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Abstract

Over the last decade, systems software verification has become increasingly practical.
Many verified systems have been written in the language of a proof assistant, proved
correct, and then made runnable using code extraction. However, due to the rigidity
of extraction and the overhead of the target languages, the resulting code’s CPU
performance can suffer, with limited opportunity for optimization. This thesis con-
tributes CoqGo, a proof-producing compiler from Coq’s Gallina language to Go. We
created Go′, a stylized semantics of Go which enforce linearity, and implemented proof-
producing compilation tactics from Gallina to Go′ plus a straightforward translation
from Go′ to Go. Applying a prototype of CoqGo, we compiled a system call in the
FSCQ file system, with minimal changes to FSCQ’s source code. Taking advantage of
the increased control given by CoqGo, we implemented three optimizations, bringing
the system call’s CPU performance to 19% faster than the extracted version.
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Chapter 1

Introduction

The last decade has seen the verification of increasingly practical pieces of software,

including compilers [9, 11], microkernels [6, 8], web servers [3], distributed systems [7,

22], and file systems [2, 18]. Many verified systems, including CompCert [11], Verdi [22],

and FSCQ [2], are written in Gallina, the specification language for the Coq proof

assistant [4]. Using Gallina, implementors can write high-level functional programs

and directly reason about their correctness in Coq, with verification made easier by

the use of the same logic for the programs as well as the proofs.

To run these systems, many implementors employ Coq’s extraction mechanism [12],

directly translating Gallina to Haskell or OCaml while erasing proofs. Extraction

requires minimal effort, but it has two key disadvantages. For one, the translation

is unverified [1, 13, 14]: the proofs only apply to the Gallina source code, not the

executable. In this work, we focus on a second disadvantage: extraction outputs

code in a high-level language and offers few knobs for optimization, resulting in poor

runtime performance of the output. In FSCQ’s case, even after some optimization

effort, the CPU performance can lag behind that of ext4 by a factor of five. Further

improvements could be made, but the direct nature of extraction precludes deeper

transformations, such as compilation to a lower-level language or the use of imperative

rather than functional data structures. At some point, optimizing a program which is

15



extracted runs out of steam.

To address extraction’s lack of optimization opportunities, we present CoqGo, a

compiler from Gallina to Go. By compiling to an imperative language and giving control

over the compilation process, CoqGo makes it possible to apply more optimizations

and beat the performance of extracted code. CoqGo’s approach rests on two main

ideas inspired by a stage of the Fiat pipeline [16]:

1. CoqGo defines a “stylized” semantics of Go, named Go′. By enforcing linearity

and defining a specialized set of language constructs, Go′ makes for a much

easier compilation target than Go, even though the translation from Go′ to Go

is straightforward.

2. CoqGo compiles from Gallina to Go′ using proof-producing compilation tactics

implemented in Coq’s tactic language, Ltac. The compilation tactics break apart

the source program into individual operations which can be translated directly,

sequencing the execution and allocating Go′ variables to hold intermediate

values.

To explore this approach, we built a prototype of CoqGo tailored specifically to

FSCQ’s source code, and used it to compile one of FSCQ’s system calls to Go. (A

significant portion of CoqGo was built as a joint effort with Alex Konradi.) Thanks to

increased control over the compilation, we were able to implement three optimizations

which bring the system call to around 24 times faster than the initial Go code and

19% faster than the extracted Haskell version, while requiring only 40 lines of changes

to FSCQ’s source code.

This thesis begins with some background on FSCQ’s source code (Chapter 2) and

an overview of CoqGo’s pipeline (Chapter 3). Then, we explain the details of

CoqGo’s proof-producing compilation to Go′ (Chapter 4) and the implementation

of the whole system, including its application to FSCQ (Chapter 5). To evaluate

CoqGo, we investigate the changes necessary to FSCQ, the performance attained,

16



and the optimizations enabled by increased control over compilation (Chapter 6).

Finally, after discussing related work (Chapter 7) and future work (Chapter 8), we

conclude (Chapter 9).
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Chapter 2

Background on FSCQ

This chapter gives an overview of the source language (Section 2.1) and source code

(Section 2.2) which serve as the input to CoqGo. Then, it explains the limitations of

FSCQ’s current code extraction approach (Section 2.3).

2.1 FSCQ source code: Monadic shallow embedding

in Gallina

FSCQ’s source code is written in Gallina, Coq’s specification language, in a shallow

embedding style on top of a simple monad [20], prog T, which defines the disk

operations:

Inductive prog : Type→ Type :=
| Ret (T: Type) (v: T) : prog T
| Bind (T T’: Type) (p1 : prog T) (p2 : T→ prog T’) : prog T’
| Read (a: addr) : prog block
| Write (a: addr) (b: block) : prog unit
| Sync : prog unit.

Ret and Bind are the standard monadic combinators; Bind p1 p2 is generally written

19



⟨ x ← p1; p2 x ⟩. The other constructors are commands with side effects: reading

or writing a block from disk at a particular address or synchronizing the disk by

instructing it to flush write buffers.

The right-hand side of the Bind combinator (p2) is a raw Gallina function, making

this a shallow embedding. Apart from the commands in prog, FSCQ source code

is written as arbitrary Gallina code, using Coq standard library functions and data

structures (such as lists and maps).

As an example, one could write the following program, which reads the disk block at
address a and adds the block to the front of the list vs.

Definition read_into_list (a: addr) (vs: list block)
: prog (list block) :=

v← Read a;
Ret (v :: vs).

2.2 Constructs employed by FSCQ source code

Generic Gallina code can contain arbitrary expressions, but the constructs employed

by the FSCQ source code are much more limited in practice.

FSCQ’s code makes frequent use of a fairly small set of data types:

• Natural numbers (N): Many parts of the code operate on arbitrarily sized

natural numbers. Compared to using fixed-size integers, this simplifies proofs

because it eliminates the need to prove bounds checks. However, a naive com-

pilation must then use arbitrary-precision unsigned integers. In practice, the

numbers which FSCQ manipulates (such as addresses) do not exceed 264.

– Operations: The code primarily uses the standard arithmetic operations

to manipulate numbers (+, −, ×, /, mod).

• Lists (list T): The code makes frequent use of the inductive list datatype,

which can be thought of as a singly-linked functional list data structure.

20



– Operations: The code often uses the cons constructor to prepend a new

element onto the front of a list. It also iterates over lists, both in purely

functional code as well as in monadic code that performs disk operations.

• Fixed-size words (word n): In some places, the code does use fixed-size bit

strings rather than natural numbers. Disk blocks are 4096 bytes long, and on-disk

records are defined with fixed sizes.

– Operations: The most important operation which the code does on fixed-

size words is to serialize and deserialize records. This involves reading and

updating ranges of bytes, as well as serializing and deserializing integers.

• Maps (FMapAVL): Many parts of the code, such as the buffer cache, manipulate

maps from numbers (e.g. addresses or inode numbers) to some other data

structure. Everywhere maps are used, the keys are intended to be 64-bit integers,

but they are expressed as Ns.

– Operations: The code looks up, inserts, and removes elements from maps,

as well as enumerating all entries.

• Nested records: Most functions in the code pass around global parameters

and in-memory state using Coq record types. Generally, each module in the code

defines a record type for its own in-memory state, which contains the state of

the modules that it depends on.

– Operations: The code constructs records out of their constituent values

and gets and sets individual fields.

2.3 Existing compilation pipeline

FSCQ uses Coq’s extraction feature [12] to directly translate its Gallina source code

into Haskell, as outlined in Figure 2-1.
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FSCQ

Program

Specification

Proof

Haskell libraries
& FUSE driver

FSCQ's Haskell code

FSCQ's FUSE server

 
Code extraction

Haskell compiler

Figure 2-1: FSCQ’s existing compilation pipeline

Using extraction to produce executable code enables running high-level dependently-

typed functional code with minimal effort, but the directness of the translation prevents

it from producing maximally performant code. Naively, extraction outputs data types

that directly correspond to their structure in the Gallina source code. Lacking access

to primitive machine words within Coq, programmers must define all their types as

inductive algebraic data types, including integers or byte arrays; the resulting data

types are extremely inefficient. To mitigate this, the extraction mechanism enables

unsafe substitution of Coq data types and functions by manually-implemented Haskell

code. For example, FSCQ’s extraction replaces word n (which would natively require

allocating one object per bit) with a shim around Haskell’s built-in big integer type,

Integer. The resulting performance is acceptable, but many operations are still

inefficient. For one, extraction must replace types uniformly: even though word 64

would be better to statically extract as Word64 and word 32768 would be better to

statically extract as some variant of ByteArray, the extraction has to instead produce

code which dynamically switches between Word64 and Integer. Also, all updates to
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Figure 2-2: FSCQ’s current performance on the small file write benchmark, as a
fraction of the performance of ext4

data structures must still happen in a purely functional fashion, necessitating copying

the contents of an entire disk block to mutate a single integer within it.

As a result of these problems, FSCQ’s CPU performance still lags significantly behind

that of ext4. Figure 2-2 shows a benchmark which repeatedly creates a new file, writes

a small amount of data to it, and syncs it. On a hard drive (HDD), the high I/O

latency enables FSCQ’s throughput on the benchmark to be competitive with that

of ext4. However, on a faster drive such as a fast SSD or a ramdisk, the slower CPU

performance starts to dominate, resulting in throughput two-fifths or a fifth as high as

what ext4 achieves. This benchmark shows that there exist operations where FSCQ

would greatly benefit from better CPU performance.
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Chapter 3

Overview

This chapter outlines the approach behind CoqGo. It explains the goals which CoqGo

attempts to achieve (Section 3.1). Then, it outlines the pipeline from Gallina to Go

(Section 3.2) and describes the most significant parts: the intermediate language Go′

(Section 3.3), the proof-producing compilation tactics from Gallina to Go′ (Section 3.4),

and the translator from Go′ to Go (Section 3.5).

3.1 Goals

CoqGo has two key goals:

1. It should produce reasonably performant output by enabling optimizations which

are not possible in extraction.

2. It should support compiling FSCQ with minimal changes to its source code.

There are some goals we do not aim for. For now, CoqGo does not need to support

other applications, so it can be tailored specifically to FSCQ. We also do not aim to

prove that the compilation process always works. As long as compilation succeeds,

the output should include a proof that it behaves identically to the source program,
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but the compilation is allowed to fail.

3.2 CoqGo Pipeline

Compiling FSCQ with CoqGo involves three distinct components:

1. The CoqGo compiler itself, including all four stages described in Section 3.2.

2. The FSCQ source code.

3. FSCQ support code for CoqGo, including performance tweaks (such as

which buffers to make immutable) and some boilerplate (a small wrapper for each

record type and each compiled function). See the top-right box in Figure 3.2.

Given these ingredients, CoqGo converts FSCQ’s source code into a Go executable

using four stages (see Figure 3.2):

1. A proof-producing compilation pass within Coq translates it into Go′, a “stylized”

variant of Go tailored to this sort of application (see Section 4.1).

2. Coq’s built-in extraction mechanism converts the Go′ AST in Coq into an

equivalent AST in OCaml.

3. A small OCaml program prints the Go′ AST into Go source code.

4. The Go compiler produces an executable.

We chose Go as our target language because it enables moderately good performance

and offers convenient features both in the language and in the surrounding tools.

