
Evaluating SigmaOS with Kubernetes for Orchestrating
Microservice and Serverless Applications

by

Yizheng He

B.S. Electrical Engineering, University of Pennsylvania, 2015
B.S. Finance, University of Pennsylvania, 2015

Submitted to the System Design & Management Program
in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN ENGINEERING AND MANAGEMENT

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2023

© 2023 Yizheng He. All rights reserved.

The author hereby grants to MIT a nonexclusive, worldwide, irrevocable, royalty-free
license to exercise any and all rights under copyright, including to reproduce, preserve,

distribute and publicly display copies of the thesis, or release the thesis under an
open-access license.

Authored by: Yizheng He
System Design & Management Program
August 18, 2023

Certified by: M. Frans Kaashoek
Charles Piper Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by: Joan S. Rubin
Executive Director, System Design & Management Program

Evaluating SigmaOS with Kubernetes for Orchestrating
Microservice and Serverless Applications

by

Yizheng He

Submitted to the System Design & Management Program on August 18, 2023

in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE IN ENGINEERING AND MANAGEMENT

ABSTRACT

SigmaOS is a new multi-tenant cloud operating system that simplifies distributed appli-
cation development. Its design centers around the novel concepts of realms and procs. A
realm presents a tenant with a shared global namespace that hides the machine boundaries.
Tenants structure their applications as process-like procs interacting through the realm’s
namespace. Procs are lightweight, stateful, and can communicate. SigmaOS manages the
scheduling and execution of procs to achieve high resource utilization and performance
isolation.

This thesis compares SigmaOS with Kubernetes, a mainstream cloud operating system,
using a microservice-style social network website and a serverless image resizing program.
It measures their performances on a small-scale cluster in CloudLab. The SigmaOS version
of the social network is easier to build (30% fewer lines), and its image resizing starts faster
(25% - 89%). SigmaOS performs comparably to Kubernetes regarding latency and resource
consumption when running a single application but provides better performance isolation
when running multiple applications in separate realms: latency increases by 4-11% with
concurrent applications in SigmaOS versus over 150% in Kubernetes.

Thesis supervisor: M. Frans Kaashoek
Title: Charles Piper Professor of Electrical Engineering and Computer Science

2

Acknowledgments

I sincerely thank everyone who has guided and supported me throughout my journey towards
a master’s degree. The SDM faculties and staff created a fantastic program that allows me
to explore and continue learning after years in the industry. This work only exists because of
Professor Kaashoek’s patient guidance, profound dedication, and Ariel Szekely’s impressive
prior efforts.

I want to thank my family for loving and caring for me during my MIT journey, as you
always have. I feel incredibly fortunate to be the kid of Xiulan Ma and Qing He and to have
met and married Mengxi Tan. You are the source of my strength and motivation.

I want to thank all my friends who inspired, listened, and encouraged me. I also want to
thank my colleagues, mentors, and friends at BlackRock for supporting me in pursuing this
degree.

3

Biographical Sketch

Yizheng He was born in Shenyang, China. He received dual B.S. degrees in electrical engi-
neering and finance from the University of Pennsylvania’s Jerome Fisher Program in 2015.
Then, he joined BlackRock, Inc.’s Financial Modeling Group as a quantitative engineer
and became senior engineer in 2019 and lead engineer in 2022. In 2021, while working at
BlackRock, he joined MIT’s System Design & Management program as a master’s student.

At Penn, Yizheng researched robotics and competed in the RoboCup Standard Platform
League, aka the World Cup for humanoid robots. At BlackRock, he developed and man-
aged an optimization software system that solves some of the world’s most complex portfolio
construction problems. At MIT, he explored multiple domains, including operations re-
search, distributed systems, and engineering management. He worked with the Parallel and
Distributed Operating System group for this thesis.

Yizheng is a history reader, tennis player, and avid soccer fan in his free time. In
December 2020, Yizheng married Mengxi Tan, an artist, gamer, product manager, and Penn
alum.

4

Contents

Title page 1

Abstract 2

Acknowledgments 3

Biographical Sketch 4

List of Figures 6

1 Introduction 7
1.1 Motivation . 7
1.2 Contributions . 8
1.3 Related Work . 8

2 SigmaOS Design and Implementation 10
2.1 Design of procs and realms . 10
2.2 SigmaOS Kernel . 12
2.3 SigmaOS Implementation . 13

3 Applications 14
3.1 A Microservice-based Social Network . 14
3.2 Serverless Image Resizing . 16

4 Evaluation 18
4.1 Evaluation Questions . 18
4.2 Programmability . 19
4.3 Start Time . 20
4.4 Single Application Performance . 21
4.5 Multi-Application Performance . 24

5 Conclusion 28

A SigmaOS APIs 29

References 30

5

List of Figures

2.1 Spawning a Child proc . 10
2.2 Example Namespace of a realm . 11
2.3 procs Performing an RPC . 11
2.4 The SigmaOS Kernel . 12

3.1 Social Network Architecture . 15
3.2 Social Network Microservice Functions . 15
3.3 Social Network Configurations . 16
3.4 Image Resizing Configurations . 17

4.1 Social Network Lines of Code . 19
4.2 Image Resizing Task Start Times . 20
4.3 Start-up Sequence Definitions . 21
4.4 Binary Details . 21
4.5 Social Network Test Parameters . 22
4.6 Social Network Performance Summary . 22
4.7 Social Network Performance . 22
4.8 RPC Latency in Kubernetes and SigmaOS 23
4.9 Image Resizing Performance . 24
4.10 Multi-Application Performance Summary . 25
4.11 Social Network and Image Resizing Performance 25
4.12 Resource Balancing Smoothness . 26
4.13 Impact of SCHED_IDLE in SigmaOS . 26
4.14 Impact of SCHED_IDLE in Multi-Application Scenario 27

A.1 SigmaOS proc APIs . 29
A.2 SigmaOS Namespace APIs . 29

6

Chapter 1

Introduction

Despite the prevalence of cloud computing, programming and deploying cloud applications
remains challenging. Developers must orchestrate multiple machines through systems like
Kubernetes or use frameworks like AWS Lambda that restrict functionality. SigmaOS, a
new cloud operating system under development by MIT’s Parallel and Distributed Oper-
ating Systems (PDOS) group, hopes to eliminate this trade-off. This thesis, submitted to
MIT’s System Design and Management Program, evaluates SigmaOS by comparing it with
Kubernetes, an existing solution, using two applications of different types. Specifically, this
thesis summarizes the motivation and related work in Chapter One, reviews SigmaOS’s de-
sign and implementation in Chapter Two, introduces the two applications in Chapter Three,
presents the experiment results in Chapter Four, and concludes the findings in Chapter Five.

