without finding someone to serve my
names.

Easy to have locally-correct-but-globally-wrong
configurations.

Peer-to-peer lookup services solve some of these problems:

Organization, replication, and much configuration done by
P2P layer.

| don’t need to run my own 24/7 DNS server.

Lack of hierarchy avoids half-broken configurations.



Motivation, Il

“Distributing authority for a database does not distribute
corresponding amounts of expertise. Maintainers fix things
until they work, rather than until they work well, and want to
use, not understand, the systems they are provided. System:
designers should anticipate this, and try to compensate by
technical means.”

Mockapetris and Dunlap, 1988



DNS

IP-based DNS authentication
Trust IP layer; believe what you hear from those you trust.
Root servers are known.
Servers delegate authority to other IP addresses.

Verification induces lookup algorithm.

DNSSEC-based DNS authentication

Trust public key crypto; believe what is signed by those
you trust.

Root server keys are known.
Servers delegate authority to other keys.

Verification leaves lookup completely unspecified.
With DNSSEC, can explore other lookup methods.

Peer-to-peer!



DNS with P2P Hash Table

Look up SHA1(name, query-type).

(Maybe walk key hierarchy, maybe store records with all
relevant keys.)

Perfect match for “distributebosts. txt.”

Prototype implemented using Chord.



Evaluation: Latency

Uncached latency is enormous.
O(logon) RPCs per lookup.

Compare to conventional DNS: typically 1 or 2 RPCs per
lookup.

Cached latency a little better, not much.



Evaluation: Functionality

We have all the functionality of a distributkeasts. txt.

And nothing more.
No support for “ANY” queries.
No dynamically-generated records.
No DNS-server-side load balancing (randomization).

No DNS-server-side proximity routing (Akamai).



Evaluation: Ease of Administration

O’Reilly BIND+DNS book lists 13 common problems.

9 are arguably software deficiencies (needing to restart the
server after config changes, ...).

4 are actually protocol-specific problems; we just stir them
around.

Missing subdomain server delegatienmissing public
key delegation

Bad subdomain delegation bad public key delegation

Network outage- different network outage

1 is gone:

Slave server can’t load zore caching is transparent

But why trust random servers rather than run my own?
Chicken and egg problem or fundamental worry?

Comparison with IP routing? [XXX]



Evaluation: Robustness

Robustness inherited from P2P layer:
Better fault tolerance against DoS attacks.

Hard to target specific records network routes around
damage.

No central points of failure.

Then again:
DNS DoS attacks are so 1998.
The central DNS servers have very good reliability.
New DoS: inserting lots of bogus records.

How do we tell DoS from normal usage?
Why can't | have a billion records for my personal domain”



Conclusions

If it were 25 years ago, P2P DNS might be worth considering
Current DNS is more than just distributiesbts . txt.

Some benefits, mostly drawbacks.

Addressing a non-issue: more benefit from fixing BIND’s UL.

Better the devil you know than the devil you don't.