Go’s built-in slices and lists are a good match for the functional lists and maps

which we need to extract, and Go’s good profiling tools enable easy performance

analysis. However, the choice of target language is fairly unimportant; it would be

straightforward to adapt the current work to a different language such as C or C++.
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Program

Specification

Proof

FSCQ

Go libraries
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Go executable
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Go compiler

Go' AST in Coq
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Go' AST in OCaml

Go' to Go
printer (OCaml)

Figure 3-1: The CoqGo compilation pipeline. Blue-shaded boxes contain source code
which will form part of the executable. Green borders indicate new contributions in
CoqGo.
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3.3 Go′

Instead of compiling directly into Go, CoqGo first compiles into an intermediate

language, Go′. In a sense, Go′ is just a stylized semantics for Go: the translation from

Go′ to Go is straightforward. However, Go′ adds several constraints and simplifications

to Go to make compilation from functional code as easy as possible.

Go′ enforces linear use of memory. Rather than modeling a full-blown heap,

Go′ ensures that mutable values can never be aliased. That way, the compiler can

mutate values at will without worrying about other potential references, and we can

model memory as consisting of nothing more than a lexically scoped set of variable

values.

Go′ introduces additional type distinctions to keep track of invariants. For

example, what will become a slice in Go could have three different types in Go′: a

Slice, a Buffer, or an ImmutableBuffer. Each of them are treated differently: slices

are kept in reverse order in Go so that a functional list cons can be turned into a slice

append, mutable buffers must be copied when aliased, and immutable buffers must

never be modified.

Go′ only defines a subset of Go. Since the current version of CoqGo is specific

to FSCQ, Go′ only defines operations necessary for compiling FSCQ, and leaves out a

number of language features, such as higher-order functions (even though they are

supported by both Gallina and Go). Go′ also has no expressions, only operations, in

order to uniformly handle mutation operations and immutable computation.
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3.4 Proof-producing compilation tactics

The proof-producing compilation tactics convert the Gallina source code into a Go′ AST

within Coq. Because the source is in a shallow embedding, it cannot be manipulated

directly by Gallina functions. Instead, we implement the compilation tactics in Ltac,

Coq’s proof scripting language, which can manipulate Gallina terms at the syntax

level. The tactics recurse through the source program, breaking it up into individual

operations that can be translated directly. Monadic binds are converted into imperative

sequencing (Section 4.3.1); expression evaluation is sequenced into individual steps

(Section 4.4.3). The entire process is performed by repeated application of verified

compilation lemmas (Section 4.3), producing a Go′ AST together with a proof that it

corresponds to the source code.

Chapter 4 discusses the compilation tactics in more detail. Here, we introduce notation

for stating that a particular Go′ program is a correct compilation of a Gallina program,

and use it to walk through an example compilation.

We state the correctness of a particular compilation using Hoare pre- and postconditions

plus a monadic source program on the side: ⟨ COMPILE p {{ P }} xp {{ Q }} ⟩. p

denotes the source program (a Gallina term of type prog T for some result type T), P

denotes the precondition on the Go variables, xp denotes the extracted Go program,

and Q denotes the postcondition on the Go variables. The monadic source program

evaluates to a single result value, but the result of a computation in Go could be stored

in any variable. Thus, the postcondition Q is a function of the result value of p, and it

indicates (among other things) which variable holds the Go′ value corresponding to

the result. Roughly, the statement ⟨ COMPILE p {{ P }} xp {{ Q }} ⟩ means that if

P is satisfied before xp is run, xp will have the same effects as p, and it will leave the

Go variables in a state satisfying the postcondition Q, where Q is applied to the result

of evaluating p.

Using the definition of correct compilation, we can frame the task of compilation
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as a synthesis problem: The compiler is given some source program p and pre- and

postconditions P and Q (generally just specifying the inputs and outputs), and it must

find some target program xp such that ⟨ COMPILE p {{ P }} xp {{ Q }} ⟩ holds.

The compilation of the example program from Section 2.1 could start out as the

following Coq goal, where _ indicates a hole which is yet to be filled in:

∀ a vs,
COMPILE v← Read a;

Ret (v :: vs)
{{ a_var a * vs_var vs }}

_
{{ 𝜆 ret⇒ a_var : N * vs_var ret }}

There are a few relevant notational details. The pre-and postconditions are expressed in

terms of separation logic1: ⟨ a_var  a ⟩ means that the Go variable a_var contains

a Go value which corresponds to the Gallina value a; ⟨ a_var : N ⟩ means that a_var

contains some value whose type corresponds to the Gallina type N, representing

natural numbers.

At this point, the compiler will see that we are extracting a monadic bind and do two

things: First, it will put var buf_var []byte (or rather, the equivalent Go′ abstract

syntax) in the top of the output code to hold the bound value. Then, it will split

the remaining compilation task into two goals, one for Read a and one for Ret (v ::

vs).

First, we must read block a into the new variable:

∀ a vs,
COMPILE Read a
{{ buf_var : block * a_var a * vs_var vs }}

_
{{ 𝜆 ret⇒ buf_var ret * _ }}

1Given that our Go semantics do not model the heap (see Section 4.1.3), we do not use separation
logic in a very deep way; it was simply convenient to reuse FSCQ’s existing separation logic
infrastructure.
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In this goal, part of the postcondition is unknown, since the automation does not know

yet whether the program will need to modify a_var and vs_var to produce the right

value in buf_var (in this case, it will not). This goal can be dispatched by doing a

single disk read, filling in the Go code with DiskRead(&buf_var, a_var) and filling

in the hole in the postcondition with ⟨ a_var  a * vs_var  vs ⟩ to match the

precondition.

Now that the block value v is stored in buf_var, we must add it to our list:

∀ a vs v,
COMPILE Ret (v :: vs)
{{ buf_var v * a_var a * vs_var vs }}

_
{{ 𝜆 ret⇒ buf_var : block * a_var : W * vs_var ret }}

The compiler dispatches this goal by appending buf_var to vs_var, and our compila-

tion is finished. The result is as follows:

∀ a vs,
COMPILE v← Read a;

Ret (v :: vs)
{{ a_var a * vs_var vs }}

var buf_var []byte
DiskRead(&buf_var, a_var)
vs_var = append(vs_var, buf_var)

{{ 𝜆 ret⇒ a_var : N * vs_var ret }}

Working inside Coq, this statement would look the same except that the Go would be

in Go′ AST form rather than printed as Go.

3.5 Go′ to Go printer

CoqGo’s proof-producing compilation produces a set of compiled Go′ functions in

the form of a map from function names to function declarations, which include the
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parameter types and the body AST. Then CoqGo extracts the entire map to OCaml

using Coq’s built-in extraction mechanism and feeds it to the Go′ to Go printer written

in OCaml. (Alex Konradi wrote the bulk of the Go′ to Go printer.)

The Go′ to Go printer outputs all the structs and functions into a single Go source

file, which is combined with a small Go library to produce the final executable.

32



Chapter 4

Compilation to Go′

This chapter details the components of the proof-producing compilation from Gal-

lina source code into Go′. The compilation of a typical Gallina construct requires

implementation at five levels in the pipeline:

0. The Go′ to Go printer must convert the Go′ form of the construct into Go source

code.

1. The behavior of the construct must be defined in the Go′ semantics.

2. A set of “GoWrappers” must define how the relevant Gallina types map onto Go′

types.

3. A compilation lemma must state pre- and postconditions for the construct and

prove them by relating the execution of the construct in Gallina to the execution

of the corresponding construct in Go′.

4. An Ltac proof-producing compilation tactic must recognize when the operation

should be compiled and apply the appropriate compilation lemma.

The sections below detail levels 1–4 above.
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4.1 Go′ syntax and semantics

As described in the overview (Section 3.3), the primary goal of Go′ is to make

proof-producing compilation from Gallina as easy as possible. It also needs to cover

a sufficient subset of Go to compile FSCQ and enable the resulting code to be

moderately performant. However, we did not aim to create a representation of Go

in its full generality. Language features not needed by the compilation are simply

omitted, and other features are represented in a specialized way in order to make

them more suitable for compilation. Additionally, we did not place a high weight on

minimizing the size of the semantics. Currently, the verified parts of the pipeline end

at these Go′ semantics, so they are indeed part of the trusted code base, but the

correct way to alleviate this would be to build a verified compiler for Go′, for instance

by compiling to the Fiat pipeline’s Cito language [21] or the CompCert compiler’s

Clight input language [11].

4.1.1 Abstract syntax

The syntax of Go′ is defined as an inductive data structure in Coq. Go′ is a simple

imperative language which supports variable declarations (described in Section 4.1.4),

control flow constructs If, While, and Seq (for sequencing statements—essentially,

semicolons), function calls, disk operations to mirror those of prog, and a set of

factored-out Modify operations which are used for all operations which only affect

local variables. The abstract syntax also defines Undeclare and InCall constructs,

which are disallowed in code and merely occur in intermediate execution states in the

small-step semantics (see Section 4.1.2). Figure 4-1 shows the definition of the syntax

in Coq.

Go′ supports a number of Modify operations which define operations on the various

data types that only affect the values in variables; see Figure 4-2. Each has some fixed

number of variables as arguments.
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Inductive stmt :=
| Skip : stmt
| Seq : stmt→ stmt→ stmt
| If : cond→ stmt→ stmt→ stmt
| While : cond→ stmt→ stmt
| Call (nparams: N)

(f: label) (* The function to call *)
(argvars: n_tuple nparams var) (* The variables to pass in *)

| Declare : type→ (var→ stmt)→ stmt
| Modify : ∀ op : modify_op, n_tuple (op_arity op) var→ stmt
| DiskRead : var→ var→ stmt
| DiskWrite : var→ var→ stmt
| DiskSync : stmt
(* InCall and Undeclare only appear at runtime *)
| Undeclare : var→ stmt
| InCall (s0 : locals) (* The stack frame inside the function *)

(nparams: N)
(argvars: n_tuple nparams var) (* The variables jassed in *)
(p: stmt) (* The remaining body *).

Figure 4-1: The definition of the abstract syntax of Go′

Inductive modify_op :=
| SetConst {t: type} (v: type_denote t) (* dst *)
| Duplicate (* dst, src *)
| Move (* dst, src *)
| Append (* list, element *)
| Uncons (* list, empty?, head, tail *)
| NumOp (nop: numop) (* dst, a, b *)
| SplitPair (* pair, fst, snd *)
| JoinPair (* pair, fst, snd *)
| MapAdd (* map, key, value *)
| MapRemove (* map, key *)
| MapFind (* map, key, value *)
| MapCardinality (* map, size *)
| MapElements (* map, list *)
| FreezeBuffer (* dst, src *)
| SliceBuffer (* dst, src, from, to *)
| InitSliceWithCapacity (cap: N) (* dst *)
| DeserializeNum (* dst, src *).

Figure 4-2: The list of Modify operations which only affect variables.
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4.1.2 Execution semantics

The Go′ execution semantics are expressed both as a big-step semantics and a small-

step semantics, which are proved equivalent to each other. This enables switching

between styles in proofs depending on which one is more convenient: for instance, we

use the small-step semantics when reasoning about crashes which could happen at

an arbitrary step in the program, but we use the big-step semantics to reason about

the execution of a function call as a whole without needing to recurse through it.

To represent intermediate execution states that can appear at runtime, the small-

step semantics take advantage of the InCall construct (for when the program is

inside a function call) and the Undeclare construct (for when the program is inside

a declaration block, and needs to undeclare the variable at the end), as shown in

Section 4.1.1.

An execution of a Go′ program is considered to have three possible outcomes:

• Finished d l: The program executes successfully, ending with the disk in state

d and local variables with values l.