1.1 Motivation

A typical cloud tenant executes various software on multiple machines: long-running ana-
lytics, short background job queues, fleets of stateless and stateful servers, sharded database
servers, and more. Running multiple applications on a shared cluster of machines presents
challenges, including initial configuration and start-up, coordination and communication
among a changing set of entities, and re-assigning machine resources (CPU and memory)
from long-running batch applications to latency-critical applications in response to increas-
ing loads. In an ideal world, a cloud operating system would hide such complexity from
applications, much like single-machine operating systems hide details of RAM, disk, and
CPU management under easy-to-use abstractions.

One route is to use a cloud orchestration system like Kubernetes [1], [2]. Kubernetes
takes on many burdens of managing a cluster, from deciding where to run each program to
adjusting resources in response to load. However, much of the underlying hardware details
leak through Kubernetes’ abstractions. For example, a developer must set up a naming
system for inter-service communication and configure a container image with custom mount
points to launch a pod, Kubernetes’ basic deployment unit. As a result, a multi-service
deployment unusually requires a complex specification with many machine-level details. A
more abstract model would be welcome.

An alternative is to rely on a serverless computation framework like AWS Lambda [3].

7

This model simplifies deployment by requiring as little as writing an ordinary function call,
and the cloud provider hides all distribution aspects. However, The serverless model places
tight restrictions on how functions can interact with each other and how long they can
execute. A more flexible model would be welcome.

SigmaOS [4] is a novel cloud operating system under development at MIT PDOS that
simplifies application development and deployment by combining the benefits of the above
approaches. Programs start process-like procs without being aware of where they execute,
and procs can communicate, keep state, and provide services without location knowledge.
Procs of a tenant run in a realm, which provides a separate single system image with a
hierarchical namespace that mediates procs activities. SigmaOS allocates physical machine
resources to realms, isolates realms from each other, and decides where to execute each
proc. The result is flexibility and ignorance of distribution reminiscent of a single-machine
operating system.

This thesis evaluates SigmaOS using Kubernetes to validate whether SigmaOS meets its
design expectations. We build two applications in the two systems. One is a communication-
heavy social network website formed by many microservices derived from DeathStarBench [5],
and another is a computation-heavy image resizing program with parallel serverless tasks
based on an open-source algorithm [6]. We benchmark the SigmaOS applications against
comparable versions in Kubernetes on CloudLab [7] and measure lines of code, start times,
performance, and ability to time-share. We analyze performance differences and investigate
whether they result from design choices or implementation approaches.

1.2 Contributions

The contributions of this thesis are:

1. Implementations of a social network application consisting of microservices in SigmaOS
and Kubernetes based on DeathStarBench.

2. Comparison of the lines of codes, start times, single and multi-application performances
of two systems deployed on CloudLab, and analyses of the impact of SigmaOS’s design
and implementation choices.

1.3 Related Work

SigmaOS combines the benefits of cloud orchestration systems and serverless systems. It
places few restrictions on workloads like the former and abstracts away machine-level details
like the latter. SigmaOS achieves these benefits through realms and procs. This section
discusses related works to SigmaOS.

Orchestration Systems:

The most basic way to manage a cluster of machines in a cloud environment is to statically
provision virtual machines (VMs) and then configure and maintain them by hand. As cloud

8

systems scale, however, this approach becomes unwieldy. This difficulty has led to the
widespread adoption of cloud orchestration systems to automatically manage machines and
their resources, including Borg [8], Mesos [9], Omega [10], Kubernetes [1], [2], and Docker
swarms [11].

Most orchestration systems operate at a machine level of abstraction and expose contain-
ers [12] or VMs to users. This property preserves compatibility with existing software but
makes deploying applications hard because developers must maintain low-level details such
as container volumes, IP addresses, and network ports. Furthermore, creating a container
or VM is an expensive operation that limits how fast and well such systems can respond to
changes in load.

Serverless Systems:

Serverless systems offer an opposite trade-off by hiding low-level details at the expense
of reduced compatibility. Platform as a service (PaaS) systems execute code repositories on
behalf of customers and automatically scale them through an HTTP web frontend and load
balancer [13]. Function as a service (FaaS) like AWS Lambda [3] can execute arbitrary com-
piled code as functions and supports a richer set of event triggers, such as HTTP, timeouts,
task queues, and storage modifications [14], [15].

Serverless systems impose severe constraints on tasks that they can handle. For example,
PaaS requires customers to use specific programming languages or runtime environments.
FaaS limits the execution time of each function. Both approaches require tasks to be stateless,
do not allow direct communication between tasks, and generally assume tasks will run on a
constrained set of memory and CPU resources.

Improving Serverless

Researchers have explored ways to address the limitations of serverless systems. For
example, ExCamera [16] and gg [17] use a proxy virtual machine for communication be-
tween lambdas. Several systems, like gg, Starling [18], and Locus [19]), introduce efficient
techniques to shuffle data between lambdas. Faasm supports stateful lambdas by sharing
memory and a distributed object store [20] between lambdas. MXFaaS [21] multiplexes ma-
chine resources among serverless functions to reduce overheads and improve image resizing
performance. The Actor framework [22]–[24] structures applications as short functions that
store long-lived states in a persistent storage service.

Performance Benchmarks

Researchers and developers have built benchmark applications to test the hardware and
operating system performances in cloud environments. This thesis refers to DeathStar-
Bench [5], an open-source suite of cloud microservices, for its design of the social network
website.

9

Chapter 2

SigmaOS Design and Implementation

SigmaOS aims to simplify cloud computing by allowing cloud providers to manage resources
on behalf of tenants. The dual concepts of procs and realms abstract away machine bound-
aries. The SigmaOS kernel, which includes distributed schedulers, namespace managers, and
external resource proxies, dynamically allocates resources to realms and their procs. This
chapter explains SigmaOS’s design and provides a brief overview of its implementation.

2.1 Design of procs and realms

procs: Process-like Deployment Units

SigmaOS uses a lightweight and location-agnostic deployment unit called procs to free
applications from container- or virtual machine-level details. Procs are analogies of processes
in single-machine environments. Since processes are less complicated than containers or VMs,
procs take less effort to start.

1 proc := &Proc{"do-task", args , env}
2 sigmaOS.Spawn(proc)
3 sigmaOS.WaitStart(proc.Pid())
4

Figure 2.1: Spawning a Child proc

Applications can create, destroy, and manage procs through a group of SigmaOS APIs1.
Each proc has a unique process identifier pid and a corresponding descriptor with the binary
location, arguments to the binary, and environment variables. Figure 2.1 shows an example
of spawning and waiting for a proc in the Go programming language [25].

Developers specify whether a proc performs latency-critical (LC) or best-effort (BE)
work, following Borg [8]. For LC procs, the developer specifies the number of CPU cores it
may utilize at peak load. SigmaOS prioritizes LC procs when resources are insufficient.

1Figure A.1 in the Appendix provides the full list of proc APIs.

10

realms: Per-tenant Single System Image

SigmaOS procs must be able to handle various types of tasks like containers or VMs
do. For instance, they may need to maintain state, send requests to peers, or query external
databases. SigmaOS introduces realms to facilitate the orchestration of such activities.
Every proc resides in a realm, and each realm provides a shared namespace to its procs
like a system map. Figure 2.2 is an example namespace of a realm. The pathnames have
universal meanings to the realm’s procs regardless of their physical locations.

