
Improving Web Site Security with Data Flow

Management

by

Alexander Siumann Yip

S.B., Computer Science and Engineering (2001)
M.Eng., Electrical Engineering and Computer Science (2002)

Massachusetts Institute of Technology

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2009

c© Massachusetts Institute of Technology 2009. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

August 21, 2009

Certified by. .
Robert T. Morris

Associate Professor
Thesis Supervisor

Certified by. .
Nickolai Zeldovich

Assistant Professor
Thesis Supervisor

Accepted by .
Terry P. Orlando

Chair, Department Committee on Graduate Students

2

Improving Web Site Security with Data Flow Management
by

Alexander Siumann Yip

Submitted to the Department of Electrical Engineering and Computer Science
on August 21, 2009, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Computer Science

Abstract

This dissertation describes two systems, Resin and BFlow, whose goal is to help
Web developers build more secure Web sites. Resin and BFlow use data flow
management to help reduce the security risks of using buggy or malicious code. Resin
provides programmers with language-level mechanisms to track and manage the flow
of data within the server. These mechanisms make it easy for programmers to catch
server-side data flow bugs that result in security vulnerabilities, and prevent these
bugs from being exploited. BFlow is a system that adds information flow control,
a restrictive form of data flow management, both to the Web browser and to the
interface between a browser and a server. BFlow makes it possible for a Web site
to combine confidential data with untrusted JavaScript in its Web pages, without
risking leaks of that data.

This work makes a number of contributions. Resin introduces the idea of a
data flow assertion and demonstrates how to build them using three language-level
mechanisms, policy objects, data tracking, and filter objects. We built prototype im-
plementations of Resin in both the PHP and Python runtimes. We adapt seven real
off-the-shelf applications and implement 11 different security policies in Resin which
thwart at least 27 real security vulnerabilities. BFlow introduces an information
flow control model that fits the JavaScript communication mechanisms, and a sys-
tem that maps that model to JavaScript’s existing isolation system. Together, these
techniques allow untrusted JavaScript to read, compute with, and display confidential
data without the risk of leaking that data, yet requires only minor changes to existing
software. We built a prototype of the BFlow system and three different applica-
tions including a social networking application, a novel shared-data Web platform,
and BFlogger, a third-party JavaScript platform similar to that of Blogger.com. We
ported several untrusted JavaScript extensions from Blogger.com to BFlogger, and
show that the extensions cannot leak data as they can in Blogger.com.

Thesis Supervisor: Robert T. Morris
Title: Associate Professor

Thesis Supervisor: Nickolai Zeldovich
Title: Assistant Professor

3

4

Published Materials

Portions of Chapter 2 will appear in the publication [87]: Alexander Yip, Xi Wang,
Nickolai Zeldovich, and M. Frans Kaashoek. Improving application security with data
flow assertions. In Proceedings of the 22nd ACM Symposium on Operating Systems
Principles (SOSP), Big Sky, MT, USA, October 2009.

Portions of Chapter 3 appeared in the publication [86]: Alexander Yip, Neha Narula,
Maxwell Krohn, and Robert Morris. Privacy-preserving browser-side scripting with
BFlow. In Proceedings of the 4th ACM SIGOPS/EuroSys European Conference on
Computer Systems, pages 233–246, Nuremberg, Germany, March 2009.

5

6

Acknowledgments

Many people contributed to the completion of this dissertation, including colleagues
in PDOS and the systems community at MIT’s CSAIL, as well as outside of the lab, at
home and on campus. Although I cannot list them all, I will attempt to acknowledge
these people here.

My advisers, both Robert Morris and Nickolai Zeldovich, were instrumental to this
work. They taught me how to do research, think critically, be a graduate student, and
teach effectively. Frans Kaashoek, Eddie Kohler, and Barbara Liskov also provided
invaluable advice and guidance along the way.

My coauthors also contributed to this dissertation. Xi Wang made substantial
contributions to the design and evaluation of Resin, including new data flow asser-
tions and performance enhancements, as well as the text in Chapter 2. Neha Narula
made major contributions to the design and evaluation of BFlow, in addition to
the text in Chapter 3. Maxwell Krohn also contributed to the design of BFlow
and the earlier work in WikiCode and W5. Micah Brodsky, Petros Efstathopoulos,
Steve VanDeBogart, and Michael Walfish also contributed to BFlow through their
contributions to WikiCode and W5.

Simply spending time in PDOS had an impact on me and this work. Sharing
an office with Thomer M. Gil, Chris Lesniewski-Laas, Jinyang Li, Athicha Muthi-
tacharoen, Jacob Strauss, and Jayashree Subramanian has been both entertaining
and enlightening. Eating lunch with the likes of Silas Boyd-Wickizer, Benjie Chen,
Russ Cox, Frank Dabek, Alex Pesterev, Jeremy Stribling, and company had a similar
effect.

Lastly, this work would have never been completed without the consistent sup-
port and encouragement from my friends and family throughout the graduate school
process. My parents, Laura Yip, Michelle Yip, Seanna Kim, and all my friends share
credit for this work.

7

8

Contents

1 Introduction 17
1.1 Resin . 17
1.2 BFlow . 18
1.3 Contributions . 19

1.3.1 Resin . 19
1.3.2 BFlow . 19

1.4 Organization . 20

2 Resin 21
2.1 Introduction . 21
2.2 Goals and Examples . 23

2.2.1 Threat Model . 26
2.3 Design . 27

2.3.1 Design Overview . 27
2.3.2 Filter Objects . 29
2.3.3 Policy Objects . 32
2.3.4 Data Tracking . 33

2.4 Implementation . 35
2.5 Applying Resin . 36

2.5.1 Access Control Checks . 36
2.5.2 Server-Side Script Injection 38
2.5.3 SQL Injection and Cross-Site Scripting 39
2.5.4 Other Attack Vectors . 40
2.5.5 Application Integration . 40

2.6 Security Evaluation . 41
2.6.1 Programmer Effort . 41
2.6.2 Preventing Vulnerabilities . 43
2.6.3 Generality . 44

2.7 Performance Evaluation . 45
2.7.1 Application Performance . 46
2.7.2 Microbenchmarks . 46

2.8 Deployment . 48
2.9 Limitations and Future Work . 48

2.9.1 Data Flow Assertion Model 48
2.9.2 Language Runtimes . 49

9

2.9.3 Applications . 50
2.10 Related Work . 50

2.10.1 Policy Specification . 50
2.10.2 Data Tracking . 52

2.11 Summary . 53

3 BFlow 55
3.1 Introduction . 55
3.2 Background: JavaScript . 57
3.3 Challenges . 58

3.3.1 Threat Model and Security . 58
3.3.2 Flexibility and Adoption . 60

3.4 Design . 60
3.4.1 Information Flow Control . 61
3.4.2 Protection Zones . 63
3.4.3 Controlling Intra-browser Communication 64
3.4.4 Controlling Browser-Server Communication 66

3.5 Visible Model . 67
3.5.1 Developer Visible Model . 68
3.5.2 Users Visible Model . 70

3.6 Implementation . 70
3.6.1 Client Implementation . 70
3.6.2 User Authentication . 71
3.6.3 Server Implementation . 72
3.6.4 Server Storage . 72

3.7 Applications . 73
3.7.1 BF-Blogger . 73
3.7.2 BF-Socialnet . 74
3.7.3 W5 . 75

3.8 Evaluation . 78
3.8.1 Security . 78
3.8.2 Adoption . 79

3.9 Deployment . 81
3.10 Limitations and Future Work . 81

3.10.1 Information Flow Control . 81
3.10.2 User Interface and Understanding Labels 82
3.10.3 Applications . 82
3.10.4 Out of Scope Attacks . 83
3.10.5 Design Variations . 83

3.11 Related Work . 84
3.11.1 Discretionary Access Control 84
3.11.2 Mandatory Access Control . 85

3.12 Summary . 86

4 Integrating Resin and BFlow 87

10

5 Conclusion 89
5.1 Resin . 89
5.2 BFlow . 89
5.3 Summary . 90

11

12

List of Figures

2-1 Overview of the HotCRP password data flow assertion. 27
2-2 Simplified PHP code for defining the HotCRP password policy class

and annotating the password data. This policy only allows a password
to be disclosed to the user’s own email address or to the program chair. 28

2-3 Python code for the default filter for sockets. 31
2-4 Saving persistent policies to a SQL database for HotCRP passwords.