• Crashed d: The machine experienced a fail-stop crash (i.e. it lost power or

kernel panicked), interrupting execution partway and leaving the disk in state d.

Conceptually, a crash can occur at any point in a program’s execution, but for

simplicity, we model crashes as occurring only right before disk operations.

• Failed: The program attempted to perform an invalid operation (such as reading

from a disk address which does not exist). We model all failures as runtime

failures, even ones which would normally be compile-time failures (such as a

type mismatch).

These outcomes correspond directly with the outcomes defined for the source programs

in prog, except that l refers to the return value of the monadic program rather than

the final state of the Go variables.
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It would be possible to define a type system which guaranteed that well-typed Go′

programs do not go wrong (except by accessing the disk out of bounds), but this does

not seem necessary in our system—if the compilation of a proven piece of source code

succeeds, the correctness proof produced by the compilation already guarantees that

the output program will not fail.

We now proceed to detail various aspects of the Go′ language.

4.1.3 Linear memory

In the most significant simplification compared to Go, Go′ disallows memory aliasing.

As a result, they do not model pointers or the heap. Logically, all values follow a

stack discipline, in which they are allocated upon variable declaration and deallocated

when the variable goes out of scope; when values are used in multiple places, they

are copied, at least semantically. Thanks to this simplification, the state of memory

can be represented as a collection of values stored in lexically-scoped local variables,

which are manipulated in an linear manner [19]. Since only one reference is allowed to

any particular piece of mutable data, the semantics and the compilation process can

mutate values without worrying about other references.

This simplification could plausibly have a performance impact, since it can introduce

more copying than strictly necessary. However, a few optimizations mitigate the cost.

For one, immutable values can be aliased without copying, since they are referentially

transparent. In addition, in many cases, values can simply be moved rather than

copied. For example, arguments can be passed by reference into functions, effectively

transferring ownership to the callee and then transferring it back once the function

returns.

To represent values which have been moved away or consumed in an operation, the

semantics introduce the notion of “moving” values. For each Go′ type, we define how

values of that type are affected when moved. Immutable values, such as integers or
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immutable buffers, are simply left in place; mutable types, such as slices or maps, are

replaced with a special Moved value to mark that they cannot be used anymore. The

Moved state does not necessarily correspond to anything at runtime: the final Go code

does not need to clear the values at all since the semantics ensure that they will not

be referenced.

4.1.4 Local variables

Go is a lexically scoped, statically typed language where all variables must be declared

before use, so Go′ must allow for declarations. A straightforward encoding of variables

would be fairly complicated, requiring a model of variable scope and shadowing. This

would introduce unnecessary complexity to both the semantics and the compilation

process. On the other hand, merely disallowing shadowing makes it impossible to write

code fragments without knowing to avoid the entire set of variable names which are

already in scope, which would also be an annoyance for compilation. Therefore, we

use a different approach:

Rather than hardcoding variable identifiers in the code, they are allocated by the

semantics. In Go′, a Declare command takes a Go′ type and a function from a

variable identifier to a block of code which uses the variable. (The type signature

of the Declare constructor is ⟨ type → (var → stmt) → stmt ⟩; see Figure 4-1.)

This way, no matter which variables are already in scope, the semantics can always

allocate fresh identifiers. This also ensures that variables are not used outside of their

scope. For simplicity, natural numbers are used as the variable identifiers rather than

strings. Later in the compilation pipeline, the Go′ to Go printer takes care of actually

allocating unique variable names.
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4.1.5 Function calls

In Go, functions can have any number of parameters and any number of return

values. However, for simplicity, Go′ does not support return values and just passes

all arguments by reference. The Go′ to Go printer adds an extra level of pointer

indirection to parameters to implement this.

In addition to the program to execute and the runtime state, the execution semantics

are parameterized by an environment containing a mapping from function names

to function specifications comprising the function signature and the function body.

When a Call instruction on some function name executes, the semantics look up the

body of that function in the environment and create a new stack frame for it with

the argument values filled into the parameter variables. Unlike variables created by

Declare statements, the parameter variables are named by the hard-coded identifiers

0, 1, 2, and so forth.

4.1.6 Tuples: splitting and joining

Many pieces of FSCQ code manipulate tuples. As is typical in Coq, the code generally

uses pair types, and builds up larger tuples out of nested pairs. Thus, CoqGo only

needs to support pair types.

Instead of requiring the code to access the parts of a pair individually, Go′ has a

SplitPair operation which takes a pair and moves its components into two other

variables, where they can stay until the pair needs to be treated as one component

again, when the JoinPair operation can be applied to construct a new pair.
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4.1.7 Other constructs

The list cons operation, which is compiled into slice append in Go, can serve as an

instructive example for the Modify operations (see Figure 4-2) which only affect the

values stored in variables and do not affect control flow or the disk. We want to

translate Gallina expressions like x :: xs into Go source code like xs = append(xs,

x).

The semantics define the behavior of an Append using the following definition:

Definition append_impl’ t (l: list (type_denote t)) (a: type_denote t)
: n_tuple 2 var_update :=

^(SetTo (Val (Slice t) (Here (a :: l))), Move).

In short, if the first argument contains list l and the second argument contains the

value a, we update the variables by setting the first one to a Go′ value containing a ::

l, and move the second one to ensure that, in case it is mutable, it is not referenced

by both the list and the variable. (“Moving” immutable values simply leaves them in

place.)

A wrapper around this definition completes the semantics of Append by letting it fail

on type errors (the first argument must be a list of elements with the same type as

the second argument).

4.2 Mapping Gallina types to Go′ types

The compilation tactics must associate Gallina types in the source code with Go′

types in the output.

The Go′ semantics define the following set of types, which are explained in more detail

in the following sections:
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Inductive type :=
| Num (* In Go: uint64 *)
| Bool (* In Go: bool *)
| String (* In Go: string *)
| Buffer (* In Go: []byte *)
| ImmutableBuffer (* In Go: []byte *)
| Slice : type→ type (* In Go: []T *)
| Pair : type→ type→ type (* In Go: struct{fst T1; snd T2} *)
| AddrMap : type→ type (* In Go: map[uint64 ]T *)
| Struct : list type→ type (* In Go: struct *).

To simplify proofs about the execution of the semantics, we avoid the use of dependent

types in the semantics as much as possible. Thus, even though in the source language,

word n is a dependently typed bitstring with a fixed length, it is compiled as a Buffer,

which can be of any (byte-aligned) length. As a result, the compiled Go′ code loses

static information about the length of the bitstring, but since the compilation produces

a proof of correctness anyway, this does not compromise correctness.

In the semantics, each variable holds a Go′ value, which consists of a Go′ type and a

value of the corresponding Gallina type. In the semantics, the denotations for each

Go′ type are defined as follows in terms of Gallina types:

Fixpoint type_denote (t: type) : Type :=
match t with
| Num⇒N
| Bool⇒B
| String⇒ string
| Buffer⇒ movable { n : N & word n }
| ImmutableBuffer⇒ { n : N & word n }
| Slice t’⇒ movable (list (type_denote t’)) (* in reverse order *)
| Pair t1 t2 ⇒ type_denote t1 * type_denote t2
| AddrMap vt⇒ movable (Map.t (type_denote vt))
end.

Go′ types that need to have a distinct “moved” state in the semantics (e.g. mutable

buffers) are defined using the following helper type, which adds a single Moved value
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to any type:

Inductive movable (T: Type) :=
| Here (v: T)
| Moved.

Now, we can define a single type to hold any Go′ value:

Inductive value :=
| Val {t: type} (v: type_denote t).

4.2.1 GoWrappers

When the compilation encounters a value in the source code of some Gallina type,

it must know which Go′ type to pick for a variable holding that value, and it must

know how to convert values of that type into Go′ values. The following typeclass

encapsulates this functionality, “wrapping” a Gallina value into a Go value:

Class GoWrapper (WrappedType: Type) := {
wrap_type: type;
wrap’: WrappedType→ type_denote wrap_type;

}.

We define a GoWrapper instance for each Gallina type which we would like to compile.

Each GoWrapper instance must always produce values of the same Go type.

Once an instance has been defined for some Gallina type, values of that type can be

turned into Go′ values using the wrap function:

Definition wrap {T: Type} {Wr: GoWrapper T} (t: T) : value :=
Val wrap_type (wrap’ t).

For immutable primitive types, such as booleans, the denotations of the Go types are

identical to the source Gallina types; the wrap' function in those GoWrapper instances
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is just the identity. The wrappers for mutable primitive types such as lists use the

Here constructor to return a value of type movable. As a result, these wrappers are

not surjective: there is no list value whose wrapped version is Moved. This is necessary

but complicates the compilation tactics somewhat, as they sometimes have to deal

with preconditions involving wrapped values as well as unwrapped values.

Record types in the source code must be compiled in terms of the primitive types in the

semantics, so they are wrapped as nested pairs. To reuse the automation around pairs

and increase convenience for the CoqGo user, we have the following typeclass, which

wraps Gallina types into Coq types by converting them into a different wrappable

Gallina type first:

Class WrapByTransforming (T: Type) := {
T’ : Type;
WrT’ : GoWrapper T’;
transform : T→ T’;

}.

For example, we define such an instance for FSCQ’s cachestate record, which contains

fields CSMap, CSMaxCount, and CSEvict:

Instance WrapByTransforming_cachestate
: WrapByTransforming cachestate :=

{| transform := 𝜆 (cs: cachestate)⇒
(cs.(CSMap), cs.(CSMaxCount), cs.(CSEvict)) |}.

Now that the cachestate has been expressed as a tuple (i.e. nested pairs), it can be

wrapped using the existing instances for pairs. The programmer does need to write

such an instance for every type in the source code, but this is likely unavoidable since

Coq lacks metaprogramming functionality.
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4.2.2 Details for various types

• Numbers (N ↦→ Num ↦→ uint64): Since FSCQ uses nat to hold values not meant

to exceed 264, the Go printer compiles them as uint64 values in Go. We insert

runtime bounds checks on all arithmetic operations, aborting the program on

overflow. This is sound because the FSCQ specifications only guarantee partial

correctness: if a system call finishes successfully, the postcondition must hold,

but there is no guarantee that it must finish successfully.

• Lists (list V ↦→ Slice v ↦→ []T): Lists are compiled as slices kept in reverse

order so that prepending onto the head of a singly-linked list corresponds to

appending onto the end of a slice.

The zero value in Go for any slice is nil, so the semantics initialize values of

type Slice to Here [].

• Maps (FMapAVL.t V ↦→ AddrMap v ↦→ map[uint64]T): The zero value of maps

in Go is nil, which is an invalid value; operations on a nil map cause the

program to panic. Thus, in the semantics, map variables start out with value

Moved, so that no operations can be performed on them until they are properly

initialized.

Rather than leaving the iteration order of maps undefined, Go actually random-

izes it at runtime – each iteration through a map happens in a different order.

In Coq, on the other hand, FMapAVL guarantees that its iteration is ordered by

key. Thus, to reflect the semantics of the source, the Go output needs to copy

the map contents into a list and explicitly sort it before iteration. If the source

language allowed for nondeterminism, this could be avoided.

• Fixed-size words (word n ↦→ Buffer / ImmutableBuffer ↦→ []byte): Fixed-

size bitstrings are compiled as byte slices. The zero value in Go is nil – equivalent

to an empty slice – and the semantics reflects this by initializing variables of
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type ImmutableBuffer or Buffer to zero-length bitstrings.