/

unixFS/proc/ elec/s3/ sn/ mongo/ db/

...p1 pn leader_id user/ front-end/ post/ ...

rpc

Figure 2.2: Example Namespace of a realm

1 mnt := MkMountServer(MY_ADDR)
2 sigmaOS.Create("/sn/user", WRITE , OWNER)
3 sigmaOS.Mount("/sn/user", mnt)
4 sigmaOS.MkRPCDev("/sn/user/rpc", service)
5

(a) Server Side

1 var req UserLoginRequest
2 fd := sigmaOS.Open("/sn/user/rpc", OWNER)
3 res := sigmaOS.RPC(fd , &req)
4

(b) Client Side

Figure 2.3: procs Performing an RPC

procs use the namespace for many purposes. For instance, they can check the status
of others by accessing /proc/ or coordinate leader election through a small custom file
/elec/leader_id.

To extend the namespace with new services, a proc provides remote procedure call (RPC)
based services and advertises its existence by mounting itself in the namespace. Figure 2.3a
shows an example user service in Go. It creates a symlink /sn/user/ that points to an
in-memory file system and then creates an RPC device in this file system at /sn/user/RPC.
This device can encode or decode messages and invoke RPC handlers. Figure 2.3b shows how
a client proc, such as an HTTP front-end, sends a request to the user service. It opens the

11

RPC device at /sn/user/RPC, which auto-mounts the user service, and then sends requests
by writing to the file descriptor of the RPC device. The client and server perform the RPC
without knowing their physical locations.

Procs can advertise utility services using the same mechanism. For example, /db and
/mongo in Figure 2.2 are mount points of proxies that communicate with an SQL database
and a MongoDB instance. /s3 and /unixFS expose Amazon’s S3 storage and the host
machine’s file system. By combining procs and realms, SigmaOS enables cloud programs
to interact and explore resources as if they run on top of a single machine’s operating system.2

2.2 SigmaOS Kernel

The SigmaOS kernel comprises procs supporting essential system functions. As shown in
Figure 2.4, one kernel runs on top of the Linux operating system in each physical machine
of the cluster.

Machine1

Linux

Schedd1

S31 UX1 DB1 Mongo1 Named NamedR1

P1 P2 P6 . . .

. . .

Machinen

Linux

Scheddn

S3n UXn DBn Mongon NamedR2

P3 P4 P5 P7 . . .

Figure 2.4: The SigmaOS Kernel. User procs (circles) run on top of kernel
procs (rectangles) on top of Linux. Procs P1, P2, P4, P5 belong to realm R1 (yellow).
Proc P3, P6, P7 belong to realm R2 (orange).

The most essential function of the kernel is to schedule different realms’ procs. Specif-
ically, the kernel must decide which procs to execute next and where and how to execute
them. There are three high-level scheduling goals. First, prioritize LC procs over BE procs.
The former should experience minimal interference from the latter. Second, achieve high re-
source utilization. Third, achieve fairness so that realms can properly time-share limited
resources.

A group of distributed Schedd procs, one on each machine, fulfill the scheduling function.
When a user proc’s life cycle starts, it first enters a scheduling queue on one of the machines
and waits for running. The Schedd on each machine monitors the local queue and executes
queuing procs if there is enough local CPU and memory. Schedds also jointly maintain a
global queue so that machines with idle resources can steal procs waiting for execution on
busy machines. The distributed nature of Schedds improves scalability and reduces latency:
tenant programs interact only with a local Schedd to spawn procs, and Schedds interact
only with remote counterparts in case of inadequate local resources.

When starting a proc, Schedds arrange the underlying Linux’ cgroups [26] to label BE
procs as SCHED_IDLE [27], Linux’s lowest-priority scheduling class. As a result, LC procs

2Figure A.2 in the Appendix provides the full list of namespace APIs.

12

receive almost all CPU cycles when busy, and BE ones take CPU cycles only when the former
are idle. To fully utilize resources, Schedds slightly oversubscribe CPU resources on each
machine by running additional BE procs.

For fairness, Schedds divide resources evenly among any realms that have LC procs
and then divide the remaining resources evenly among realms with BE procs. Within each
step, they choose which realm’s proc to start next through a round-robin3.

A centralized Named proc implements the root namespace. When a tenant creates a new
realm, the kernel starts a sub-Named proc on one of the machines, which builds the realm’s
namespace on top of the root one and serves it to the realm’s procs. In addition, the
kernel provides access to file systems and data storage through proxy procs on all machines,
including S3, Ux, Db, and Mongo. The combination of Named and proxy procs enable user
procs in SigmaOS to navigate services and resources regardless of their locations.

2.3 SigmaOS Implementation

procs take the form of Linux processes, but they are limited to a few system calls: allocat-
ing and freeing memory, sending and receiving messages on sockets, and creating threads.
Tenants provide a statically linked binary for each proc they start.4

procs of different realms run in separate Docker [28] containers to ensure isolation
between realms. Since procs have no dependency on file system image, on each machine,
SigmaOS co-locates procs from the same realm in one image-less container.

From a proc’s perspective, it goes through a four-step start sequence after Schedds decide
to run it on a particular machine. First, SigmaOS instantiates a proc object on the target
machine and sets up its environment variables. Second, if the proc has not previously run
on the machine, SigmaOS downloads its binary from designated locations. Third, if no other
proc of the same realm has previously run on the machine, SigmaOS starts a proc manager
for this realm and initializes a container for the proc. Fourth, the proc manager starts the
proc’s binary in the container as a Linux process. Starting a proc cold requires all steps,
but a warm start, in contrast, needs only the first and the last. Therefore, warm starts in
SigmaOS are as fast as starting processes on a local Linux machine.

3SigmaOS currently pursues this simple fairness policy for research purposes. For commercial usage, it
may divide resources by tenant’s payments.

4This section primarily focuses on the implementation of procs. A previous M.S. thesis [4] provides
details on other aspects of SigmaOS’s implementation.

13

Chapter 3

Applications

We evaluate SigmaOS by comparing it with Kubernetes, a widely adopted cloud orchestration
system, as a benchmark. The evaluation process includes constructing mirrored versions of
applications for both systems and comparing their performances under similar conditions.
This chapter covers the applications, and the next chapter presents the evaluation results.

Since SigmaOS supports microservice- and serverless-style applications, we choose to
build a social network website and an image resizing program. The social network adopts a
microservice structure with multiple small servers, each supporting one type of function. It
involves heavy communication among its components, and its load on the cloud operating
system scales with the number of requests. In contrast, resizing images is a classical serverless
and computation-heavy task. It requires little configuration or communication but may
quickly claim CPU resources when processing inputs of considerable size.

3.1 A Microservice-based Social Network

We port an open-source C++ implementation of the social network [29] in DeathStarBench
to SigmaOS and Kubernetes. We rewrite the application in Go and maintain its architecture
and functions.