Uses symbols from Figure 2-1. 34
2-5 Python code for a data flow assertion that checks read access control in

MoinMoin. The process client and update body functions are simplified
versions of MoinMoin equivalents. 37

2-6 Simplified PHP code for a data flow assertion that catches server-side
script injection. In the actual implementation, filter read verifies that
each character in $buf has the CodeApproval policy. 38

3-1 Malicious JavaScript reads confidential data (a) via the DOM and (b)
by exploiting vulnerable JavaScript. 59

3-2 After reading confidential data, the malicious JavaScript leaks confi-
dential data to an adversary via the (a) adversary’s server (b) Web
site’s public data. 59

3-3 BFlow overview. Untrusted protection zones are shaded. 61
3-4 Web page frame hierarchy with zones and labels. Each box is a frame. 65
3-5 W5 overview showing three applications. 76

13

14

List of Tables

2.1 Top CVE security vulnerabilities of 2008 [71]. 23
2.2 Top Web site vulnerabilities of 2007 [82]. 24
2.3 The Resin API. A::B(args) denotes method B of an object of type A.

Not shown is the API used by the programmer to specify and access
filter objects for different data flow boundaries. 30

2.4 Results from using Resin assertions to prevent previously-known and
newly discovered vulnerabilities in several Web applications. 42

2.5 The average time taken to execute different operations in an unmod-
ified PHP interpreter, a Resin PHP interpreter without any policy,
and a Resin PHP interpreter with an empty policy. 47

3.1 Default IFC communication rules and declassification exceptions; zones
S and R are untrusted. The prototype implements these rules for
communication through postMessageBF, the FID channel and HTTP
requests, but it is more restrictive than these rules for shared DOM
variables and cookie communication across zones. 62

3.2 Lines of code (LOC) changed to port existing widgets to BF-Blogger
and whether they see confidential data. 80

15

16

Chapter 1

Introduction

This dissertation addresses two security issues that affect Web sites today. The first
issue is that Web sites are often vulnerable to attack because the Web site software
has bugs that result in faulty data flow. A faulty data flow occurs when a programmer
has an implicit invariant of how data should flow within the application, but then
accidentally uses the data in a way that violates that invariant. For example, a
programmer might want to keep a user’s password confidential but accidentally send
the password to another user, or the application might take untrusted user input
and accidentally interpret it as code. Resin [87] is a programming tool that helps
programmers avoid these and other kinds of data flow bugs.

The second issue is that Web sites have begun to run third-party code with access
to confidential user data, which can result in data leakage. BFlow [86] is a system
that allows Web sites to run third-party code with confidential data without the risk
of leaking that data. This chapter introduces these two systems.

1.1 Resin

Software developers often have a plan for correct data flow in their applications. For
example, in order for a Web site to avoid SQL injection attacks, user input must
flow through a sanitization function before the application can use the data in a SQL
query. Today, programmers usually implement their data flow plans implicitly in
their application code; for example to address SQL injection, programmers often try
to call the sanitization function in all the correct places, on all the data flow paths.
Unfortunately, there are often many such places, and it is easy to miss some, which
results in vulnerabilities.

Resin is a programming tool that allows programmers to implement an implicit
data flow plan explicitly in the form of a high-level data flow assertion that applies to
the entire application. Resin verifies that the application abides by the explicit data
flow plan throughout the application, even in places where the programmer might
have accidentally violated the plan.

The main challenges facing Resin are knowing when to verify a data flow assertion,
providing a convenient way for programmers to express data flow assertions, and

17

designing mechanisms that make it possible for many different assertions to coexist
in the same application without interfering with each other.

Resin addresses these challenges using three ideas: policy objects, data tracking,
and filter objects. Programmers explicitly annotate data, such as strings, with policy
objects, that help the assertion code understand the data and decide what kind of
assertions apply to the data. The Resin runtime then tracks these policy objects as
the data propagates through the application. When the data is about to leave the
control of Resin, such as being sent over the network, Resin invokes filter objects
to check the data flow assertions with assistance from the data’s policy objects.

We implemented Resin in two different language runtimes, Python and PHP. We
then evaluate Resin by implementing a wide range of data flow assertions in real
Web applications. The results show that assertions are short, on the order of tens of
lines of code, and require changes in only a few places in the application code. They
also show that Resin policies are effective at preventing many vulnerabilities such as
SQL injection, cross-site scripting, directory traversal, missing access control checks,
and server-side script injection.

1.2 BFlow

In addition to server-side bugs causing vulnerabilities, Web site developers have begun
facing vulnerabilities due to third-party scripts running in the browser. In particular,
programmers have begun to incorporate JavaScript written by untrusted program-
mers into their Web sites to expand and improve functionality. However, an increasing
number of Web sites manage users’ confidential data, and when a Web site combines
untrusted JavaScript with confidential user data, the site opens itself to attack. The
untrusted JavaScript can leak that confidential data to adversaries by sending the
data via other JavaScript running in the browser, or by sending the data in a request
to a Web server.

Supporting untrusted JavaScript with confidential data is significantly different
from the goals of Resin since a Web site that incorporates untrusted JavaScript will
likely run malicious JavaScript code, whereas Resin only helps a programmer secure
trusted code.

BFlow is a system that adds information flow control (IFC) [18] to Web browsers
and the browser-server interface. BFlow tracks confidential data as it flows from the
server to the browser, within the browser, and from the browser back to the server.
Since BFlow knows whether untrusted JavaScript may have read confidential data,
BFlow can restrict the JavaScript’s communication channels so that the JavaScript
cannot leak that data to someone who lacks permission to read it. BFlow makes it
possible to run untrusted JavaScript in the browser, with access to confidential data,
without the risk of leaking that data.

There are two main challenges in applying IFC to Web browser scripts. The first,
is fitting IFC into the Web environment; in a Web system, who are the principals,
who should configure the security policies, and how does data from different principals
interact? Also, at what granularity should the system apply IFC, can the system pre-

18

serve the special data flow channels that the Web architecture assumes exist between
browser scripts, and between a script and a Web server? The second main challenge
is to support the large amount of existing software including browser-side scripts and
the browsers themselves.

To address the first challenge, BFlow gives each Web site control over its own
data. When a user inserts confidential data into a Web site, the Web site is responsible
for that data, and site’s programmers control who may receive the data according to
the Web site’s disclosure policy. If a Web site discloses data to another Web site,
then the recipient site will have the ability to further disclose the data to any other
site or user. To address the second challenge, BFlow overlays its IFC mechanisms
onto existing JavaScript abstractions such as browser frames and server origins. For
example, BFlow performs IFC at the granularity of protection zones which are sets
of HTML frames. BFlow then uses the browser’s existing isolation mechanisms to
implement zone isolation to avoid modifying the browser to add browser support for
BFlow.