Note that in the source, the length of a bitstring does not have to be divisible by

eight, even though it always is in practice. However, we do not support bitstrings

of non-byte-aligned length in Go. The semantics enforce this constraint by

making all operations on bitstrings with invalid length fail; the compilation

lemmas pass this constraint on to the compilation tactics, which prove the

divisibility obligations automatically.

FSCQ frequently manipulates buffers containing file data or data on disk, many

of which are fairly large (e.g. 4096 bytes for a disk block). A straightforward

compilation might either choose to always extract a buffer as immutable, likely

requiring copying it on each modification, or always extracting it as mutable,

requiring copying when it (or a substring) is aliased. Instead of forcing a single

choice to be taken globally which will be suboptimal for some pieces of code, we

enable the source code to specify which buffers should be made mutable and

which buffers should be made immutable.

By default, word values are made mutable, but if source code instead uses the type

alias immut_word, it will be compiled using an immutable buffer. CoqGo accom-

plishes this by having two separate type classes, one of type GoWrapper (word

n) and one of type GoWrapper (immut_word n), and declaring Typeclasses

Opaque immut_word so that the typeclass resolution mechanism can distinguish

between the two.

• Records (Record ↦→ Pair Num (Pair Num ...) ↦→ Pair_Num_Pair_Num_...):

Many FSCQ functions pass around global parameters and in-memory state using

Coq record types. As described in Section 4.2.1, CoqGo compiles records by

using instances of the WrapByTransforming typeclass, which require a small

amount of boilerplate from the user. A record value is first transformed into a

set of nested pairs and then converted into the equivalent Go′ nested pair value.

Then, the mechanisms for pairs in the semantics and the compilation tactics
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take over, accessing fields by splitting apart the pairs and constructing records

by joining them.

4.3 Compilation lemmas

A “compilation lemma” proves pre- and postconditions about some Go′ construct. The

compilation lemmas abstract away from direct reasoning about the Go′ semantics,

enabling the compilation tactics to assemble a Go′ program, along with its proof of

correctness, by applying the right sequence of compilation lemmas.

4.3.1 CompileBind

One compilation lemma used frequently by the compilation tactics is CompileBind,

which breaks apart a compilation of a monadic bind into a pair of compilation tasks,

one for the bound value and one for the monadic continuation. In its generic form, it

has the following signature:

Lemma CompileBind : ∀ {T T’: Type} {H: GoWrapper T} (env: Env)
(A B: pred) (C: T’→ pred) (p: prog T)
(f: T→ prog T’) (xp xf: stmt) (var: Go.var),

COMPILE p
{{ var : T * A }}

xp
{{ 𝜆 ret⇒ var ret * B }} // env→
(∀ (a : T),

COMPILE f a
{{ var a * B }}

xf
{{ C }} // env)→

COMPILE Bind p f
{{ var : T * A }}

xp; xf
{{ C }} // env.

46



In words, if p can be compiled into xp, and f a can be compiled into xf for every

value of a, then Bind p f can be compiled into xp; xf. The variable var to hold the

bound value already has to be declared.

Note that when applying this lemma, the value of the intermediate predicate B is not

determined by the goal, and can take any form as long as both hypotheses remain

provable. This enables the compilation of p to modify some of the values in A if

necessary.

It is possible to prove a stronger version of this lemma which accepts a weaker second

hypothesis: the lemma could pass an additional hypothesis to the compilation of f a

which states that a is a possible execution result of running p. In its general form, this

is not necessary anywhere. For the case that p is of the form Ret a for some specific

value a, we prove a compilation lemma which places that a into the precondition of f

rather than quantifying over all possible a values.

4.3.2 CompileDeclare

The proof-producing compilation must also declare new variables. The following

compilation lemma enables it to do that:

Lemma CompileDeclare : ∀ (env: Env) {R T: Type} {Wr: GoWrapper T}
(A B: pred) (p : prog R) (xp: Go.var→ stmt),

(∀ var,
COMPILE p
{{ var : T * A }}

xp var
{{ 𝜆 ret⇒ var : T * B ret }} // env)→

COMPILE p
{{ A }}

Declare wrap_type xp
{{ 𝜆 ret⇒ B ret }} // env.

This lemma exposes the local nature of variable declarations. At any point, extracting
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any program p with precondition A and postcondition B, the compilation can decide to

declare a new variable, introducing it into the precondition and the postcondition. The

body of the declaration scope must be parametrized over the new variable identifier,

and its compilation must work no matter which variable identifier the semantics

pick; by using separation logic, the precondition ⟨ var : T * A ⟩ captures the fact

that the new variable identifier is guaranteed to be fresh. Also, since p could be

a nondeterministic program involving disk operations, the postcondition cannot be

required to specify the value which the variable takes at the end of the block. Instead,

it uses a ⟨ var : T ⟩ predicate to indicate that the variable may take any value.

4.3.3 Other constructs

We proved a compilation lemma for each Go′ construct. For example, to be able to

compile cons operations into Append operations, we proved the following compilation

lemma:

Lemma CompileAppend : ∀ (env: Env) (F: pred) {T: Type}
{Wr: GoWrapper T} (lvar vvar: var)
(x: T) (xs: list T),

COMPILE Ret (x :: xs)
{{ vvar x * lvar xs * F }}

Modify Append ^(lvar, vvar)
{{ 𝜆 ret⇒ vvar ↦→ moved_value (wrap x) * lvar ret * F }} // env.

Roughly, for any frame F containing other variables, if vvar contains some value and

lvar contains a list of elements of the same type, we can compile the expression x ::

xs using the Append operation, leaving the result in lvar and moving out of vvar.

Note the use of the different arrow symbol ↦→ in the postcondition, which is the basic

separation logic points-to arrow: a use of the usual squiggly arrow ⟨ a_var  a ⟩ is

shorthand for ⟨ a_var ↦→ wrap a ⟩. Thus we see that CompileAppend simply changes

vvar’s value from wrap x to moved_value (wrap x).
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The proof of this lemma is largely automated; it simply inverts an execution of the

Append operation and proves that the result corresponds to the desired postcondition,

where the return value of the program has been substituted in.

4.3.4 Record deserialization

In a number of places, FSCQ deserializes fixed-size record types from disk. For example,

FSCQ encodes inodes on disk using the following Rec type:

Definition irectype : Rec.type := Rec.RecF ([
("len", Rec.WordF addrlen); (* number of blocks *)
("attrs", iattrtype); (* file attributes *)
("indptr", Rec.WordF addrlen); (* indirect block pointer *)
("blocks", Rec.ArrayF (Rec.WordF addrlen) NDirect)]).

At first, we tried to compile the inode deserialization code by unfolding the generic

deserialization function Rec.of_word, partially evaluating it for the specific case of

irectype, and running the normal comilation tactics. However, since (including the

file attributes and the direct blocks) inodes have 20 different fields, this resulted

in a large mess of code which caused the compilation tactics to run unacceptably

slowly. Rather than optimizing the tactics, we found it easier to create a single

compilation lemma which can compile any Rec.of_word invocation. A recursive

Gallina function go_of_word (Figure 4-3) takes the Rec.type definition of the record

type to be deserialized and outputs Go′ code which performs the deserialization. The

corresponding compilation lemma CompileOfWord references go_of_word and proves

that the code is correct for any Rec.type. In a sense, this compilation lemma is the

proof-by-reflection analogue of the usual proof-producing compilation tactics.
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Fixpoint go_of_word (t: Rec.type) (vdst vsrc: var) (from: N) : stmt :=
match t with
| Rec.WordF n⇒

Declare Num (𝜆 vfrom⇒
Declare Num (𝜆 vto⇒

(Modify (@SetConst Num from) ^(vfrom);
Modify (@SetConst Num (from + n)) ^(vto);
Modify SliceBuffer ^(vdst, vsrc, vfrom, vto))))

| Rec.ArrayF t’ n0 ⇒
(fix array_of_word n from :=

match n with
| O⇒ Modify (InitSliceWithCapacity n0 ) ^(vdst)
| S n’⇒

Declare (go_rec_type t’) (𝜆 vt’⇒
(array_of_word n’ (from + Rec.len t’);
go_of_word t’ vt’ vsrc from;
Modify Append ^(vdst, vt’)))

end) n0 from
| Rec.RecF fs⇒

(fix rec_of_word fs vdst from :=
match fs with
| []⇒ Modify (@SetConst (Struct []) tt) ^(vdst)
| (_, f) :: fs’⇒

Declare (go_rec_type f) (𝜆 vf⇒
Declare (go_rec_type (Rec.RecF fs’)) (𝜆 vfs’⇒

(go_of_word f vf vsrc from;
rec_of_word fs’ vfs’ (from + Rec.len f);
Modify JoinPair ^(vdst, vf, vfs’))))

end) fs vdst from
end%go.

Figure 4-3: The function which computes the Go′ code for any record deserialization
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Lemma CompileOfWord : ∀ (t: Rec.type) (vdst vsrc: var) (F: pred)
(buf: immut_word (Rec.len t)) (env: Env),

byte_aligned t→
COMPILE Ret (@Rec.of_word t buf)
{{ vdst : Rec.data t * vsrc buf * F }}

go_of_word t vdst vsrc 0
{{ 𝜆 ret⇒ vdst ret * vsrc buf * F }} // env.

4.4 Proof-producing compilation tactics in Ltac

The proof-producing compilation tactics form the heart of CoqGo. They compile

Gallina to Go′ by repeatedly applying compilation lemmas to break apart the source

program and compiling the pieces individually.

4.4.1 Key invariants

Given a compilation task of the form ⟨ COMPILE p {{ P }} _ {{ 𝜆 ret ⇒ R ret

* _ }} ⟩, the proof-producing compilation tactics decide their next move based on

three pieces of state, in decreasing order of importance:

1. The monadic program p being compiled

2. The way that the return value ret appears in the postcondition

3. Which values are already present in the precondition P, in what form

Thus, p, P, and R must always be determined already (not existential variables).

Since the rest of the postcondition can be an existential variable, it must not be

necessary to compare the precondition and the postcondition except in places where

the postcondition depends on ret; the existential variable must not depend on ret.

This set of invariants is always maintained for the currently active compilation task

(i.e. the current Coq goal).
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4.4.2 compile_bind

Whenever the compilation tactics encounter a monadic bind Bind p f, they use the

compile_bind tactic to apply the CompileBind compilation lemma, breaking the

compilation task into two.

The precondition of the first compilation task is the same as the precondition of the

original compilation task, and the postcondition of the second compilation task is the

same as the postcondition of the original task. However, the intermediate predicate (B

in Section 4.3.1) is not determined by the goal, letting the compilation of p modify

some of the values in A if necessary. This flexibility is necessary, particularly to account

for variables which might get moved out of, but it introduces a complication into the

compilation: it may not be possible to determine B until p is compiled. To handle this,

compile_bind simply introduces an existential variable for B, letting it be filled in as

p is compiled. Then, when f a is compiled, the full precondition will be known. Since

B does not depend on the return value of p, it can be an existential variable without

violating the invariants above.