Architecture

Figure 3.1 shows the application’s structure: a group of microservices interact through
RPCs to support the features of a social network jointly. An HTTP front-end on top receives
client requests from external and routes them to corresponding internal service providers.
The microservices store application data in a persistent MongoDB instance, including user
credentials, post timelines, and post contents. They rely on a sharded key-value storage to
cache intermediate results.

Figure 3.2 lists the microservices’ individual functionality. Processing most requests
requires internal chitchat. For instance, when a user posts a status update, the compose
service queries the text service to process text contents, and the latter queries url and user
services to shorten URLs in the text and resolve notifications like "@user". The compose
service then asks the post service to store the status update and informs the home service
to add this update to followers’ and notify users’ homepages. In this process, the compose

14

HTTP front-end

text compose home

media url user graph post timeline

mongodb cached0 cached... cachedn

Figure 3.1: Social Network Architecture. Each text box represents a mi-
croservice. An arrow from A to B means A is an RPC client of B.

service spends more time waiting for responses from others than conducting local operations.
As a result, when the application experiences heavy loads, communication overheads may
dominate end-to-end performance.

Service Name Functions
User Register new users; Check user existence; Process logins
Graph Follow and un-follow; Check followers and followees
Post Store and read posts
Timeline Update and read a user’s timelines
Home Update and read a user’s home page
Url Shorten URLs from post texts; Store and read URLs
Media Store and read media contents
Text Recognize URLs and "@user" in post texts
Compose Process new posts from user
Front End Route client HTTP requests to services

Figure 3.2: Social Network Microservice Functions

Implementations

In SigmaOS, we structure each microservice as a proc in the same realm. They advertise
themselves by creating self-pointing symlinks in the realm’s namespace and perform RPCs
by opening the destination services’ symlinks, as in Figure 2.3. In Kubernetes, we place each
service in a pod, communicating through gRPC [30]. Although the two implementations
use different RPC frameworks, they adopt identical communication interfaces in Protocol
Buffer [31].

The Kubernetes implementation includes an additional Registry pod, which fulfills the
functions of a realm’s namespace in SigmaOS: when a microservice first starts, it must send
messages to the registry to expose itself and queries the registry to initialize connection
channels to peers.

15

Figure 3.3 shows simplified application configurations in the two systems. In SigmaOS,
to start the social network, we use a Go program that spawns service procs in an order
corresponding to their dependencies. In Kubernetes, we use a YAML file to configure the
container details for each pod and kubectl commands to invoke the YAML files to start the
application.

1 servers := [] Server{usersrv , graphsrv , ...}
2 for _, srv := range servers {
3 p := &Proc(srv.Bin , srv.Args , srv.Envs , srv.CPU)
4 sigmaOS.Spawn(p)
5 sigmaOS.WaitStart(p.Pid())
6 }
7

(a) SigmaOS

1 apiVersion: apps/v1
2 kind: Deployment
3 spec:
4 replicas: 1
5 template:
6 spec:
7 containers:
8 image: XXXXX
9 name: socialnetwork -user

10 command: user
11 ports:
12 containerPort: 9999
13 resources:
14 requests:
15 cpu: XXXm
16

(b) Kubernetes

Figure 3.3: Social Network Configurations. Top: SigmaOS starts all procs
in a loop. Bottom: YAML configuration file one pod in Kubernetes.

3.2 Serverless Image Resizing

We port an open-source image resizing algorithm [6] in Go to to build a resizing service. The
service loads input images from local file systems or AWS S3 buckets and conducts multiple
resizing tasks in parallel. The tasks do not interact with the controller and run for a limited
time, forming a classic example of a serverless application.

In SigmaOS, we use a manager program in Go to orchestrate concurrent tasks. Upon
receiving resizing requests, it creates a worker proc for each request and monitors their
progress. In Kubernetes, we use a YAML file to place resizing tasks into individual pods.
The file also regulates the total number of tasks, level of parallelism, and input locations.
Figure 3.4 shows simplified configurations in both systems.

16

1 taskIds := make ([]Pid , 0)
2 for _, req := resizeRequests {
3 p := &Proc("resize -image", req.InputPath , req.Envs)
4 sigmaOS.Spawn(p)
5 taskIds = append(taskIds , p.Pid())
6 }
7 go monitorJobs(taskIds)
8

(a) SigmaOS

1 apiVersion: batch/v1
2 kind: Job
3 spec:
4 completions: XXX
5 parallelism: XXX
6 template:
7 spec:
8 containers:
9 name: img -resize

10 image: XXXXX
11 env:
12 <AWS credentials >
13 args:
14 "s3:// XXXXX"
15

(b) Kubernetes

Figure 3.4: Image Resizing Configurations

17

Chapter 4

Evaluation

4.1 Evaluation Questions

Our evaluation approach is comparison experiments. We provide Kubernetes, the existing
player, and SigmaOS, the novel challenger, with the same hardware resources and measure
their performances when running the same applications and conducting the same tasks. We
then conduct quantitative and qualitative analyses on performance differences and determine
whether they result from design mechanisms, implementation choices, or external factors.
In addition, we review application codes in both systems to gain insights from a cloud
developer’s perspective. Following the design objectives of SigmaOS, we aim to answer four
questions:

1. Is SigmaOS easier to program? We measure the total lines of code of the social
network excluding comments. We expect the SigmaOS version of the social network
to have fewer lines. We skip the image resizing program due to its small size.

2. Does SigmaOS start pods faster? We measure the time it requires to start an image
resizing task in Kubernetes pod or a SigmaOS proc, in either cold or warm conditions.
We expect the start time of procs to be smaller. We skip the social network because
start times have little impact on its long-running microservices.

3. How does SigmaOS perform running one application? We measure the request
throughput, latency, and CPU consumption of the social network and the completion
time and CPU consumption of the image resizing program.1 We expect the SigmaOS
applications to perform at least on the same level as those in Kubernetes.

4. How does SigmaOS perform running multiple applications? We conduct mea-
surements similar to the previous question but with both applications running simul-
taneously. We also measure performance isolation, defined as the scale of performance
drop when an application runs concurrently with other programs. We expect SigmaOS
to perform at least similarly to Kubernetes in both measures.

1Performance evaluations in this thesis do not cover the applications’ memory profiles as they are not
memory-bound, but this is an interesting domain for future studies.

18

4.2 Programmability

To evaluate whether realms and procs simplify cloud programming, we calculate the lines
of code of the social network in both Kubernetes and SigmaOS using cloc [32], an open-
source counter. Figure 4.1 shows that while achieving the same functionalities, the SigmaOS
version of the application has 30% fewer lines (2,138 vs. 3,094) than the Kubernetes version.