We implemented a BFlow prototype as a reference monitor running in the
browser and a number of minor changes to the browser-server interface. The pro-
totype reference monitor is a browser extension for an off-the-shelf browser. This
implementation requires no modifications to the base browser or the JavaScript in-
terpreter. We also implemented three Web applications that demonstrate the range
of functionality that untrusted JavaScript can have while running in BFlow. These
applications include: a blog that supports existing third-party extensions; a social net-
working site that implements common application features in untrusted JavaScript;
and a multi-application Web platform that permits sharing user data between appli-
cations, yet preserves the privacy of user data.

1.3 Contributions

This dissertation makes a number of contributions.

1.3.1 Resin

Resin’s contributions are the idea of a data flow assertion, and a technique for im-
plementing data flow assertions using filter objects, policy objects, and data tracking.
Experiments with several real applications further show that data flow assertions
are concise, effective at preventing many security vulnerabilities, and incrementally
deployable in existing applications.

1.3.2 BFlow

BFlow’s contributions are a set of information flow control rules that govern the
JavaScript communication mechanisms, a mapping from BFlow’s IFC rules to the
browser’s existing JavaScript isolation system, and an abstraction called a protection
zone that eases the deployment of existing JavaScript into BFlow. Together, these

19

techniques allow untrusted JavaScript to read, compute with, and display confidential
data without the risk of leaking that data. Experiments with porting existing third-
party JavaScript to BFlow, and building new applications in BFlow show that it
is possible for existing code to run in the BFlow environment with few changes,
and that programmers can build applications in BFlow that might have been too
insecure to build with existing techniques.

1.4 Organization

The remainder of this dissertation is organized as follows: Chapter 2 describes the
Resin system, and Chapter 3 describes the BFlow system. Chapter 4 provides some
thoughts about future research directions. Finally, Chapter 5 concludes.

20

Chapter 2

Resin

Resin is a new language runtime that helps prevent security vulnerabilities, by al-
lowing programmers to specify data flow assertions. Resin provides policy objects,
which programmers use to specify assertion code and metadata; data tracking, which
allows programmers to associate assertions with application data, and to keep track
of assertions as the data flow through the application; and filter objects, which pro-
grammers use to define data flow boundaries at which assertions are checked. Resin’s
runtime checks data flow assertions by propagating policy objects along with data, as
that data moves through the application, and then invoking filter objects when data
crosses a data flow boundary, such as when writing data to the network or a file.

Using Resin, Web application programmers can prevent a range of problems,
from SQL injection and cross-site scripting, to inadvertent password disclosure and
missing access control checks. Adding a Resin assertion to an application requires
few changes to the existing application code, and an assertion can reuse existing
code and data structures. For instance, 23 lines of code detect and prevent three
previously-unknown missing access control vulnerabilities in phpBB, a popular Web
forum application. Other assertions comprising tens of lines of code prevent a range
of vulnerabilities in Python and PHP applications. A prototype of Resin incurs a
33% CPU overhead running the HotCRP conference management application.

2.1 Introduction

Software developers often have a plan for correct data flow within their applications.
For example, a user u’s password may flow out of a Web site only via an email to user
u’s email address. As another example, user inputs must always flow through a sani-
tizing function before flowing into a SQL query or HTML, to avoid SQL injection or
cross-site scripting vulnerabilities. Unfortunately, today these plans are implemented
implicitly: programmers try to insert code in all the appropriate places to ensure
correct flow, but it is easy to miss some, which can lead to exploits. For example, one
popular Web application, phpMyAdmin [65], requires sanitizing user input in 1,409
places. Not surprisingly, phpMyAdmin has suffered 60 vulnerabilities because some
of these calls were forgotten [71].

21

This chapter presents Resin, a system that allows programmers to make their
plan for correct data flow explicit using data flow assertions. Programmers can write
a data flow assertion in one place to capture the application’s high-level data flow
invariant, and Resin checks the assertion in all relevant places, even places where the
programmer might have otherwise forgotten to check.

Resin operates within a language runtime, such as the Python or PHP interpreter.
Resin tracks application data as it flows through the application, and checks data
flow assertions on every executed path. Resin uses runtime mechanisms because they
can capture dynamic properties, like user-defined access control lists, while integration
with the language allows programmers to reuse the application’s existing code in an
assertion. Resin is designed to help programmers gain confidence in the correctness
of their application, and is not designed to handle malicious code.

A key challenge facing Resin is knowing when to verify a data flow assertion.
Consider the assertion that a user’s password can flow only to the user herself. There
are many different ways that an adversary might violate this assertion, and extract
someone’s password from the system. The adversary might trick the application into
emailing the password; the adversary might use a SQL injection attack to query the
passwords from the database; or the adversary might fetch the password file from the
server using a directory traversal attack. Resin needs to cover every one of these
paths to prevent password disclosure.

A second challenge is to design a generic mechanism that makes it easy to express
data flow assertions, including common assertions like cross-site scripting avoidance,
as well as application-specific assertions. For example, HotCRP [44], a conference
management application, has its own data flow rules relating to password disclosure
and reviewer conflicts of interest, among others. Can a single assertion API allow for
succinct assertions for cross-site scripting avoidance as well as HotCRP’s unique data
flow rules?

The final challenge is to make data flow assertions coexist with each other and
with the application code. A single application may have many different data flow
assertions, and it must be easy to add an additional assertion if a new data flow rule
arises, without having to change existing assertions. Moreover, applications are often
written by many different programmers. One programmer may work on one part of
the application and lack understanding of the application’s overall data flow plan.
Resin should be able to enforce data flow assertions without all the programmers
being aware of the assertions.

Resin addresses these challenges using three ideas: policy objects, data tracking,
and filter objects. Programmers explicitly annotate data, such as strings, with policy
objects, which encapsulate the assertion functionality that is specific to that data.
Programmers write policy objects in the same language that the rest of the application
is written in, and can reuse existing code and data structures, which simplifies writing
application-specific assertions. The Resin runtime then tracks these policy objects
as the data propagates through the application. When the data is about to leave the
control of Resin, such as being sent over the network, Resin invokes filter objects
to check the data flow assertions with assistance from the data’s policy objects.

22

Vulnerability Count Percentage
SQL injection 1176 20.4%

Cross-site scripting 805 14.0%
Denial of service 661 11.5%
Buffer overflow 550 9.5%

Directory traversal 379 6.6%
Server-side script injection 287 5.0%

Missing access checks 263 4.6%
Other vulnerabilities 1647 28.6%

Total 5768 100%

Table 2.1: Top CVE security vulnerabilities of 2008 [71].

We evaluate Resin in the context of application security by showing how these
three mechanisms can prevent a wide range of vulnerabilities in real Web applications,
while requiring programmers to write only tens of lines of code. One application, the
MoinMoin wiki [56], required only 8 lines of code to catch the same access control
bugs that required 2,000 lines in Flume [46], although Flume provides stronger guar-
antees. HotCRP can use Resin to uphold its data flow rules, by adding data flow
assertions that control who may read a paper’s reviews, and to whom HotCRP can
email a password reminder. Data flow assertions also help prevent a range of other
previously-unknown vulnerabilities in Python and PHP Web applications. A proto-
type Resin runtime for PHP has acceptable performance overhead, amounting to
33% for HotCRP.