4.4.3 compile_decompose

Since the source code is written in a functional language, it consists almost entirely of

deeply nested expressions, yet Go′ does not have expressions at all. Thus, in the com-

pilation output, expressions must be evaluated one step at a time by Go′ statements

using variables as temporaries. It would be possible to write specialized compilation

lemmas for each operation which accept hypotheses which generate additional com-

pilation tasks for evaluating the subexpressions. For instance, a compilation lemma

applied to compiling the addition (a * b) + c could accept a compilation of a * b

and a compilation of c, and then return a sequence of those two compilations plus

the addition. However, this would require a significant amount of boilerplate for every

operation.
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Thus, we opt for a more general approach: a single compile_decompose tactic looks

at programs of the form Ret (f a0 a1 ... an), where some function (or operator)

f is applied to some number of arguments. If any argument is missing from the precon-

dition, compile_decompose creates an additional compilation task to first evaluate

the argument before proceeding. To reuse the existing compile_bind functionality,

it simply extracts out the evaluation of the argument using the left monad identity

law: Ret (f expr) is equivalent to Bind (Ret expr) f, or, with notation, ⟨ x ←

Ret expr; f x ⟩. For instance, Ret ((a * b) + c) would be replaced with ⟨ ab ←

Ret (a * b); Ret (ab + c) ⟩. The compilation would then proceed by evaluating a

* b first and then passing the result to the addition, as desired.

In a few cases, when the arguments to the Go construct do not match the arguments

to the Gallina construct, this general approach does not work. For example, the

Gallina function to slice out a substring of a bitstring has the following signature, for

dependent typing reasons:

Definition middle (low mid high: N) (w: word (low + (mid + high)))
: word mid.

It accepts three arguments, low, mid, and high, which partition the original bitstring

into three substrings, the middle of which will be chosen. They must add up to the

length of the original bitstring. In Go, on the other hand, this should be compiled

into a slice operation of the form w[low : low + mid], so the arguments which need

to be in place are low and low + mid. Naively applying compile_decompose would

have the compilation produce values low, mid, and high instead, which would waste

time calculating the unnecessary high value and in some situations miss out on the

opportunity to use low + mid directly, which may already be present. Thus, the

compile_middle tactic specializes the compilation logic in this case, choosing low

and low + mid as the values to put into the precondition. compile_decompose is run

with low priority, so for programs of the form Ret (middle low mid high w), it will

never run.
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4.4.4 Functions

The compilation tactics proceed one function at a time, with one Coq theorem per

function. Roughly, each compilation theorem states that there exists some Go program

such that for any argument values and any environment containing all functions which

are called, the Go′ program is a valid compilation of the source function.

For simplicity, functions currently use a simple “calling convention” in which the

first argument is used for the return value and the remaining arguments are passed

afterwards. A more sophisticated design could take advantage of passing arguments

by reference.

4.4.5 Tuples

As described in Section 4.1.6, Go′ has a single SplitJoin operation to split tuples

rather than accessing just the first member or just the second member. The compilation

tactics greedily split and join tuples, leaving them in the last needed state for as long

as possible.

To accomplish this, we use two compilation lemmas, CompileFst and CompileSnd,

which compile programs such as Ret (fst p) into SplitPair operations that entirely

consume the pair, moving the other component of the pair into a different variable.

The compilation tactics also recognize when a desired value is bound up in a pair, and

rewrite the compilation task to extract the value. For example, if the program is Ret

a and the precondition contains ⟨ p  (a, b) ⟩, then the compilation finds the a in

the pair and switches to compiling the equivalent program Ret (fst (a, b)) instead.

Then, the CompileFst rule trivially applies, finding the value (a, b) in the variable

p. This works for nested pairs as well; the compilation tactics produce compilation

tasks such as fst (snd (a, (b, c))) which are then compiled one step at a time.

However, this tuple splitting plan causes a complication: The declaration of the variable
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to hold the other component of the pair can be scoped too tightly, causing it to go

out of scope too early. Consider the following compilation task, in which a pair of two

lists is to be swapped:

COMPILE Ret (l2 , l1 )
{{ pair (l1 , l2 ) }}

?p
{{ 𝜆 ret⇒ pair ret }}

The compilation tactics could first split off a task to generate the first element (l2) of

the pair to return:

COMPILE Ret l2
{{ tmp : list N * pair (l1 , l2 ) }}

?p
{{ 𝜆 ret⇒ tmp ret * ?F }}

Here, the compilation tactics rewrite the task to pull l2 out of the pair in the

precondition:

COMPILE Ret (snd (l1 , l2 ))
{{ tmp : list N * pair (l1 , l2 ) }}

?p
{{ 𝜆 ret⇒ tmp ret * ?F }}

At this point, the compilation tactics would like to apply CompileSnd to split the

pair, but must declare another variable to hold the first component of the pair (l1).

Unfortunately, if defined at this point, the declaration block for that variable will only

surround the SplitPair operation, so it will go out of scope immediately afterwards,

and the value l1 will be lost. Thus, we must move the declaration farther up the

syntax tree, but the code farther up is already fixed, and the compilation tactics

cannot know how far up the declaration must go, since they do not know yet for how

long the variable still needs to be referenced.
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4.4.6 Putting declarations at the outside

To solve the complication above, we simply move all declarations to the very top of the

syntax tree. Given that the compilation must produce a proof of correctness as it goes,

this move cannot happen as a post-processing step; instead, the declarations must

be inserted into the top of the syntax tree in the proof state even as the compilation

tactics are filling in the leaves of the syntax tree. In order to do this, when they begin

compiling a function, the compilation tactics create a Coq existential variable ?decls

which will be gradually filled in with all the top-level declarations. At the very top of

the syntax tree, the tactics apply a CompileDeclareMany compilation lemma, which

declares a variable for each declaration specified in ?decls, obtaining a list vars of

variable identifiers from the semantics. To refer to variables declared in this fashion,

the code must write nth_var 0 vars, nth_var 1 vars, etc. (These expressions will

be evaluated in OCaml as the Go′ to Go printer evaluates the extracted Go′ AST.)

CompileDeclareMany puts a decls_pre ?decls 0 term into the precondition for its

body, which evaluates to ⟨ nth_var 0 vars : T0 * nth_var 1 vars : T1 * ... ⟩

if [T0; T1; ...] is the list of types in ?decls. Now, whenever a new variable must

be declared, instead of adding a Declare block inline, the compilation tactics fill in

the head of the ?decls list with the desired type. As a result, a term of the form

decls_pre ?decls 0 in the precondition will simplify to ⟨ nth_var 0 vars : T0 *

decls_pre ?decls’ 1 ⟩ (if ?decls' is a new existential variable representing the rest

of the declarations), and the compilation tactics can simply manipulate nth_var 0

vars as if it had been declared inline.

4.4.7 Tuples: projection approach

Another approach to supporting pair types would add PairFst and PairSnd projection

operations which move the value in the first or second component of the pair into a

different variable. As a result, if the component was of a type that cannot be aliased ,

it will be replaced by the appropriate Moved value.
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Because of the way it leaves variables in a partially moved state, this approach

does not interact well with the compilation tactics. The issue is that Moved states

do not correspond to the wrapped version of any source Gallina value, meaning

that the separation logic predicate describing the pair variable has to specify its

value in unwrapped form. For instance, if before a PairSnd operation the predicate

contained the points-to relation ⟨ p  ([1], [2; 3]) ⟩, equivalent to ⟨ p ↦→ wrap

([1], [2; 3]) ⟩, then afterwards the list would be replaced with Moved, so the

postcondition would have to be expressed as ⟨ p ↦→ Val (Pair (Slice Num) (Slice

Num)) (wrap’ [1], Moved) ⟩; unfolding the wrap' would leave ⟨ p ↦→ Val (Pair

(Slice Num) (Slice Num)) (Here [1], Moved) ⟩, Later, if the code accesses the

value [1], the compilation tactics may need to identify that the first component of

the pair still contains it. As a result, the compilation tactics would need to recognize

values in both wrapped and unwrapped form, potentially in deeply nested pairs. Worse,

the task of extracting a value from a nested pair must be compiled in one step and

cannot be decomposed as described for the splitting approach above: it would not be

possible to express a compilation task such as Ret (fst (Here [1], Moved)) since

(Here [1], Moved) is a Go′ value, not a source value. It would certainly be possible

to enable the compilation tactics to solve these problems, but it would be a fairly

different approach than the rest of the system.

4.4.8 Other constructs

Once again, slice append can serve to illustrate the compilation of normal operations.

The Ltac tactic to compile list cons operations has several tasks. First, it must ensure

that the element x and the list xs are already present in the precondition. If not,

compile_decompose will cause those values to be computed first. Then, it checks

to see whether the variable containing xs is the same variable which is intended

to hold the result of the computation in the postcondition. If so, it can just apply

CompileAppend directly and match up the pre- and postconditions. If not, it must

first move xs into the return variable using a different compilation lemma, and then
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proceed.
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Chapter 5

Implementation

This chapter gives various details of the implementation. It gives an overview of the

components and their sizes in lines of code (Section 5.1), details one issue in the Go′

to Go printer (Section 5.2), explains difficulties in the proof-producing compilation

caused by massive proof terms (Section 5.3), and finally shows an example of the

output of CoqGo (Section 5.4).

Component Lines of code Language(s)
Go′ semantics (§ 4.1) 1610 Gallina
Compilation lemmas (§ 4.3) 3770 Gallina, Ltac
Proof-producing compilation (§ 4.4) 1480 Ltac
Go′ to Go printer (§ 3.5) 580 OCaml
Go support code 780 Go
Compilation of FSCQ (§ 8.2) 2260 Ltac
FSCQ source code changes (§ 6.1) 40 Gallina
Miscellaneous 930 Gallina
Total 11450

Table 5.1: The size of CoqGo and its application to FSCQ
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5.1 Overview

We implemented CoqGo in Coq and compiled 30 of FSCQ’s functions with it

(out of about 300), including the top-level functions AsyncFS.file_get_attr and

AsyncFS.file_get_sz and all of the functions which they call. The two are ef-

fectively the same function except that AsyncFS.file_get_attr returns the en-

tire attribute struct but AsyncFS.file_get_sz returns only the size field. In the

Haskell FUSE driver, AsyncFS.file_get_attr implements the stat system call, and

AsyncFS.file_get_sz helps implement the read and write system calls. We have

not yet written a FUSE driver for Go because we did not compile a sufficient portion

of the file system. The implementation comprises 11,450 lines of code added to FSCQ

in the components described by Table 5.1. We worked using Proof General with the

Company-Coq extension [17], which also formatted the code in this thesis.

5.2 Go′ to Go printer: Working around Go’s lack of

generics

Go does not have user-defined polymorphic types, so we cannot write a generic pair

struct that will work once and for all without type casts. Thus, as the Go′ to Go

printer traverses the ASTs to convert them into code, it collects a list of all the pair

types which are used in order to declare them all as structs at the top of the output

file. It also implements a DeepCopy method on every pair struct, which is used to

implement the Duplicate operation in Go′ (see Section 4.1.1).

Go’s built-in maps and slices are polymorphic, but the printer still collects all the

map and slice types referenced in order to define type aliases for them as well. That

way, DeepCopy can also be defined on those types.
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5.3 Challenge: Massive proof terms

The most significant implementation challenge was to deal with occasionally massive

proof terms which came out of the compilation tactics, leading to memory exhaustion,

stack overflows, and slow compilation times. The compilation tactics manipulate

large Coq goals stating typed separation logic predicates over dozens of variables,

including deeply nested pairs, over a significant number of compilation steps. Often, the

separation logic cancellation tactics produced particularly large terms; we solved this

issue with an alternative implementation solving most separation logic implications

using proof by reflection.