Application Section Language K8s LoC σOS LoC
Interfaces

RPC Definitions Protobuf 222 206
Implementations

User Service Go 219 200
Graph Service Go 266 243
URL Service Go 176 147
Text Service Go 163 132
Media Service Go 176 145
Post Service Go 190 163
Home Service Go 179 153
Timeline Service Go 183 156
Compose Service Go 200 163
Front-end Go 324 321
Service Registry Go 118 –
Total 2,194 1,823

Configurations
Service IP & Ports JSON 18 –
Service Deployment YAML 660 –
Start Up Code Go – 109
Total 678 109

Total – 3,094 2,138

Figure 4.1: Social Network Lines of Code

To understand the source of SigmaOS’s smaller number of lines of code, we decompose
the social network code into three sections: interface definitions, core implementations, and
configurations.

The interface definitions cover the communication protocols among the microservices.
They entirely depend on the functionalities of microservices and are thus agnostic to the
underlying cloud operating systems. We use Protocol Buffer to program this section in both
versions and observe similar lines of code (206 vs. 222).

Implementations of the microservices form the essential section of the social network,
and the SigmaOS version is 17% (1,823 vs. 2,194) shorter for two reasons. First, the
Kubernetes version needs a 118-line registry service to keep track of the services, while the
SigmaOS kernel already fulfills this function through a realm’s namespace. Second, services
in Kubernetes have to send messages to the registry to expose themselves and connect with
peers. Meanwhile, in SigmaOS, they achieve a similar goal through a much shorter call of

19

the SigmaOS API. As a result, most services in Kubernetes require 30-40 more lines than
corresponding ones in SigmaOS.

The configuration files regulate the application’s start-up procedure in a cloud environ-
ment, and in this section, we observe the most significant difference (109 vs. 678) between
the two systems. To set up the social network in Kubernetes, we must allocate a unique port
number to each microservice and create a YAML file to specify container details of a service’s
hosting pod. In contrast, in SigmaOS, we use only a short program to start microservices as
procs while the SigmaOS kernel manages network specifications.

While counting lines of code is not a perfect measure of programmability, the decompo-
sition analysis suggests that SigmaOS reduces the burden for cloud developers by allowing
them to design fewer modules and maintain fewer settings. By providing a universal names-
pace in each realm and hiding network details when scheduling procs, SigmaOS migrates
significant configuration efforts from the application level to the cloud operating system level.

4.3 Start Time

By design, process-like procs are more lightweight than container-based pods and are there-
fore cheaper to start. To verify, we compare the start time of a pod in Kubernetes and that
of a proc in SigmaOS. Specifically, the pod and the proc have identical functionalities of
resizing an image, and we measure the start times when the systems are cold and warm.
For both systems, cold starts happen when they run a pod or proc for the first time, and
warm starts happen when they rerun a previously known pod or proc. Figure 4.2 shows that
SigmaOS pods start faster in both scenarios.

Measurements Kubernetes Pod SigmaOS Proc
Cold Start

Environment Setup (ms) – 6.2
Binary Download (ms) 2,877.7 1,749.6
Proc Manager Initialization (ms) – 593.4
Pod/Proc Start (ms) 282.4 25.7
Total (ms) 3,160.1 2,374.9

Warm Start
Environment Setup (ms) – 2.6
Binary Download (ms) – 0.9
Pod/Proc Start (ms) 247.8 24.1
Total (ms) 247.8 27.6

Figure 4.2: Image Resizing Task Start Times

We decompose the warm and cold start-up sequences for both systems, and Figure 4.3
summarizes the definitions of each step. During cold starts, binary download times dominate
in both systems, and the total time in SigmaOS is 25% (2,375 vs. 3,160) shorter. While
the systems download binaries from different storage services in this experiment, SigmaOS
downloads a much smaller object than Kubernetes since the procs binaries are smaller than

20

Operations Definition
Environment Setup* Initialize a proc object and set up environment variables
Binary Download Download a pod’s container image, or a proc’s binary
Proc Manager Initialization* Start a local service for procs of the same realm
Pod/Proc Start Start a pod’s container or a proc’s binary
* Only Applicable to SigmaOS

Figure 4.3: Start-up Sequence Definitions

Properties Kubernetes Pod SigmaOS proc
Binary Type Docker Image Unix Binary
Binary Storage Docker Registry AWS S3 Bucket
Binary Size (MB) 30.9 10.6

Figure 4.4: Binary Details

containers. Furthermore, the measurement for SigmaOS, though better, may be unfair as it
includes the proc manager initialization time, which is part of the system start-up instead
of the proc’s start-up. An equivalent step may exist in Kubernetes, but Kubernetes does
not provide a public API to measure it.

Thanks to their caches, both systems spend zero or close-to-zero time downloading bina-
ries during warm starts. SigmaOS also skips the proc manager initialization as it only needs
to start once per realm. As a result, the actual times to start a pod and proc dominate,
and SigmaOS has a clear advantage (27.6 vs. 247.8). This significant edge suggests that
SigmaOS is more suitable to run many short-lived serverless tasks like resizing small images
for which long start sequences are too expensive.

4.4 Single Application Performance

To evaluate the end-to-end performance of SigmaOS, we compare it against Kubernetes
through a series of benchmark experiments running the social network website and the image
resizing program. We provision both systems with a five-machine cluster on CloudLab [7],
each with four 2.20 GHz cores. We allow applications to consume 16 of the 20 cores and
reserve the remaining four for operating systems and databases. This section discusses the
results of the systems running a single application at a time, and the next section analyzes
their performances running multiple applications concurrently.

Social Network

We deploy the social network to both systems and generate the same loads. We follow
DeathStartBench’s original implementation for load request composition. Figure 4.5 sum-
marizes the load test parameters. In both systems, the social network microservices may
take the cluster’s all available resources (16 cores).

21

Time Period Load (Req/sec)
1 - 5 seconds 600 requests/sec
6 - 10 seconds 1,200 requests/sec

11 - 15 seconds 1,800 requests/sec
15 - 20 seconds 900 requests/sec

(a) Load by Time

Request Type Weight
Compose Message Write 10%
Read Home Page Read 60%
Read User Timeline Read 30%

(b) Request Composition

Figure 4.5: Social Network Test Parameters

Performance Metrics Kubernetes SigmaOS
Mean Latency (ms) 10.33 4.36
99% Tail Latency (ms) 84.08 40.84
Peak CPU (cores) 11.62 8.36

Figure 4.6: Social Network Performance Summary

(a) Kubernetes (b) SigmaOS

Figure 4.7: Social Network Performance. The top charts plot log-scale mean
and tail latency by time. Middle charts plot request throughputs by time. The bottom
charts plot CPU consumption by time. All charts share the time scales at the bottom.

22

Figure 4.6 summarizes that the SigmaOS version has better mean and tail latency while
consuming less CPU. Figure 4.7 provides more details: the middle charts suggest that the
two social networks achieve similar throughput that matches the input pattern from Figure
4.5a. The top charts show that the latency in Kubernetes is about twice that in SigmaOS
throughout the testing period, and the bottom charts show that Kubernetes consumes about
2-3 more cores at all times.