The contributions of this work are the idea of a data flow assertion, and a tech-
nique for implementing data flow assertions using filter objects, policy objects, and
data tracking. Experiments with several real applications further show that data
flow assertions are concise, effective at preventing many security vulnerabilities, and
incrementally deployable in existing applications.

The rest of the chapter is organized as follows. The next section discusses the
specific goals and motivation for Resin. Section 2.3 presents the design of the Resin
runtime, and Section 2.4 describes our implementation. Section 2.5 illustrates how
Resin prevents a range of security vulnerabilities. Sections 2.6 and 2.7 present our
evaluation of Resin’s ease of use, effectiveness, and performance. We discuss Resin’s
limitations in Section 2.9. Section 2.10 covers related work, and Section 2.11 summa-
rizes.

2.2 Goals and Examples

Resin’s main goal is to help programmers avoid security vulnerabilities by treating
exploits as data flow violations, and then using data flow assertions to detect these
violations. This section explains how faulty data flows cause vulnerabilities, and how
data flow assertions can prevent those vulnerabilities.

23

Vulnerable sites
Vulnerability among those surveyed

Cross-site scripting 31.5%
Information leakage 23.3%

Predictable resource location 10.2%
SQL injection 7.9%

Insufficient access control 1.5%
HTTP response splitting 0.8%

Table 2.2: Top Web site vulnerabilities of 2007 [82].

SQL Injection and Cross-Site Scripting

SQL injection and cross-site scripting vulnerabilities are common and can affect al-
most any Web application. Together, they account for over a third of all reported
security vulnerabilities in 2008, as seen in Table 2.1. These vulnerabilities result
from user input data flowing into a SQL query string or HTML without first flowing
through their respective sanitization functions. To avoid these vulnerabilities today,
programmers insert calls to the correct sanitization function on every single path on
which user input can flow to SQL or HTML. In practice this is difficult to accom-
plish because there are many data flow paths to keep track of, and some of them are
non-intuitive. For example, in one cross-site scripting vulnerability, phpBB queried a
malicious whois server, and then incorporated the response into HTML without first
sanitizing the response. A survey of Web applications [82] summarized in Table 2.2
illustrates how common these bugs are with cross-site scripting affecting more than
31% of applications, and SQL injection affecting almost 8%.

If there were a tool that could enforce a data flow assertion on an entire application,
a programmer could write an assertion to catch these bugs and prevent an adversary
from exploiting them. For example, an assertion to prevent SQL injection exploits
would verify that:

Data Flow Assertion 1 Any user input data must flow through a sanitization func-
tion before it flows into a SQL query.

Resin aims to be such a tool.

Directory Traversal

Directory traversal is another common vulnerability that accounts for 6.6% of the
vulnerabilities in Table 2.1. In a directory traversal attack, a vulnerable application
allows the user to enter a file name, but neglects to limit the directories available to
the user. To exploit this vulnerability, an adversary typically inserts the “..” string as
part of the file name which allows the adversary to gain unauthorized access to read,
or write files in the server’s file system. These exploits can be viewed as faulty data
flows. If the adversary reads a file without the proper authorization, the file’s data
is incorrectly flowing to the adversary. If the adversary writes to a file without the
proper authorization, the adversary is causing an invalid flow into the file. Data flow

24

assertions can address directory traversal vulnerabilities by enforcing data flow rules
on the use of files. For example, a programmer could encode the following directory
traversal assertion to protect against invalid writes:

Data Flow Assertion 2 No data may flow into directory d unless the authenticated
user has write permission for d.

Server-Side Script Injection

Server-side script injection accounts for 5% of the vulnerabilities reported in Table 2.1.
To exploit these vulnerabilities, an adversary uploads code to the server and then fools
the application into running that code. For instance, many PHP applications load
script code for different visual themes at runtime, by having the user specify the
file name for their desired theme. An adversary can exploit this by uploading a file
with the desired code onto the server (many applications allow uploading images or
attachments), and then supplying the name of that file as the theme to load.

Even if the application is careful to not include user-supplied file names, a more
subtle problem can occur. If an adversary uploads a file with a .php extension, the
Web server may allow the adversary to directly execute that file’s contents by simply
issuing an HTTP request for that file. Avoiding such problems requires coordination
between many parts of the application, and even the Web server, to understand which
file extensions are “dangerous”. This attack can be viewed as a faulty data flow and
could be addressed by the following data flow assertion:

Data Flow Assertion 3 The interpreter may not interpret any user-supplied code.

Access Control

Insufficient access control can also be viewed as a data flow violation. These vulner-
abilities allow an adversary to read data without proper authorization and make up
4.6% of the vulnerabilities reported in 2008. For example, a missing access control
check in MoinMoin wiki allowed a user to read any wiki page, even if the page’s access
control list (ACL) did not permit the user to read that page [79]. Like the previous
vulnerabilities, this data leak can be viewed as a data flow violation; the wiki page is
flowing to a user who lacks permission to receive the page. This vulnerability could
be addressed with the data flow assertion:

Data Flow Assertion 4 Wiki page p may flow out of the system only to a user on
p’s ACL.

Insufficient access control is particularly challenging to address because access
control rules are often unique to the application. For example, MoinMoin’s ACL rules
differ from HotCRP’s access control rules, which ensure that only paper authors and
program committee (PC) members may read paper reviews, and that PC members
may not view a paper’s authors if the author list is anonymous. Ideally, a data flow
assertion could take advantage of the code and data structures that an application
already uses to implement its access control checks.

25

Password Disclosure

Another example of a specific access control vulnerability is a password disclosure
vulnerability that was discovered in HotCRP; we use this bug as a running example
for the rest of this chapter. This bug was a result of two separate features, as follows.

First, a HotCRP user can ask HotCRP to send a password reminder email to
the user’s email address, in case the user forgets the password. HotCRP makes sure
to send the email only to the email address of the account holder as stored in the
server. The second feature is an email preview mode, in which the site administra-
tor configures HotCRP to display email messages in the browser, rather than send
them via email. In this vulnerability, an adversary asks HotCRP to send a password
reminder for another HotCRP user (the victim) while HotCRP is in email preview
mode. HotCRP will display the content of the password reminder email in the adver-
sary’s browser, instead of sending the password to that victim’s email address, thus
revealing the victim’s password to the adversary.

A data flow assertion could have prevented this vulnerability because the assertion
would have caught the invalid password flow despite the unexpected combination of
the password reminder and email preview mode. The assertion in this case would
have been:

Data Flow Assertion 5 User u’s password may leave the system only via email to
u’s email address, or to the program chair.

2.2.1 Threat Model

As we have shown, many vulnerabilities in today’s applications can be thought of as
programming errors that allow faulty data flows. Adversaries exploit these faulty data
flows to bypass the application’s security plan. Resin aims to prevent adversaries
from exploiting these faulty data flows by allowing programmers to explicitly specify
data flow assertions, which are then checked at runtime in all places in the application.

We expect that programmers would specify data flow assertions to prevent well-
known vulnerabilities shown in Table 2.1, as well as existing application-specific rules,
such as HotCRP’s rules for password disclosure or reviewer conflicts of interest. As
programmers write new code, they can use data flow assertions to make sure their
data is properly handled in code written by other developers, without having to look
at the entire code base. Finally, as new problems are discovered, either by attackers
or by programmers auditing the code, data flow assertions can be used to fix an entire
class of vulnerabilities, rather than just a specific instance of the bug.