Even after some optimization effort, compiling the subset of FSCQ with CoqGo still

requires increasing the allowed stack size with ulimit -s unlimited and using at

least 16 GB of RAM. Without the stack size increase, the compilation can overflow

during the type checking performed once the compilation for a function concludes

with a Defined. In addition, the OCaml compiler overflows its stack trying to parse

the literals for 4-kilobyte disk blocks.

5.4 Example compilation output

Figure 5-1 shows the source code for the writeback function in FSCQ’s cache. It takes

an address a and a cache state cs. If the block with that address is present in the

cache and has its dirty bit set to true, then the cache writes the block out to disk

and creates a new cache state which is identical except that the block’s dirty bit is set

to false.

Figure 5-2 shows the CoqGo output for this function, annotated with a few additional

comments. Parameter val0 is the return parameter (holding the modified cachestate);

parameter val1 holds a and val2 holds the input cachestate. The code shows significant

low-hanging fruit remaining for optimization: ideally, only a single parameter would
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Definition writeback (a: addr) (cs: cachestate) :=
match (Map.find a (CSMap cs)) with
| Some (v, true)⇒

Write a v;;
Ret (mk_cs (Map.add a (v, false) (CSMap cs))

(CSMaxCount cs)
(CSEvict cs))

| _⇒
Ret cs

end.

Figure 5-1: The Coq source code for Cache.writeback

be used for the cachestate, which would be properly passed by reference, and the

unmodified CSMaxCount and CSEvict fields would not need to be touched at all.

62



func Cache_writeback(val0 *Pair_Pair_AddrMap_Pair_ImmutableBuffer_Bool_Num_Struct_,
val1 *Num,
val2 *Pair_Pair_AddrMap_Pair_ImmutableBuffer_Bool_Num_Struct_) {

var val3 Pair_Bool_Pair_ImmutableBuffer_Bool
_ = val3 // prevent ’unused’ error
var val4 AddrMap_Pair_ImmutableBuffer_Bool
_ = val4
var val5 Pair_AddrMap_Pair_ImmutableBuffer_Bool_Num
_ = val5
var val6 Struct_
_ = val6
var val7 Num
_ = val7
var val8 Bool
_ = val8
var val9 Pair_ImmutableBuffer_Bool
_ = val9
var val10 Bool
_ = val10
var val11 ImmutableBuffer
_ = val11
var val12 Pair_AddrMap_Pair_ImmutableBuffer_Bool_Num
_ = val12
var val13 AddrMap_Pair_ImmutableBuffer_Bool
_ = val13
var val14 Pair_ImmutableBuffer_Bool
_ = val14
var val15 Bool
_ = val15
var val16 Pair_AddrMap_Pair_ImmutableBuffer_Bool_Num
_ = val16
var val17 Pair_AddrMap_Pair_ImmutableBuffer_Bool_Num
_ = val17
// Split cachestate to access CSMap
val5, val6 = (*val2).Fst, (*val2).Snd
val4, val7 = val5.Fst, val5.Snd
{ // Map.find

in_map, val := AddrMap(val4).Find((*val1))
_ = val
val3.Fst = Bool(in_map)
if in_map {

val.(Pair_ImmutableBuffer_Bool).DeepCopy(&val3.Snd)
}

}
val8, val9 = val3.Fst, val3.Snd
if bool(val8) {

val11, val10 = val9.Fst, val9.Snd
if bool(val10) {

DiskWrite((*val1), val11)
val13 = val4
val15 = false
// Reconstruct modified cachestate
val14.Fst, val14.Snd = val11, val15
AddrMap(val13).Insert(*val1, val14)
val12.Fst, val12.Snd = val13, val7
(*val0).Fst, (*val0).Snd = val12, val6

} else {
val16.Fst, val16.Snd = val4, val7
(*val0).Fst, (*val0).Snd = val16, val6

}
} else {

val17.Fst, val17.Snd = val4, val7
(*val0).Fst, (*val0).Snd = val17, val6

}
}

Figure 5-2: The Go code produced for Cache.writeback

63



64



Chapter 6

Evaluation

We evaluate CoqGo to answer three questions:

1. How much did we need to change FSCQ’s source code to compile it with CoqGo?

(Section 6.1)

2. What CPU performance does the compiled code achieve? (Section 6.3)

3. How much control over performance does CoqGo enable? (Section 6.4)

6.1 Changes to FSCQ source code

Applying CoqGo required minimal changes to FSCQ’s source code: only 40 lines

needed to be modified for the subset of FSCQ which we compiled. The changes came

in two flavors:

• To reduce copying (see Section 6.4.1), we marked certain buffers as immutable

by using immut_word in the source code rather than word. This changed about

15 lines.

• FSCQ’s code makes use of higher order functions in a few places: it has general-
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purpose functions to scan through blocks or scan through directory entries to

find one satisfying a predicate, which is passed in as a bool-valued function.

Go does support higher-order functions, but the Go′ semantics do not, so we

had to specialize the scanning function for each predicate. (We did not have to

manually copy the code—effectively, we just used a small amount of Ltac to

perform the specialization.) This changed about 25 lines.

6.2 Benchmarking methodology

We evaluate the performance of CoqGo’s output using microbenchmarks of the

two top-level FSCQ functions we compiled, file_get_attr and file_get_sz, and

comparing the performance between CoqGo’s output and Haskell.

6.2.1 Haskell measurement

Thanks to Haskell’s lazy evaluation, the Haskell functions proved fairly difficult to

measure. There are several pitfalls. If the output of the benchmarked function is not

used in some fashion, it will not be evaluated at all, potentially speeding up the

execution by a significant factor. On the other hand, if the benchmark code naively

chains the outputs of each iteration together (e.g. by summing them), then it can

build up a large tree of lazy “thunks” and cause more garbage collection expense than

under a realistic use of the top-level function, where its output would be evaluated

immediately in order to pass it back to FUSE. Precisely which level of performance

should be counted is not clear; to mimic the behavior of running under FUSE, our

benchmark code uses the deepseq package to force the entire evaluation of the previous

iteration’s output before the current iteration is started. The benchmark measures

performance using the x86 rdtsc cycle counting instruction.
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6.2.2 Go measurement

As a strict imperative language, Go is much more straightforward to benchmark.

The Go benchmark code uses rdtsc to count cycles as well as using Go’s built-in

benchmarking tools. We also used Go’s profiling support to determine where the code

spends its time.

6.2.3 Benchmarking hardware

We ran the benchmarks on a Dell XPS 15 9550 with an Intel® Core™ i7-6700 HQ

processor. The disk drive is a Toshiba 256GB NVMe drive with model number

THNSN5256GPU7, although after the initial iteration, the benchmarks run entirely

off of FSCQ’s buffer cache. We used Arch Linux with kernel version 4.10.11 and the

“performance” CPU frequency governor.

6.3 Performance

Figure 6-1 shows the benchmark results. On file_get_attr, CoqGo brings the

performance from 3530 cycles to 2850 cycles, a 19% speedup. Since the benchmark

repeatedly reads the attributes of a small set of inodes, all disk blocks accessed

will be resident in FSCQ’s buffer cache, so the improvement is entirely in CPU

performance. However, significant optimization opportunities remain. Using the Go

profiler to measure the execution of file_get_attr shows the impact of the remaining

inefficiences of the code—see Figure 6-2. A combined 54% of CPU time is spent in

runtime.duffzero and runtime.duffcopy, which are used zero-initialize variables

upon allocation and copy large fields between variables, respectively.

Since file_get_attr and file_get_sz are effectively the same function except that

file_get_sz reads the size field, they perform identically in Go. However, in Haskell,
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Figure 6-1: The performance of two top-level functions under the two compilation
pipelines

file_get_sz can exploit laziness in order to only perform the deserialization necessary

to read the size field, omitting the rest of the computation. Since the deserialization is

costly in Haskell, this enables the Haskell pipeline to beat CoqGo’s performance on

file_get_sz.

6.4 Control over performance: optimizations

We investigate three optimizations, finding that CoqGo gives enough control to

enable significant optimizations with only a small effort.

Without any of the optimizations, file_get_attr takes 68,000 cycles to run, or about

26 microseconds. With a total of only +138 / −143 lines of code changed, the three

optimizations take this down to 2850 cycles.

Optimization Cycles Lines added / removed
Zero-initialization 68,000 ↦→ 6200 (−91%) +19 / −49
Immutable disk blocks in cache 6200 ↦→ 4150 (−33%) +71 / −80
Hint slice capacity 4150 ↦→ 2850 (−31%) +47 / −8

Table 6.1: The three optimizations performed and their effect on file_get_attr
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File: test.test
Type: cpu
Time: May 15, 2017 at 6:19pm (EDT)
Duration: 1.147543958s
1.06s of 1.11s total (95.50%)

runtime.duffcopy
0.38s(34.23%)

runtime.duffzero
0.22s(19.82%)

runtime.heapBitsSetType
0.09s(8.11%)

gofscq.Irec_get
0.08s(7.21%)

of 0.49s(44.14%)

 0.13s

 0.07s

gofscq.(*Num).Add
0.02s(1.80%)

 0.01s

gofscq.(*Num).Multiply
0.02s(1.80%)

 0.02s

gofscq.Log_read
0.01s(0.9%)

of 0.09s(8.11%)

 0.09s

runtime.makeslice
0 of 0.09s(8.11%)

 0.09s

runtime.makemap
0.05s(4.50%)

of 0.09s(8.11%)

runtime.newobject
0 of 0.04s(3.60%)

 0.04s

gofscq.Asyncfs_file_get_attr
0.04s(3.60%)

of 1.03s(92.79%)

 0.10s

 0.05s

gofscq.Dirtree_getattr
0.01s(0.9%)

of 0.69s(62.16%)

 0.69s

gofscq.Log_begin
0.01s(0.9%)

of 0.13s(11.71%)

 0.13s

gofscq.Pair_Pair_Pair_Pair_Pair_Num_Num_Num_Num_Num_Num.DeepCopy
0 of 0.02s(1.80%)

 0.02s

runtime.mallocgc
0.04s(3.60%)

of 0.13s(11.71%)

 0.09s

gofscq.Glog_read
0.02s(1.80%)

of 0.08s(7.21%)

 0.01s

gofscq.Mlog_read
0.02s(1.80%)

of 0.05s(4.50%)

 0.05s

 0.01s

gofscq.Cache_read
0.01s(0.9%)

of 0.02s(1.80%)

 0.02s

runtime.scanobject
0.02s(1.80%)

runtime.mapaccess2_fast64
0.01s(0.9%)

 0.01s

 0.03s

 0.02s

gofscq.Bfile_getattrs
0 of 0.63s(56.76%)

 0.63s

gofscq.Inode_getattrs
0.01s(0.9%)

of 0.56s(50.45%)

 0.03s

 0.03s

 0.49s

 0.03s

gofscq.AddrMap_literal
0 of 0.09s(8.11%)

 0.09s

 0.08s

fscq/test.BenchmarkGetSz
0 of 1.04s(93.69%)

 0.01s

 1.03s

 0.09s

 0.03s

 0.04s

 0.56s

 0.02s

runtime.gcBgMarkWorker
0 of 0.02s(1.80%)

runtime.systemstack
0 of 0.02s(1.80%)

 0.02s

runtime.gcBgMarkWorker.func2
0 of 0.02s(1.80%)

runtime.gcDrain
0 of 0.02s(1.80%)

 0.02s

 0.02s

runtime.goexit
0 of 1.06s(95.50%)

 0.02s

testing.(*B).launch
0 of 1.04s(93.69%)

 1.04s

 0.09s

 0.04s

 0.02s

testing.(*B).runN
0 of 1.04s(93.69%)

 1.04s

 1.04s

Figure 6-2: Go’s profiling output for file_get_attr
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6.4.1 Enabling zero-initialization of all data types

A large portion of the baseline runtime is spent running type initialization func-

tions such as gofscq.New_Pair_Buffer_Pair_AddrMap_Buffer_Struct__, which are

called on each variable declaration to initialize the type. This is only necessary in

order to initialize maps to a valid empty state, since a nil slice acts as an empty

slice in Go but a nil map panics if accessed. However, these initialization functions

are unnecessary almost everywhere they are called, since the fields are generally

overwritten anyway. To eliminate them, we changed the Go′ semantics to initialize

maps in the Moved state, and removed the generation and invocation of the New_***

functions in the Go′ to Go printer; now Go’s zero value works for all types. No changes

were necessary to the compilation tactics or the compilations themselves—in the few

places where it was actually required, the compilation tactics were already capable of

initializing map values with an empty literal. In total, 49 lines were deleted and 19 lines

were inserted. This optimization had a dramatic impact, speeding up file_get_attr

by a factor of 10.