SigmaOS’s less CPU consumption aligns with the expectation that process-like procs are
more lightweight than container-based pods. Specifically, SigmaOS runs all procs on each
machine in one image-less container because they belong to the same realm. Kubernetes,
however, must start one container for each pod, leading to additional CPU overheads.

For the difference in latency, we first observe that RPC times dominate the end-to-end
request handling times of the social network. Specifically, for most requests, the processing
time of a microservice request is much shorter than the time to create and transmit RPC
messages. This observation coincides with the application’s structure, where many services
communicate with each other but conduct simple tasks each.

We then observe that the lower latency in SigmaOS results from shorter RPC times. To
isolate this phenomenon, we measure the time spans of 5000 sequential light RPC calls in
Kubernetes and SigmaOS, with RPC client and server residing in two pods for the former
and in two procs for the latter. We configure server-side RPC handling to be trivial (< 1 µs)
so that RPC creation and transmissions contribute to almost the entirety of time measures.
Figure 4.8 shows that the average latency of a RPC call is about 50% higher in Kubernetes
than in SigmaOS, with client and server on either the same or separate machines.

Measurements Kubernetes SigmaOS
Local Network Local Network

Mean Latency (µs) 220 295 168 194
Standard Deviation (µs) 27 24 29 63
50% Tail Latency (µs) 221 309 165 158
99% Tail Latency (µs) 286 342 222 296

Figure 4.8: RPC Latency in Kubernetes and SigmaOS. Server and client
run on the same machine for local measures and on separate ones for network measures.

We suspect the root cause of the discrepancies in RPC latency to be the two systems’
network configurations. In Kubernetes, each pod has its IP address and virtual network
device [1], [33]. As a result, RPC messages between two pods have to hop three times: from
the sender pod’s network device to the sender host machine’s network device, then to that of
the receiver host machine, and finally to that of the receiver pod. If both pods reside on the
same machine, they skip the second step. In comparison, SigmaOS does not create distinct
network interfaces for procs. Thus, RPC messages between procs hop only once between
the host machines’ network devices or zero times for collocated procs.

It is possible to make SigmaOS realms run on separate networks, which may level the
two systems’ RPC latency when the client and the server are on separate machines. However,
the difference in local RPC latency will persist as collocated procs in the same realm can
share the same network device. Overall, since network transmission times are sensitive to

23

choices in machine cluster configuration, network isolation mechanism, and network interface
implementations, we do not interpret the SigmaOS’s better latency as an artifact of better
system design but as a different implementation choice.

Image Resizing

We run 48 concurrent image resizing tasks in Kubernetes and SigmaOS. Each task loads
a 6.3MB image and resizes it 20 times. The tasks may take all 16 provisioned CPU cores, and
Figure 4.9 shows that the two systems perform very closely. Since image resizing requires
heavy computing power, the concurrent tasks quickly saturate CPU cores in both systems.
The heavy loads of the tasks enable them to run long enough (over 30s), making the start-up
cost (20 - 100ms) insignificant. With few additional bottlenecks other than CPU, the two
systems take roughly the same time to complete the tasks.

(a) Kubernetes (b) SigmaOS

Figure 4.9: Image Resizing Performance

4.5 Multi-Application Performance

We run the social network and the image resizing program concurrently in Kubernetes and
SigmaOS to examine whether they allocate resources swiftly, leaving no idle resources, and
properly prioritize latency-critical applications over best-effort ones. In addition, we config-
ure the social network as LC and image resizing as BE. In SigmaOS, we also place the two
applications in separate realms.

Figure 4.10 shows that in the multi-application scenario, it takes over 40% more time for
the BE image resizing tasks to complete because of their low resource priorities. Meanwhile,
the LC social network in SigmaOS has significantly lower mean and tail latency. When
running with concurrent image resizing tasks, the SigmaOS social network experiences only
a 4-11% increase in latency compared to running alone. In contrast, the Kubernetes version
suffers from an over 150% increase in latency. Furthermore, with concurrent BE tasks, the
Kubernetes social network consumes 17.8% less CPU at peak load moment despite its high
priority, and the time it utilizes more than 7 CPU cores decreases by 40.3%. SigmaOS,
however, has less than 5% drops for both measures.

24

Performance Metrics Kubernetes SigmaOS
Alone Multi-App Impact Alone Multi-App Impact

Image resizing (BE)
Total Time (s) 37.45 52.91 +41.3% 37.52 55.81 +48.7%

Social Network (LC)
Mean Latency (ms) 10.33 26.32 +154.8% 4.36 4.82 +10.6%
99% Tail Latency (ms) 84.08 254.63 +202.8% 40.84 42.60 +4.3%
Peak CPU (cores)* 11.62 9.55 -17.8% 8.36 8.10 -3.1%
High CPU Time (s)** 15.08 9.00 -40.3% 3.57 3.41 -4.5%

* Maximum amount of cores taken by the application during load test
** Total time that the application consumes more than 7 cores

Figure 4.10: Multi-Application Performance Summary

(a) Kubernetes (b) SigmaOS

Figure 4.11: Social Network and Image Resizing Performance. We start
the BE image resizing jobs and generate loads for the LC social network afterwards.
The top charts plot the social network’s log-scale mean and tail latency. Middle charts
plot the social network’s request throughputs. The bottom charts plot the CPU con-
sumption of the two applications. All charts share the time scales at the bottom.

25

Figure 4.11 provides additional insights. The middle charts suggest that social networks
in both systems achieve similar throughput as in the previous section. The top charts, when
compared with those in Figure 4.7, attest to the significant latency increase of Kubernetes
in the multi-application scenario. The bottom charts show that the BE image resizing tasks
in both systems claim most CPU cores at the beginning of the experiments but gradually
yield resources to the LC social network as the latter receives loads. Image resizing tasks
reclaim CPU cores only when social network loads decrease, and the dents in their CPU
consumption curves (orange) lead to longer completion times.

Figure 4.11’s bottom charts also suggest that SigmaOS shifts resources between appli-
cations more smoothly: the CPU consumption curves in SigmaOS are less spiky than those
in Kubernetes. We quantify this effect by measuring the scale of second-order derivatives of
the curves in both systems. Figure 4.12 shows that the SigmaOS curves are much smoother.

Measurements Kubernetes SigmaOS
Social Network CPU Curve Smoothness 1.29e−4 7.05e−5
Image Resizing CPU Curve Smoothness 9.78e−5 7.78e−5

Figure 4.12: Resource Balancing Smoothness. Measured as the average
absolute values of the second-order derivatives of the original curves. Smaller numbers
indicate smoother curves, with linear functions having 0 smoothness measure.

We first confirm that Linux cgroup configurations do not cause the difference in perfor-
mance isolation: the two systems assign similar CPU weights to LC and BE applications,
with social network pods and procs receiving weights of 30 - 40 and image resizing ones
receiving 1.

A critical difference in implementations between the two systems that might explain the
discrepancy is SigmaOS’s adoption of SCHED_IDLE for BE procs, which allows any process
with higher priority to preempt their CPU usage immediately. As a result, the BE image
resizing tasks in SigmaOS give up resources properly and swiftly.