Resin treats the entire language runtime, and application code, as part of the
trusted computing base. Resin assumes the application code is not malicious, and
does not prevent an adversary from compromising the underlying language runtime
or the OS. In general, a buffer overflow attack can compromise a language runtime,
but buffer overflows are less of an issue for Resin because code written in languages
like PHP and Python is not susceptible to buffer overflows.

26

Figure 2-1: Overview of the HotCRP password data flow assertion.

2.3 Design

Many of the vulnerabilities described in Section 2.2 can be addressed with data flow
assertions, but the design of such an assertion system requires solutions to a number
of challenges. First, the system must enforce assertions on the many communication
channels available to the application. Second, the system must provide a convenient
API in which programmers can express many different types of data flow assertions.
Finally, the system must handle several assertions in a single application gracefully;
it should be easy to add new assertions, and doing so should not disrupt existing
assertions. This section describes how Resin addresses these design challenges, be-
ginning with an example of how a data flow assertion prevents the HotCRP password
disclosure vulnerability described in Section 2.2.

2.3.1 Design Overview

To illustrate the high-level design of Resin and what a programmer must do to
implement a data flow assertion, this section describes how a programmer would
implement Data Flow Assertion 5, the HotCRP password assertion, using Resin.
This example does not use all of Resin’s features, but it does show Resin’s main
concepts.

Conceptually, the programmer needs to restrict the flow of passwords. However,
passwords are handled by a number of modules in HotCRP, including the authenti-
cation code and code that formats and sends email messages. Thus, the programmer
must confine passwords by defining a data flow boundary that surrounds the entire
application. Then the programmer allows a password to exit that boundary only if
that password is flowing to the owner via email, or to the program chair. Finally,
the programmer marks the passwords as sensitive so that the boundary can identify
which data contains password information, and writes a small amount of assertion
checking code.

27

class PasswordPolicy extends Policy {

private $email;

function __construct($email) {

$this->email = $email;

}

function export_check($context) {

if ($context[’type’] == ’email’ &&

$context[’email’] == $this->email) return;

global $Me;

if ($context[’type’] == ’http’ &&

$Me->privChair) return;

throw new Exception(’unauthorized disclosure’);

}

}

policy_add($password, new PasswordPolicy(’u@foo.com’));

Figure 2-2: Simplified PHP code for defining the HotCRP password policy class and
annotating the password data. This policy only allows a password to be disclosed to
the user’s own email address or to the program chair.

Resin provides three mechanisms that help the programmer implement such an
assertion (see Figure 2-1):

• Programmers use filter objects to define data flow boundaries. A filter object
interposes on an input/output channel or a function call interface.

• Programmers explicitly annotate sensitive data with policy objects. A policy
object can contain code and metadata for checking assertions.

• Programmers rely on Resin’s runtime to perform data tracking to propagate
policy objects along with sensitive data when the application copies that data
within the system.

Resin by default defines a data flow boundary around the language runtime using
filter objects that cover all I/O channels, including pipes and sockets. By default,
Resin also annotates some of these default filter objects with context metadata that
describes the specific filter object. For example, Resin annotates each filter object
connected to an outgoing email channel with the email’s recipient address. The default
set of filters and contexts defining the boundary are appropriate for the HotCRP
password assertion, so the programmer need not define them manually.

In order for Resin to track the passwords, the programmer must annotate each
password with a policy object, which is a language-level object that contains fields and
methods. In this assertion, a user’s password will have a policy object that contains
a copy of the user’s email address so that the assertion can determine which email
address may receive the password data. When the user first sets their password, the
programmer copies the user’s email address from the current session information into
the password’s policy object.

The programmer also writes the code that checks the assertion, in a method called
export check within the password policy object’s class definition. Figure 2-2 shows
the code the programmer must write to implement this data flow assertion, including
the policy object’s class definition and the code that annotates a password with a

28

policy object. The policy object also shows how an assertion can benefit from the
application’s data structures; this assertion uses an existing flag, $Me->privChair, to
determine whether the current user is the program chair.

Once a password has the appropriate policy object, Resin’s data tracking prop-
agates that policy object along with the password data; when the application copies
or moves the data within the system, the policy goes along with the password data.
For example, after HotCRP composes the email content using the password data, the
email content will also have the password policy annotation (as shown in Figure 2-1).

Resin enforces the assertion by making each filter object call export check on
the policy object of any data that flows through the filter. The filter object passes
its context as an argument to export check to provide details about the specific I/O
channel (e.g., the email’s recipient).

This assertion catches HotCRP’s faulty data flow before it can leak a password.
When HotCRP tries to send the password data over an HTTP connection, the connec-
tion’s filter object invokes the export check method on the password’s policy object.
The export check code observes that HotCRP is incorrectly trying to send the pass-
word over an HTTP connection, and throws an exception which prevents HotCRP
from sending the password to the adversary. This solution works for all disclosure
paths through the code because Resin’s default boundary controls all output chan-
nels; HotCRP cannot reveal the password without traversing a filter object.

This example is just one way to implement the password data flow assertion,
and there may be other ways. For example, the programmer could implement the
assertion checking code in the filter objects rather than the password’s policy object.
However, modifying filter objects is less attractive because the programmer would
need to modify every filter object that a password can traverse. Putting the assertion
code in the policy object allows the programmer to write the assertion code in one
place.

2.3.2 Filter Objects

A filter object, represented by a diamond in Figure 2-1, is a generic interposition
mechanism that application programmers use to create data flow boundaries around
their applications. An application can associate a filter object with a function call
interface, or an I/O channel such as a file handle, socket, or pipe.

Resin aims to support data flow assertions that are specific to an application, so
Resin allows a programmer to implement a filter object as a language-level object
in the same language as the rest of the application. This allows the programmer to
reuse the application’s code and data structures, and allows for better integration
with applications.

When an application sends data across a channel guarded by a filter object, Resin
invokes a method in that filter object with the data as an argument. If the inter-
position point is an I/O channel, Resin will invoke either filter read or filter write;
for function calls, Resin will invoke filter func (see Table 2.3). Filter read and fil-
ter write can check or alter the in-transit data. Filter func can check or alter the
function’s arguments and return value.

29

Function
C

aller
Sem

antics
filter::filter

read(data,
off

set)
R

untim
e

Invoked
w

hen
data

com
es

in
through

a
data

flow
boundary,

and
can

assign
initial

policies
for

data;
e.g.,

by
de-serializing

from
persistent

storage.
filter::filter

w
rite(data,

off
set)

R
untim

e
Invoked

w
hen

data
is

exported
through

a
data

flow
boundary;

typi-
cally

invokes
assertion

checks
or

serializes
policy

ob
jects

to
persistent

storage.
filter::filter

func(args)
R

untim
e

C
hecks

and/or
proxies

a
function

call.
policy::export

check(context)
F
ilter

ob
ject

C
hecks

ifdata
flow

assertion
allow

s
exporting

data,and
throw

s
excep-

tion
ifnot;context

provides
inform

ation
about

the
data

flow
boundary.

policy::m
erge(policy

object
set)

R
untim

e
R

eturns
set

of
policies

(typically
zero

or
one)

that
should

apply
to

m
erging

of
data

tagged
w

ith
this

policy
and

data
tagged

w
ith

pol-
icy

object
set.

policy
add(data,

policy)
P

rogram
m

er
A

dds
policy

to
data’s

policy
set.

policy
rem

ove(data,
policy)

P
rogram

m
er

R
em

oves
policy

from
data’s

policy
set.

policy
get(data)

P
rogram

m
er

R
eturns

set
of

policies
associated

w
ith

data.