6.4.2 Making the cache hold immutable disk blocks

By default, CoqGo compiles FSCQ’s buffer cache to hold mutable disk blocks. This

means that they have to be copied on every access, even for read-only operations,

since it’s not possible to have multiple references to a mutable value. We changed the

Gallina type of the values held in the cache from word to immut_word, making no

semantic difference in the source but indicating to CoqGo that those values should

be compiled as immutable buffers. This optimization caused a 33% speedup when

applied after the first optimization. It required changing the type in a few places for

consistency and adapting some compilations slightly, for a total of 71 insertions and

80 deletions.

The small number of lines changed does underestimate the effort the change required,
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however: since the type signatures of a number of functions were affected and the

compilation takes minutes to compile every function, each iteration that we performed

to fix the compilation required waiting a significant amount of time. Moreover, it was

not always obvious what had gone wrong—typically, some predicate implication failed

because a variable was of Go′ type Buffer on one side and ImmutableBuffer on the

other side, and then we had to track down the right location to change another word

to immut_word to make everything line up. Future improvements to the automation

could eliminate this hassle.

6.4.3 Hinting slice capacity in deserialization

Arrays in on-disk fixed-size records have statically known length, but they are still

compiled to Go using variable-length slices. As a result, when the compiled Go code

for inode deserialization repeatedly appends to the slice for direct blocks, the slice

has to be reallocated several times to account for the increased length. To mitigate

this, we introduced a new Go′ operation which initializes a slice with a given capacity,

applying it in the compilation lemma for record deserialization (see Section 4.3.4).

This optimization cut a third off the runtime again. It required 47 insertions and 8

deletions; since no changes were required to compilations, the change went quickly.
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Chapter 7

Related Work

7.1 Fiat to Facade compilation

Our approach draws heavily on the proof-producing compilation approach used as

part of the verified pipeline from the Fiat language [5] to assembly. This Fiat-to-

Facade stage, written by Pit-Claudel [16], sits in the middle of the pipeline and,

using proof-producing tactics implemented within Coq, translates non-deterministic

functional programs into Facade, a simple imperative language which enforces linear

use of heap-allocated data. The setting has significant similarities to that of CoqGo’s

proof-producing compilation: both source languages are monadic shallow embeddings

in Gallina; both target languages (Facade and Go′) restrict a more complete imperative

language by enforcing linearity. However, due to some differences in the setting and

some differences in the goals, many details of our approach ended up diverging

significantly.

Go requires typed variable declarations. In Facade, to make a new variable,

programs can simply assign to any previously unused variable name. Programs can

also change the type of the value stored in a variable. Both of these do not work in

73



Go, so we needed to make Go′ support scoped variable declarations, as described in

Section 4.1.4.

The monad in our source language has effects. Fiat source programs are

written in a monad that allows for nondeterminism but not side effects, so execution

order does not matter. The Fiat to Facade compiler takes advantage of this by

making each variable in its pre- and postconditions contain the result of a monadic

computation, rather than just a simple value; it has no separate monadic program

on the side. It would be possible to use a similar approach for CoqGo, but since

monadic computations in prog have side effects (disk operations), this would introduce

some compilations. The currently unordered pre- and postconditions would have to

become ordered. Then, the statement of a compilation ⟨ COMPILE {{ P }} xp {{ Q

}} ⟩ would have to mean something like “If executed from left to right, the computations

in the precondition P, when followed by the execution of the Go program xp, have the

same effects as the computations in the postcondition Q executed from left to right”;

mixing variable values and effects in this manner would be rather cumbersome.

We do not aim for extensibility without modification of CoqGo itself. The

Fiat to Facade compiler goes to significant lengths to support adding new operations or

data types without modifying the semantics or the core compilation tactics themselves.

Since we are perfectly happy to make changes to CoqGo to support new source

language constructs or applications, we were able to simplify Go′ and the compilation

tactics somewhat.

7.2 Alternative proof-producing compilers

A number of projects explore related approaches to proof-producing compilation.

Lammich [10] has developed a similar system within Isabelle/HOL which refines from
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monadic programs in the Isabelle Refinement Framework to the Imperative/HOL

language. Somewhat like CoqGo, the tool works by largely automated proof-producing

refinement within a proof assistant. However, there are a few key differences. For one,

the sort of source programs which are supported is very different—Imperative/HOL

aims primarily at classic data structures and algorithms, whereas CoqGo aims to

compile a file system. Also, the outputs are still monadic functional programs, just in

an effectful monad that has access to a heap; the refinement doesn’t have to completely

transform into an imperative language.

Recently, a team at the University of Washington has started working on Œuf [13],

which also aims to extract systems code written in Gallina to efficient imperative code.

Instead of using compilation tactics written in Ltac, Œuf uses an approach analogous

to proof by reflection: the compiler first uses the smallest amount of Ltac possible to

reify the Gallina code into a deeply embedded AST, and then proceeds using verified

compilation, producing input for the CompCert verified C compiler [11]. This approach

seems like an appealing way to avoid the Ltac difficulties described in Section 8.2,

but proving the entire compiler correct is likely significantly more challenging than

proving individual compilation lemmas.

7.3 Alternatives to proof-producing compilation

Proof-producing compilation is not the only way to turn a verified program into an

executable.

As described in Section 2.3, the current version of FSCQ compiles using Coq’s

extraction mechanism, enabling easy production of running code but sacrificing

performance and verification.

Many projects employ verified compilation from variety of source languages. The

recently launched CertiCoq project [1] is working on a verified compiler for Gallina;

Œuf [13] can also be described as a verified compiler for Gallina. Other verified
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compilers use different source languages: CompCert [11] compiles C to assembly;

Cogent [15], a linearly typed language with semantics like those of Go′, has a verified

compiler to C; CakeML [9] is a functional programming language with a verified

compiler to x86-64 machine code. Using a different source language has the potential

to make compilation more straightforward but can sometimes make reasoning about

the source language more difficult.
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Chapter 8

Future Work

8.1 Further optimizations

Section 6.3 yields numerous opportunities for further optimizations which could enable

FSCQ to become competitive with ext4 in CPU performance.

8.1.1 Compile to structs rather than nested pairs

CoqGo’s current output wastes CPU time unpacking deeply nested pairs one step at

a time, copying out ever smaller portions of the whole struct. Directly compiling Coq

record types to Go structs would avoid this inefficiency. This would require updating

Go′ and the compilation tactics, as well as requiring a small amount of additional

boilerplate per record type from the user.

8.1.2 Make the tuple projection plan work

The unimplemented tuple projection plan described in Section 4.4.7, in which tuple

components can be accessed individually rather than by splitting the whole tuple
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apart, could increase performance. Components which are not needed would not have

to be copied out. Then, as discussed in Section 5.4, the tactics could recognize when

certain components are left unchanged across a functional record update, entirely

eliminating the cost of copying the components in and out. This optimization would

work together with the previous optimization (Section 8.1.1).

8.1.3 Take advantage of passing arguments by reference

The current simplified calling convention (see Section 4.4.4) does not take advantage of

the by-reference parameters in Go′; each parameter is either only an input parameter

or only an output parameter. Often, the Gallina return value is actually a functional

update of one of the parameters, in which case the compilation tactics will already

have turned the functional update into an imperative update; returning it in the same

parameter could eliminate a copy. In most cases, this would have to be combined with

the projection plan to provide a benefit.

8.1.4 Pass tuple components / struct fields by reference

A common pattern in C or in Go is to pass a field of a larger struct into a function by

address, enabling the function to mutate the field without requiring any copying. It

would be fairly straightforward to let Go′ support this pattern as well. This would

be particularly useful for code fragments like the following—the MSLL field of fms is

passed to INODE.getattrs, and when the mutated version is returned, it is recombined

with the unmodified al. The whole record splitting and recombining could be replaced

with simply passing fms.(MSLL) to INODE.getattrs by reference.

Definition getattrs lxp ixp inum fms :=
let ’(al, ms) := (fms.(MSAlloc), fms.(MSLL)) in
let^ (ms, n)← INODE.getattrs lxp ixp inum ms;
Ret ^(mk_memstate al ms, n).
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However, it’s not clear how the automation should recognize this situation. Here,

rather than writing convoluted source code which is then simplified by the compiler, it

may be better to change the source language to have native support for this pattern

in the first place, simplifying both the source code and the compilation process.

8.2 More usable proof-producing compilation tactics

A key bottleneck for the continued development and use of CoqGo is the unreliable

and slow nature of the proof-producing compilation tactics. Ltac is a notoriously nasty

language to work with, and it requires a high level of discipline in addition to some

trial and error to produce tactics which consistently work and consistently run quickly.

As it stands, CoqGo’s tactics run fairly slowly and do not cover quite all of the cases

that appear in the code that we have compiled so far; sometimes, making a small

change to any part of the system (the source code, Go′, or the tactics themselves)

can result in a previously working tactic falling apart in an unexpected way. This has

several unfortunate effects:

• The compilations of many functions are only semi-automated, resulting in a

significant amount of proof code. (See Table 5.1.)

• Developing the tactics is a very cumbersome process. Adding new functionality

or extending a tactic to cover a previously unsupported situation often causes

some part of FSCQ to not compile anymore. However, it’s only possible to

tell that after letting the whole compilation process run; thanks to the poor

performance of Ltac and our tactics themselves, this takes upwards of 15 minutes

on 8 logical cores even for the small fraction of FSCQ we have compiled. Then,

debugging the issue requires manually inlining the compilation tactics in the

proof assistant and stepping through them until it’s obvious what has gone

wrong, waiting minutes for some sequences. Once a potential fix has been made,

the cycle repeats.
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• Compiling new pieces of code is also very cumbersome. Generally, a new piece

of code will hit some case which the compilation tactics do not yet support

(possibly due to a bug), and fixing the problem requires a similarly tedious

debugging loop as the one just described.

Increasing the reliability and performance of the compilation tactics would significantly

increase the productivity of working with CoqGo. There are a few clear places to

start:

• The compilation tactics greedily mutate values if they can even when the old

value is actually still needed later. Thus, when compiling a function where that

is the case, the user has to manually break the compilation process into steps

and insert a copy at the appropriate point, which is very cumbersome. However,

making the tactics recognize where a copy is necessary would be somewhat

difficult. A simpler plan would let the user annotate where copies should happen

in the source.