(a) W/O SCHED_IDLE (b) With SCHED_IDLE

Figure 4.13: Impact of SCHED_IDLE in SigmaOS. CPU consumption of LC
and BE image resizing jobs, with and without SCHED_IDLE

We conduct further comparison experiments between SigmaOS and a special version that
does not use SCHED_IDLE to isolate its impact. We first run two groups of image processing

26

Performance Metrics W/O SCHED_IDLE With SCHED_IDLE
in SigmaOS Alone† Multi-App Impact Multi-App† Impact†

Social Network (LC)
Mean Latency (ms) 4.36 7.85 +80.0% 4.82 +10.6%
99% Tail Latency (ms) 40.84 88.31 +116.2% 42.60 +4.3%
Peak CPU (cores)* 8.36 7.13 -14.7% 8.10 -3.1%
High CPU Time (s)** 3.57 0.21 -94.1% 3.41 -4.5%

Image resizing (BE)
Total Time (s) 37.52 54.93 +46.4% 55.81 +48.7%

† Identical to the "SigmaOS" columns in Figure 4.10
* Maximum amount of cores taken by the application during load test
** Total time that the application consumes more than 7 cores

Figure 4.14: Impact of SCHED_IDLE in Multi-Application Scenario

tasks on a four-core machine, labeling one group as LC and the other as BE. Figure 4.13
shows that without SCHED_IDLE, the BE group consumes more CPU, and both groups have
more spikes in CPU consumption curves.

We then measure the special SigmaOS’s multi-application performance, using the same
setup of running social network and image resizing in parallel. Figure 4.14 shows that
the LC social network in SigmaOS without SCHED_IDLE experiences similar performance
downgrades as in Kubernetes: its mean and tail latency increase by close to 100%, and its
CPU consumption drops by close to 15% when running concurrent best effort tasks. These
measurements confirm that SCHED_IDLE strongly affects SigmaOS’s performance isolation.

27

Chapter 5

Conclusion

The thesis compares SigmaOS, a novel cloud operating system, with Kubernetes, a popular
existing solution. SigmaOS hopes to simplify cloud development through procs, which
are lightweight, and realms, which provide single-system images using a global namespace.
SigmaOS also aims to provide swift and proper resource allocation and strong performance
isolation through a group of distributed schedulers and accompanying kernel services.

Measurements in terms of line of codes and start times of the same applications in
Kubernetes and SigmaOS validate that procs and realms achieve their design objectives:
developers construct fewer modules and write 30% less code in SigmaOS, and applications
start 25% and 89% faster in SigmaOS respectively in cold and warm conditions. Application
performance measurements confirm that SigmaOS manages resources efficiently: latency-
critical applications perform comparably in Kubernetes and SigmaOS when running alone
but suffer only a 4-11% performance drop in SigmaOS when running concurrently with
best-effort tasks, compared to over 150% in Kubernetes.

While a small number of applications and benchmark experiments cannot comprehen-
sively evaluate an operating system’s prospect, this thesis’ results demonstrate SigmaOS’s
potential, and we hope they provide insights for future improvements and adoption of the
system.

28

Appendix A

SigmaOS APIs

Method Description
Spawn(descriptor) Queue proc and return its identifier
WaitStart(pid) Wait until proc has started
WaitExit(pid) Wait until proc has exited
WaitKill(pid) Wait until proc is killed
Started(pid) proc marks itself as started
Exited(pid, status) proc marks itself as exited
Kill(pid) Kill proc

Figure A.1: SigmaOS proc APIs

Method Description
Create(path, perm, mode) Create a file, directory, link, or pipe at path
Open(path, mode) Open a file, directory, or link at path
Close(fd) Close an object fd
Remove(path) Remove an object at path
Rename(old, new) Rename an object from old to new
Stat(path) Fetch info about an object at path
Read(fd) Reads data from fd
Write(fd, data) Write data to fd
RPC(fd, data) Send an RPC through fd and read reply
Lseek() Change offset of an object fd
Mount(path, service) Advertise service at a mount point path
ResolveMount(path) Resolves ∼local or ∼any to a global pathname
OpenWatch(path, func) Open file at path or wait until file is created
WatchDir(path, func) Call func when directory at path changes
WatchRemove(path, func) Call func when path is removed

Figure A.2: SigmaOS Namespace APIs

29

References

[1] Google, Kubernetes, http://kubernetes.io/.

[2] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes, “Borg, Omega, and
Kubernetes,” ACM Queue, vol. 14, no. 1, 2016.

[3] Amazon, AWS Lambda, https://aws.amazon.com/lambda/.

[4] A. Szekely, “σOS: Elastic realms for multi-tenant cloud computing.,” M.S. thesis,
Massachusetts Institute of Technology, Cambridge, Massachusetts, 2022.

[5] Y. Gan, Y. Zhang, D. Cheng, et al., “An open-source benchmark suite for
microservices and their hardware-software implications for cloud & edge systems,” in
Proceedings of the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems, ser. ASPLOS ’19, Providence,
RI, USA, 2019, pp. 3–18. [Online]. Available:
https://github.com/delimitrou/DeathStarBench.

[6] J. Schlicht, Image resize in go, https://github.com/nfnt/resize.

[7] D. Duplyakin, R. Ricci, A. Maricq, et al., “The design and operation of CloudLab,”
in Proceedings of the USENIX Annual Technical Conference (ATC), Jul. 2019,
pp. 1–14. [Online]. Available: https://www.flux.utah.edu/paper/duplyakin-atc19.

[8] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and J. Wilkes,
“Large-scale cluster management at Google with Borg,” in EuroSys ’15: Proceedings
of the Tenth European Conference on Computer Systems, Bordeaux, France, Apr.
2015, 18:1–18:17.

[9] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. Katz,
S. Shenker, and I. Stoica, “Mesos: A platform for fine-grained resource sharing in the
data center,” in Proceedings of the 8th USENIX Conference on Networked Systems
Design and Implementation, ser. NSDI’11, Boston, MA: USENIX Association, 2011,
pp. 295–308.

[10] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and J. Wilkes, “Omega: Flexible,
scalable schedulers for large compute clusters,” in SIGOPS European Conference on
Computer Systems (EuroSys), Prague, Czech Republic, 2013, pp. 351–364. [Online].
Available:
http://eurosys2013.tudos.org/wp-content/uploads/2013/paper/Schwarzkopf.pdf.

[11] Docker, Docker swarms, https://docs.docker.com/engine/swarm/.

30

 http://kubernetes.io/
https://aws.amazon.com/lambda/
https://github.com/delimitrou/DeathStarBench
https://github.com/nfnt/resize
https://www.flux.utah.edu/paper/duplyakin-atc19
http://eurosys2013.tudos.org/wp-content/uploads/2013/paper/Schwarzkopf.pdf
https://docs.docker.com/engine/swarm/

[12] D. Merkel et al., “Docker: Lightweight Linux containers for consistent development
and deployment,” Linux j, vol. 239, no. 2, p. 2, 2014.