T
ab

le
2.3:

T
h
e
R

e
sin

A
P

I.
A

::B
(args)

d
en

otes
m

eth
o
d

B
of

an
ob

ject
of

ty
p
e

A
.
N

ot
sh

ow
n

is
th

e
A

P
I
u
sed

b
y

th
e

p
rogram

m
er

to
sp

ecify
an

d
access

fi
lter

ob
jects

for
d
iff

eren
t

d
ata

fl
ow

b
ou

n
d
aries.

30

class DefaultFilter(Filter):

def __init__(self): self.context = {}

def filter_write(self, buf):

for p in policy_get(buf):

if hasattr(p, ’export_check’):

p.export_check(self.context)

return buf

Figure 2-3: Python code for the default filter for sockets.

For example, in an HTTP splitting attack, the adversary inserts an extra CR-
LF-CR-LF delimiter into the HTTP output to confuse browsers into thinking there
are two HTTP responses. To thwart this type of attack, the application program-
mer could write a filter object that scans for unexpected CR-LF-CR-LF character
sequences, and then attach this filter to the HTTP output channel. As a second ex-
ample, a function that encrypts data is a natural data flow boundary. A programmer
may choose to attach a filter object to the encryption function that removes policy
objects for confidentiality assertions such as the PasswordPolicy from Section 2.3.1.

Default Filter Objects

Resin pre-defines default filter objects on all I/O channels into and out of the run-
time, including sockets, pipes, files, HTTP output, email, SQL, and code import.
Since these default filter objects are at the edge of the runtime, data can flow freely
within the application and the default filters will only check assertions before making
program output visible to the outside world. This boundary should be suitable for
many assertions because it surrounds the entire application. The default boundary
also helps programmers avoid accidentally overlooking an I/O channel, which would
result in an incomplete boundary that would not cover all possible flows.

The default filter objects check the in-transit data for policies, as shown in Fig-
ure 2-3. If a filter finds a policy that has an export check method, the filter invokes the
policy’s export check method. As described in Section 2.3.1, export check typically
checks the assertion and throws an exception if the flow would violate the assertion.

Since the policy’s export check method may need additional information about the
filter’s specific I/O channel or function call to check the assertion, Resin attaches
context information, in the form of a hash table, to some of the default filters as
described in Section 2.3.1. Resin also allows the application to add its own key-value
pairs to the context hash table of default filter objects.

The context key-value pairs are likely specific to the I/O channel or function
call that the filter guards, and the default filter passes the context hash table as an
argument to export check. In the HotCRP example, the context for a sendmail pipe
contains the recipient of the email (as shown in Figure 2-1).

Importing Code

Resin treats the interpreter’s execution of script code as another data flow channel,
with its own filter object. This allows programmers to interpose on all code flow-

31

ing into the interpreter, and ensure that such code came from an approved source.
This can prevent server-side script injection attacks, where an adversary tricks the
interpreter into executing adversary-provided script code.

Write Access Control

In addition to runtime boundaries, Resin also permits an application to place filter
objects on persistent files to control write access, because data tracking alone cannot
prevent modifications. In particular, Resin allows programmers to specify access
control checks for files and directories in a persistent filter object that’s stored in the
extended attributes of a specific file or directory. The runtime automatically invokes
this persistent filter object when data flows into or out of that file, or modifies that
directory (such as creating, deleting, or renaming files). This programmer-specified
filter object can check whether the current user is authorized to access that file or
directory. These persistent filter objects associated with a specific file or directory are
separate from the filter objects associated by default with every file’s I/O channel.

2.3.3 Policy Objects

Like a filter object, a policy object is a language-level object, and can reuse the
application’s existing code and data structures. A policy object can contain fields
and methods that work in concert with filter objects; policy objects are represented
by the rounded rectangles in Figure 2-1.

To work with default filter objects, a policy object should have an export check
method as shown in Table 2.3. As mentioned earlier, default filter objects invoke
export check when data with a policy passes through a filter, so export check is where
programmers implement an assertion check for use with default filters. If the assertion
fails, export check should throw an exception so that Resin can prevent the faulty
data flow.

The main distinction between policy objects and filter objects is that a policy
object is specific to data, and a filter object is specific to a channel. A policy object
would contain data specific metadata and code; for example, the HotCRP password
policy contains the email address of the password’s account holder. A filter object
would contain channel specific metadata; for example, the email filter object contains
the recipient’s email address.

Even though Resin allows programmers to write many different filter and policy
objects, the interface between all filters and policies remains largely the same, if the
application uses export check. This limits the complexity of adding or changing filters
and policies, because each policy object need not know about all possible filter objects,
and each filter object need not know about all possible policy objects (although this
does not preclude the programmer from implementing special cases for certain policy-
filter pairs).

32

2.3.4 Data Tracking

Resin keeps track of policy objects associated with data. The programmer attaches a
policy object to a datum—a primitive data element such as an integer or a character
in a string (although it is common to assign the same policy to all characters in a
string). The Resin runtime then propagates that policy object along with the data,
as the application code moves or copies the data.

To attach a policy object to data, the programmer uses the policy add function
listed in Table 2.3. Since an application may have multiple data flow assertions, a
single datum may have multiple policy objects, all contained in the datum’s policy
set.

Resin propagates policies in a fine grained manner. For example, if an application
concatenates the string “foo” (with policy p1), and “bar” (with policy p2), then in the
resulting string “foobar”, the first three characters will have only policy p1 and the
last three characters will have only p2. If the programmer then takes the first three
characters of the combined string, the resulting substring “foo” will only have policy
p1. Tracking data at the character level minimizes interference between different
data flow assertions, whose data may be combined in the same string, and minimizes
unintended policy propagation, when marshaling and un-marshaling data structures.
For example, in the HotCRP password reminder email message, only the characters
comprising the user’s password have the password policy object. The rest of the string
is not associated with the password policy object, and can potentially be manipulated
and sent over the network without worrying about the password policy (assuming
there are no other policies).

Resin tracks explicit data flows such as variable assignment; most of the bugs we
encountered, including all the bugs described in Sections 2.2 and 2.6, use explicit data
flows. However, some data flows are implicit. One example is a control flow channel,
such as when a value that has a policy object influences a conditional branch, which
then changes the program’s output. Another example of an implicit flow is through
data structure layout; an application can store data in an array using a particular
order. Resin does not track this order information, and a programmer cannot attach
a policy object to the array’s order. These implicit data flows are sometimes surprising
and difficult to understand, and Resin does not track them. If the programmer wants
to specify data flow assertions about such data, the programmer must first make this
data explicit, and only then attach a policy to it.

Persistent Policies

Resin only tracks data flow inside the language runtime, and checks assertions at the
runtime boundary, because it cannot control what happens to the data after it leaves
the runtime. However, many applications store data persistently in file systems and
databases. For example, HotCRP stores user passwords in a SQL database. It can be
inconvenient and error-prone for the programmer to manually save metadata about
the password’s policy object when saving it to the database, and then reconstruct the
policy object when reading the password later.

33

Figure 2-4: Saving persistent policies to a SQL database for HotCRP passwords. Uses
symbols from Figure 2-1.

To help programmers of such applications, Resin transparently tracks data flows
to and from persistent storage. Resin’s default filter objects serialize policy objects
to persistent files and database storage when data is written out, and de-serializes
the policy objects when data is read back into the runtime.