• The compilation tactics use rather slow separation logic cancellation tactics,

even though this application of separation logic is completely trivial. It’s worth

considering moving away from separation logic entirely. Since the compilation

tactics put all the variables in a list anyway (see Section 4.4.6), the pre- and

postconditions could simply be lists of predicates on the variable values, where

predicate 𝑛 applies to variable 𝑛.

• It may also be possible to bypass the limitations of working with Ltac and

increase performance by applying proof by reflection to various parts of the

compilation tactics.
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8.3 Complete compilation of FSCQ

Currently, we have only compiled roughly a tenth of FSCQ’s source code. Given

improvements to the compilation tactics, it could become fairly easy to compile the

entire thing. As more source constructs are reliably supported, more parts of FSCQ

should compile fully automatically on the first try, meaning that progress should

accelerate as it continues.

Once FSCQ is compiled completely, one could implement a FUSE driver in Go that

calls into FSCQ, creating a properly usable file system. Additionally, if compiled into

C (or integrated into an operating system written in Go), FSCQ could be placed into

the kernel, removing the overhead of FUSE.

8.4 Verified compilation down to assembly

CoqGo is designed to improve performance, but it does not meaningfully reduce the

trusted code base, which still includes Coq extraction, the Go′ to Go printer, the Go

library, and the Go compiler and runtime. In future work, a verified compilation pass

could compile Go′ to a different language which already has a verified compiler, such

as CompCert’s encoding of C [11], or the Fiat pipeline’s Cito language [21]. Then,

applications could be proved correct all the way down to the assembly level.

8.5 Compiling other systems

CoqGo could be applied to other systems as well. The currently supported source

language constructs are fairly tailored to FSCQ, but with some extensions, CoqGo

could be useful for many applications which are written in Gallina.
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Chapter 9

Conclusion

This thesis contributes CoqGo, a compiler from Gallina to Go which is applied to

the FSCQ file system. By employing Go′, a stylized semantics of Go which enforce

linearity, CoqGo simplifies the task of implementing proof-producing compilation

from Gallina, and produces the final output with a straightforward translation from

Go′ to Go.

We built prototype of CoqGo and used it to compile one of FSCQ’s system calls,

replacing FSCQ’s existing extraction pipeline with minimal changes to FSCQ’s source

code. Taking advantage of the increased control given by CoqGo, we implemented

three optimizations which bring the system call’s CPU performance to 19% faster

than the extracted version. With further work, CoqGo has the potential to make

whole verified systems fast.

83



84



Bibliography

[1] A. Anand, A. W. Appel, G. Morrisett, Z. Paraskevopoulou, R. Pollack, O. S.
Bélanger, M. Sozeau, and M. Weaver. CertiCoq: A verified compiler for Coq.
In Proceedings of the 3rd International Workshop on Coq for Programming Lan-
guages, Paris, France, Jan. 2017. URL https://www.cs.princeton.edu/~appel/
papers/certicoq-coqpl.pdf.

[2] H. Chen, D. Ziegler, T. Chajed, A. Chlipala, M. F. Kaashoek, and N. Zeldovich.
Using Crash Hoare Logic for certifying the FSCQ file system. In Proceedings of
the 25th ACM Symposium on Operating Systems Principles (SOSP), Monterey,
CA, Oct. 2015.

[3] A. Chlipala. From network interface to multithreaded web applications: A
case study in modular program verification. In Proceedings of the 42nd ACM
Symposium on Principles of Programming Languages (POPL), Mumbai, India,
Jan. 2015.

[4] Coq development team. The Coq Proof Assistant Reference Manual, Version 8.6.
INRIA, Apr. 2016. http://coq.inria.fr/distrib/current/refman/.

[5] B. Delaware, C. Pit-Claudel, J. Gross, and A. Chlipala. Fiat: Deductive synthesis
of abstract data types in a proof assistant. In Proceedings of the 42nd ACM
Symposium on Principles of Programming Languages (POPL), Mumbai, India,
Jan. 2015.

[6] R. Gu, Z. Shao, H. Chen, X. N. Wu, J. Kim, V. Sjöberg, and D. Costanzo.
CertiKOS: An extensible architecture for building certified concurrent OS kernels.
In 12th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 16), pages 653–669, GA, 2016. USENIX Association. ISBN 978-1-931971-33-
1. URL https://www.usenix.org/conference/osdi16/technical-sessions/
presentation/gu.

[7] C. Hawblitzel, J. Howell, M. Kapritsos, J. R. Lorch, B. Parno, M. L. Roberts,
S. Setty, and B. Zill. IronFleet: Proving practical distributed systems correct. In
Proceedings of the 25th ACM Symposium on Operating Systems Principles (SOSP),
Monterey, CA, Oct. 2015.

85

https://www.cs.princeton.edu/~appel/papers/certicoq-coqpl.pdf
https://www.cs.princeton.edu/~appel/papers/certicoq-coqpl.pdf
http://coq.inria.fr/distrib/current/refman/
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/gu
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/gu


[8] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elka-
duwe, K. Engelhardt, M. Norrish, R. Kolanski, T. Sewell, H. Tuch, and S. Win-
wood. seL4: Formal verification of an OS kernel. In Proceedings of the 22nd ACM
Symposium on Operating Systems Principles (SOSP), pages 207–220, Big Sky,
MT, Oct. 2009.

[9] R. Kumar, M. O. Myreen, M. Norrish, and S. Owens. Cakeml: A verified
implementation of ml. In Proceedings of the 41st ACM Symposium on Principles
of Programming Languages (POPL), pages 179–191, New York, NY, USA, Jan.
2014. ACM. ISBN 978-1-4503-2544-8. doi: 10.1145/2535838.2535841. URL
http://doi.acm.org/10.1145/2535838.2535841.

[10] P. Lammich. Refinement based verification of imperative data structures. In
Proceedings of the 5th ACM SIGPLAN Conference on Certified Programs and
Proofs, CPP 2016, pages 27–36, New York, NY, USA, 2016. ACM. ISBN 978-
1-4503-4127-1. doi: 10.1145/2854065.2854067. URL http://doi.acm.org/10.
1145/2854065.2854067.

[11] X. Leroy. Formal verification of a realistic compiler. Communications of the
ACM, 52(7):107–115, July 2009.

[12] P. Letouzey. Extraction in Coq: An overview. In Conference on Computability in
Europe, pages 359–369. Springer, 2008.

[13] E. Mullen, S. Pernsteiner, J. R. Wilcox, Z. Tatlock, and D. Grossman. Œuf:
Verified Coq extraction in Coq, 2016. URL http://oeuf.uwplse.org/.

[14] M. O. Myreen and S. Owens. Proof-producing synthesis of ML from higher-order
logic. In Proceedings of the 12th ACM SIGPLAN International Conference on
Functional Programming (ICFP), pages 115–126, New York, NY, USA, Sept.
2012. ACM. ISBN 978-1-4503-1054-3. doi: 10.1145/2364527.2364545. URL
http://doi.acm.org/10.1145/2364527.2364545.

[15] L. O’Connor, C. Rizkallah, Z. Chen, S. Amani, J. Lim, Y. Nagashima, T. Sewell,
A. Hixon, G. Keller, T. C. Murray, and G. Klein. COGENT: certified compilation
for a functional systems language. CoRR, abs/1601.05520, 2016. URL http:
//arxiv.org/abs/1601.05520.

[16] C. Pit-Claudel. Compilation using correct-by-construction program synthesis.
Master’s thesis, Massachusetts Institute of Technology, Sept. 2016.

[17] C. Pit-Claudel and P. Courtieu. Company-Coq: Taking Proof General one step
closer to a real IDE. In Proceedings of the 2nd International Workshop on Coq
for Programming Languages, St. Petersburg, FL, Jan. 2016.

[18] H. Sigurbjarnarson, J. Bornholt, E. Torlak, and X. Wang. Push-button veri-
fication of file systems via crash refinement. In 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 16), pages 1–16, GA, 2016.

86

http://doi.acm.org/10.1145/2535838.2535841
http://doi.acm.org/10.1145/2854065.2854067
http://doi.acm.org/10.1145/2854065.2854067
http://oeuf.uwplse.org/
http://doi.acm.org/10.1145/2364527.2364545
http://arxiv.org/abs/1601.05520
http://arxiv.org/abs/1601.05520


USENIX Association. ISBN 978-1-931971-33-1. URL https://www.usenix.org/
conference/osdi16/technical-sessions/presentation/sigurbjarnarson.

[19] P. Wadler. Linear types can change the world! In Programming Concepts and
Methods, 1990.

[20] P. Wadler. Monads for functional programming. In Advanced Functional Pro-
gramming, First International Spring School on Advanced Functional Program-
ming Techniques-Tutorial Text, pages 24–52, London, UK, UK, 1995. Springer-
Verlag. ISBN 3-540-59451-5. URL http://dl.acm.org/citation.cfm?id=
647698.734146.

[21] P. Wang, S. Cuellar, and A. Chlipala. Compiler verification meets cross-language
linking via data abstraction. In Proceedings of the 2014 Annual ACM Conference
on Object-Oriented Programming, Systems, Languages, and Applications, pages
675–690, Portland, OR, Oct. 2014.

[22] J. R. Wilcox, D. Woos, P. Panchekha, Z. Tatlock, X. Wang, M. D. Ernst, and
T. Anderson. Verdi: A framework for implementing and formally verifying
distributed systems. In Proceedings of the 2015 ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI), pages 357–368,
Portland, OR, June 2015.

87

https://www.usenix.org/conference/osdi16/technical-sessions/presentation/sigurbjarnarson
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/sigurbjarnarson
http://dl.acm.org/citation.cfm?id=647698.734146
http://dl.acm.org/citation.cfm?id=647698.734146

	Introduction
	Background on FSCQ
	FSCQ source code: Monadic shallow embedding in Gallina
	Constructs employed by FSCQ source code
	Existing compilation pipeline

	Overview
	Goals
	CoqGo Pipeline
	Go'
	Proof-producing compilation tactics
	Go' to Go printer

	Compilation to Go'
	Go' syntax and semantics
	Abstract syntax
	Execution semantics
	Linear memory
	Local variables
	Function calls
	Tuples: splitting and joining
	Other constructs

	Mapping Gallina types to Go' types
	GoWrappers
	Details for various types

	Compilation lemmas
	CompileBind
	CompileDeclare
	Other constructs
	Record deserialization

	Proof-producing compilation tactics in Ltac
	Key invariants
	compile_bind
	compile_decompose
	Functions
	Tuples
	Putting declarations at the outside
	Tuples: projection approach
	Other constructs


	Implementation
	Overview
	Go' to Go printer: Working around Go's lack of generics
	Challenge: Massive proof terms
	Example compilation output

	Evaluation
	Changes to FSCQ source code
	Benchmarking methodology
	Haskell measurement
	Go measurement
	Benchmarking hardware

	Performance
	Control over performance: optimizations
	Enabling zero-initialization of all data types
	Making the cache hold immutable disk blocks
	Hinting slice capacity in deserialization


	Related Work
	Fiat to Facade compilation
	Alternative proof-producing compilers
	Alternatives to proof-producing compilation

	Future Work
	Further optimizations
	Compile to structs rather than nested pairs
	Make the tuple projection plan work
	Take advantage of passing arguments by reference
	Pass tuple components / struct fields by reference

	More usable proof-producing compilation tactics
	Complete compilation of FSCQ
	Verified compilation down to assembly
	Compiling other systems

	Conclusion