[13] E. Keller and J. Rexford, “The "Platform as a Service" model for networking,”
INM/WREN, vol. 10, pp. 95–108, 2010.

[14] M. Shahrad, R. Fonseca, I. Goiri, G. Chaudhry, P. Batum, J. Cooke, E. Laureano,
C. Tresness, M. Russinovich, and R. Bianchini, “Serverless in the wild: Characterizing
and optimizing the serverless workload at a large cloud provider,” in 2020 USENIX
Annual Technical Conference, USENIX ATC, 2020, pp. 205–218.

[15] A. Agache, M. Brooker, A. Iordache, A. Liguori, R. Neugebauer, P. Piwonka, and
D. Popa, “Firecracker: Lightweight virtualization for serverless applications,” in 17th
USENIX Symposium on Networked Systems Design and Implementation, NSDI 2020,
Santa Clara, CA, USA, February 25-27, 2020, 2020, pp. 419–434.

[16] S. Fouladi, R. S. Wahby, B. Shacklett, K. V. Balasubramaniam, W. Zeng,
R. Bhalerao, A. Sivaraman, G. Porter, and K. Winstein, “Encoding, fast and slow:
Low-latency video processing using thousands of tiny threads,” in 14th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 17), Boston,
MA: USENIX Association, Mar. 2017, pp. 363–376, isbn: 978-1-931971-37-9.
[Online]. Available:
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/fouladi.

[17] S. Fouladi, F. Romero, D. Iter, Q. Li, S. Chatterjee, C. Kozyrakis, M. Zaharia, and
K. Winstein, “From laptop to lambda: Outsourcing everyday jobs to thousands of
transient functional containers,” in Proceedings of the 2019 USENIX Conference on
Usenix Annual Technical Conference, ser. USENIX ATC ’19, Renton, WA, USA:
USENIX Association, 2019, pp. 475–488, isbn: 9781939133038.

[18] M. Perron, R. Castro Fernandez, D. DeWitt, and S. Madden, “Starling: A scalable
query engine on cloud functions,” ser. SIGMOD ’20, Portland, OR, USA: Association
for Computing Machinery, 2020, pp. 131–141, isbn: 9781450367356. doi:
10.1145/3318464.3380609. [Online]. Available:
https://doi.org/10.1145/3318464.3380609.

[19] Q. Pu, S. Venkataraman, and I. Stoica, “Shuffling, fast and slow: Scalable analytics
on serverless infrastructure,” in 16th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 19), Boston, MA: USENIX Association, Feb.
2019, pp. 193–206, isbn: 978-1-931971-49-2. [Online]. Available:
https://www.usenix.org/conference/nsdi19/presentation/pu.

[20] S. Shillaker and P. Pietzuch, “Faasm: Lightweight isolation for efficient stateful
serverless computing,” in 2020 USENIX Annual Technical Conference (USENIX
ATC 20), USENIX Association, Jul. 2020, pp. 419–433, isbn: 978-1-939133-14-4.
[Online]. Available: https://www.usenix.org/conference/atc20/presentation/shillaker.

31

https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/fouladi
https://doi.org/10.1145/3318464.3380609
https://doi.org/10.1145/3318464.3380609
https://www.usenix.org/conference/nsdi19/presentation/pu
https://www.usenix.org/conference/atc20/presentation/shillaker

[21] J. Stojkovic, T. Xu, H. Franke, and J. Torrellas, “Mxfaas: Resource sharing in
serverless environments for parallelism and efficiency,” in Proceedings of the 50th
Annual International Symposium on Computer Architecture, ser. ISCA ’23, Orlando,
FL, USA: Association for Computing Machinery, 2023. doi:
10.1145/3579371.3589069. [Online]. Available:
https://doi.org/10.1145/3579371.3589069.

[22] S. Bykov, A. Geller, G. Kliot, J. R. Larus, R. Pandya, and J. Thelin, “Orleans: Cloud
computing for everyone,” in Proceedings of the 2nd ACM Symposium on Cloud
Computing, ser. SOCC ’11, Cascais, Portugal: Association for Computing Machinery,
2011, isbn: 9781450309769. doi: 10.1145/2038916.2038932. [Online]. Available:
https://doi.org/10.1145/2038916.2038932.

[23] P. Moritz, R. Nishihara, S. Wang, et al., “Ray: A distributed framework for emerging
AI applications,” in 13th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18), Carlsbad, CA: USENIX Association, Oct. 2018,
pp. 561–577, isbn: 978-1-939133-08-3. [Online]. Available:
https://www.usenix.org/conference/osdi18/presentation/moritz.

[24] Cloudflare, Cloudflare workers, https://workers.cloudflare.com/.

[25] Google, “The Go Programming Language,” https://golang.org/.

[26] N. Brown, Control groups series, https://lwn.net/Articles/604609/, Jul. 2014.

[27] Linux.Org, Fixing sched_idle, https://lwn.net/Articles/805317/.

[28] Docker, Docker, https://www.docker.com/.

[29] DeathStartBench, Social network benchmark,
https://github.com/delimitrou/DeathStarBench/tree/master/socialNetwork.

[30] Google, gRPC, https:https://grpc.io/.

[31] Google, Protobuf, https://developers.google.com/protocol-buffers.

[32] A. Danial, Cloc: Count line of code, https://github.com/AlDanial/cloc.

[33] F. Minna, A. Blaise, F. Rebecchi, B. Chandrasekaran, and F. Massacci,
“Understanding the security implications of kubernetes networking,” IEEE Security
& Privacy, vol. 19, no. 5, pp. 46–56, 2021. doi: 10.1109/MSEC.2021.3094726.

32

https://doi.org/10.1145/3579371.3589069
https://doi.org/10.1145/3579371.3589069
https://doi.org/10.1145/2038916.2038932
https://doi.org/10.1145/2038916.2038932
https://www.usenix.org/conference/osdi18/presentation/moritz
https://workers.cloudflare.com/
https://golang.org/
https://lwn.net/Articles/604609/
https://lwn.net/Articles/805317/
https://www.docker.com/
https://github.com/delimitrou/DeathStarBench/tree/master/socialNetwork
https: https://grpc.io/
https://developers.google.com/protocol-buffers
https://github.com/AlDanial/cloc
https://doi.org/10.1109/MSEC.2021.3094726

	Title page
	Abstract
	Acknowledgments
	Biographical Sketch
	Table of Contents
	List of Figures
	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Related Work

	2 SigmaOS Design and Implementation
	2.1 Design of procs and realms
	2.2 SigmaOS Kernel
	2.3 SigmaOS Implementation

	3 Applications
	3.1 A Microservice-based Social Network
	3.2 Serverless Image Resizing

	4 Evaluation
	4.1 Evaluation Questions
	4.2 Programmability
	4.3 Start Time
	4.4 Single Application Performance
	4.5 Multi-Application Performance

	5 Conclusion
	A SigmaOS APIs
	References