For data going to a file, the file’s default filter object serializes the data’s policy
objects into the file’s extended attributes. Whenever the application reads data from
the file, the filter reads the serialized policy from the file’s extended attributes, and
associates it with the newly-read data. Resin tracks policies for file data at byte-level
granularity, as it does for strings.

Resin also serializes policies for data stored in a SQL database, as shown in
Figure 2-4. Resin accomplishes this by attaching a default filter object to the function
used to issue SQL queries, and using that filter to rewrite queries and results. For
a CREATE TABLE query, the filter adds an additional policy column to store the
serialized policy for each data column. For a query that writes to the database, the
filter augments the query to store the serialized policy of each cell’s value into the
corresponding policy column. Last, for a query that fetches data, the filter augments
the query to fetch the corresponding policy column, and associates each de-serialized
policy object with the corresponding data cell in the resulting set of rows.

Storing policies persistently also helps other programs, such as the Web server,
to check invariants on file data. For example, if an application accidentally stores
passwords in a world-readable file, and an adversary tries to fetch that file via HTTP,
a Resin-aware Web server will invoke the file’s policy objects before transmitting the
file, fail the export check, and prevent password disclosure.

Resin only serializes the class name and data fields of a policy object. This
allows programmers to change the code for a policy class to evolve its behavior over
time. For example, a programmer could change the export check method of HotCRP’s
password policy object to disallow disclosure to the program chair without changing
the existing persistent policy objects. However, if the application needs to change
the fields of a persistent policy, the programmer will need to update the persistent
policies, much like database schema migration.

34

Merging Policies

Resin uses character-level tracking to avoid having to merge policies when individual
data elements are propagated verbatim, such as through concatenation or taking a
substring. Unfortunately, merging is inevitable in some cases, such as when string
characters with different policies are converted to integer values and added up to
compute a checksum. In many situations, such low-level data transformation corre-
sponds to a boundary, such as encryption or hashing, and would be a good fit for an
application-specific filter object. However, relying on the programmer to insert filter
objects in all such places would be error-prone, and Resin provides a safety net by
merging policy objects in the absence of any explicit actions by the programmer.

By default, Resin takes the union of policy objects of source operands, and at-
taches them to the resulting datum. The union strategy is suitable for some data
flow assertions. For example, an assertion that tracks user-supplied inputs by mark-
ing them with a UserData policy would like to label the result as UserData if any
source operand was labeled as such. In contrast, the intersection strategy may be
applicable to other policies. An assertion that tracks data authenticity by marking
data with an AuthenticData policy would like to label the result as AuthenticData
only if all source operands were labeled that way.

Because different policies may have different notions of a safe merge strategy,
Resin allows a policy object to override the merge method shown in Table 2.3.
When application code merges two data elements, Resin invokes the merge method
on each policy of each source operand, passing in the entire policy set of the other
operand as the argument. The merge method returns a set of policy objects that it
wants associated with the new datum, or throws an exception if this policy should
not be merged. The merge method can consult the set of policies associated with the
other operand to implement either the union or intersection strategies. The Resin
runtime then labels the resulting datum with the union of all policies returned by all
merge methods.

2.4 Implementation

We have implemented two Resin prototypes, one in the PHP runtime, and the other
in Python. At a high-level, Resin requires the addition of a pointer, that points
to a set of policy objects, to the runtime’s internal representation of a datum. For
example, in PHP, the additional pointer resides in the zval object for strings and
numbers. For strings, each policy object contains a character range for which the
policy applies. When copying or moving data from one primitive object to another,
the language runtime copies the policy set from the source to the destination, and
modifies the character ranges if necessary. When merging individual data elements,
the runtime invokes the policies’ merge functions.

The PHP prototype involved 5,944 lines of code. The largest module is the SQL
parsing and translation mechanism at about 2,600 lines. The core data structures and
related functions make up about 1,100 lines. Most of the remaining 2,200 lines are

35

spent propagating and merging policy objects. Adding propagation to the core PHP
language required changes to its virtual machine opcode handlers, such as variable
assignment, addition, and string concatenation. In addition, PHP implements many
of its library functions, such as substr and printf, in C, which are outside of PHP’s
virtual machine and require additional propagation code.

To allow the Web server to check persistent policies for file data, as described
in Section 2.3.4, we modified the mod php Apache module to de-serialize and invoke
policy objects for all static files it serves. Doing so required modifying 49 lines of
code in mod php.

The Python prototype only involved 681 lines of code; this is fewer than the PHP
prototype for two reasons. First, our Python prototype does not implement all the
Resin features; it lacks character-level data tracking, persistent policy storage in SQL
databases, and Apache static file support. Second, Python uses fewer C libraries, so
it required little propagation code beyond the opcode handlers.

2.5 Applying Resin

Resin’s main goal is to allow programmers to avoid security vulnerabilities by spec-
ifying data flow assertions. Section 2.3.1 already showed how a programmer can
implement a data flow assertion that prevents password disclosure in HotCRP. This
section shows how a programmer would implement data flow assertions for a number
of other vulnerabilities and applications using Resin.

The following examples use the syntax described in Table 2.3. Additionally, these
examples use sock. filter to access a socket’s filter object, and in the Python
code, policy add and policy remove return a new string with the same contents but a
different policy set, because Python strings are immutable.

2.5.1 Access Control Checks

As mentioned in Section 2.2, Resin aims to address missing access control checks.
To illustrate how a programmer would use Resin to verify access control checks, this
section provides an example implementation of Data Flow Assertion 4, the assertion
that verifies MoinMoin wiki’s read ACL scheme (see Section 2.2).

The MoinMoin ACL assertion prevents a wiki page from flowing to a user that’s
not on the page’s ACL. One way for a programmer to implement this assertion in
Resin is to:

1. annotate HTTP output channels with context that identifies the user on the
other end of the channel;

2. define a PagePolicy object that contains an ACL;

3. implement an export check method in PagePolicy that matches the output chan-
nel against the PagePolicy ’s ACL;

4. attach a PagePolicy to the data in each wiki page.

36

def process_client(client_sock):

req = parse_request(client_sock)

client_sock.__filter.context[’user’] = req.user

... process req ...

class PagePolicy(Policy):

def __init__(self, acl): self.acl = acl

def export_check(self, context):

if not self.acl.may(context[’user’], ’read’):

raise Exception("insufficient access")

class Page:

def update_body(self, text):

text = policy_add(text, PagePolicy(self.getACL()))

... write text to page’s file ...

Figure 2-5: Python code for a data flow assertion that checks read access control in
MoinMoin. The process client and update body functions are simplified versions of
MoinMoin equivalents.

Figure 2-5 shows all the code necessary for this implementation. The process client
function annotates each HTTP connection’s context with the current user, after pars-
ing the user’s request and credentials. PagePolicy contains a copy of the ACL, and
implements export check. The update body method creates a PagePolicy object and
attaches it to the page’s data before saving the page to the file system. One reason
why the PagePolicy is short is that it reuses existing application code to perform the
access control check.

This example assertion illustrates the use of persistent policies. The update body
function associates a PagePolicy with the contents of a page immediately before
writing the page to a file. As the page data flows to the file, the default filter object
serializes the PagePolicy object, including the access control list, to the file system.
When MoinMoin reads this file later, the default filter will de-serialize the PagePolicy
and attach it to the page data in the runtime, so that Resin will automatically enforce
the same access control policy.

In this implementation, the update body function provides a single place where
MoinMoin saves the page to the file system, and a thus a single place to attach the
PagePolicy. If, however, MoinMoin had multiple code paths that stored pages in
the file system, the programmer could assign the policy to the page contents earlier,
perhaps directly to the CGI input variables.

In addition to read access checks, the programmer can also define a data flow as-
sertion that verifies write access checks. MoinMoin’s write ACLs imply the assertion:
data may flow into wiki page p only if the user is on p’s write ACL. MoinMoin stores
a wiki page as a directory that contains each version of the page as a separate file.
The programmer can implement this assertion by creating a filter class that verifies
the write ACL against the current user, and then attaching filter instances to the
files and directory that represent a wiki page. The filters restrict the modification of
existing versions, and also the creation of new versions based on the page’s ACL.

37

class CodeApproval extends Policy {

function export_check($context) {}

}

function make_file_executable($f) {

$code = file_get_contents($f);

policy_add($code, new CodeApproval());

file_put_contents($f, $code);

}

class InterpreterFilter extends Filter {

function filter_read($buf) {

foreach (policy_get($buf) as $p)

if ($p instanceof CodeApproval)

return $buf;

throw new Exception(’not executable’);

}

}

Figure 2-6: Simplified PHP code for a data flow assertion that catches server-side
script injection. In the actual implementation, filter read verifies that each character
in $buf has the CodeApproval policy.

2.5.2 Server-Side Script Injection

Another class of vulnerabilities that Resin aims to address is server-side script injec-
tion, as described in Section 2.2, which can be addressed with Data Flow Assertion 3.
One way for the programmer to implement this assertion is to:

1. define an empty CodeApproval policy object;1

2. annotate application code and libraries with CodeApproval policy objects;

3. change the interpreter’s default input filter (see Section 2.3.2) to require a
CodeApproval policy on all imported code.

This data flow assertion instructs Resin to limit what code the interpreter may use.
Figure 2-6 lists the code for implementing this assertion. When installing an appli-
cation, the developer tags the application code and system libraries with a persistent
CodeApproval policy object using make file executable. The filter read method only
allows code with a CodeApproval policy object to pass, ensuring that code from an
adversary which would lack the CodeApproval policy, will not be executed, whether
through include statements, eval, or direct HTTP requests.

The programmer must override the interpreter’s filter in a global configuration
file, to ensure the filter is set before any other code executes; PHP’s auto prepend file
option is one way to do this. If, instead, the application set the filter at the beginning
of the application’s own code, adversaries could bypass the check if they are able to
upload and run their own .php files.

This example illustrates the need for programmer-specified filter objects in ad-
dition to programmer-specified context for default filters. The default filter calls

1The CodeApproval policy does not need to take the intersection of policies during merge because
Resin’s character-level data tracking avoids having to merge file data.

38

export check on all the policies that pass through, but the default filter always per-
mits data that has no policy. The filter in this script injection assertion requires that
data have a CodeApproval policy, and reject data that does not.

2.5.3 SQL Injection and Cross-Site Scripting

As mentioned in Section 2.2, the two most popular attack vectors in Web applications
today are SQL injection and cross-site scripting. This section presents two different
strategies for using Resin to address these vulnerabilities.

To implement the first strategy, the programmer:

1. defines two policy object classes: UntrustedData and SQLSanitized ;

2. annotates untrusted input data with an UntrustedData policy;

3. changes the existing SQL sanitization function to attach a SQLSanitized object
to the freshly sanitized data;

4. changes the SQL filter object to check the policy objects on each SQL query.
If the query contains any characters that have the UntrustedData policy, but
not the SQLSanitized policy, the filter will throw an exception and refuse to
forward the query to the database.

Addressing cross-site scripting is similar, except that it uses HTMLSanitized rather
than SQLSanitized. This strategy catches unsanitized data because the data will lack
the correct SQLSanitized or HTMLSanitized policy object. The reason for appending
SQLSanitized and HTMLSanitized instead of removing UntrustedData is to allow the
assertion to distinguish between data that may be incorporated into SQL versus
HTML since they use different sanitization functions. This strategy ensures that the
programmer uses the correct sanitizer (e.g., the programmer did not accidentally use
SQL quoting for a string used as part of an HTML document).

The second strategy for preventing SQL injection and cross-site scripting vulnera-
bilities is to use the same UntrustedData policy from the previous strategy, but rather
than appending a policy like SQLSanitized, the SQL filter inspects the final query and
throws an exception if any characters in the query’s structure (keywords, white space,
and identifiers) have the UntrustedData policy. The HTML filter performs a simi-
lar check for UntrustedData on JavaScript portions of the HTML to catch cross-site
scripting errors, similar to a technique used in prior work [60].

A variation on the second strategy is to change the SQL filter’s tokenizer to keep
contiguous bytes with the UntrustedData policy in the same token, and to automat-
ically sanitize the untrusted data in transit to the SQL database. This will prevent
untrusted data from affecting the command structure of the query, and likewise for
the HTML tokenizer. These two variations require the addition of either tokenizing
or parsing to the filter objects, but they avoid relying on trusted quoting functions.

We have experimented with both of these strategies, and find that while the second
approach requires more code for the parsers, many applications can reuse the same
parsing code.

39

A SQL injection assertion is complementary to the other assertions we describe in
this section. For instance, even if an application has a SQL injection vulnerability, and
an adversary manages to execute the query SELECT user, password FROM userdb,
the policy object for each password will still be de-serialized from the database, and
will prevent password disclosure.

2.5.4 Other Attack Vectors

Finally, there are a number of other attack vectors that Resin can help defend against.
For instance, to address the HTTP response splitting attack described in Section 2.3.2,
a developer can use a filter to reject any CR-LF-CR-LF sequences in the HTTP header
that came from user input.

As Web applications use more client-side code, they also use more JSON to trans-
port data from the server to the client. Here, much like in SQL injection, an adver-
sary may be able to craft an input string that changes the structure of the JSON’s
JavaScript data structure, or worse yet, include client-side code as part of the data
structure. Web applications can use Resin’s data tracking mechanisms to avoid these
pitfalls as they would for SQL injection.

2.5.5 Application Integration

One potential concern when using Resin is that a data flow assertion can duplicate
data flow checks and security checks that already exist in an application. As a concrete
example, consider HotCRP, which maintains a list of authors for each paper. If a
paper submission is anonymous, HotCRP must not reveal the submission’s list of
authors to the PC members. HotCRP already performs this check before adding the
author list to the HTML output. Adding a Resin data flow assertion to verify read
access to the author list will make HotCRP perform the access check a second time
within the data flow assertion, duplicating the check that already exists.

If a programmer implements an application with Resin in mind, the programmer
can use an exception to indicate that the user may not read certain data, thereby
avoiding duplicate access checks. For example, we modified the HotCRP code that
displays a paper submission to always try to display the submission’s author list. If
the submission is anonymous, the data flow assertion raises an exception; the display
code catches that exception, and then displays the string “Anonymous” instead of the
author list. This avoids duplicate checks because the page generation code does not
explicitly perform the access control check. However, if the application sends HTML
output to the browser during a try block and then encounters an exception later in
the try block, the previously released HTML might be invalid because the try block
did not run to completion.

Resin provides an output buffering mechanism to assist with this style of code.
To use output buffering, the application starts a new try block before running HTML
generation code that might throw an exception. At the start of the try block, the
application notifies the outgoing HTML filter object to start buffering output. If the
try block throws an exception, the corresponding catch block notifies the HTML filter

40

to discard the output buffer, and potentially send alternate output in its place (such
as “Anonymous” in the example). However, if the try block runs to completion, the
try block notifies the HTML filter to release the data in the output buffer.

Using exceptions, instead of explicit access checks, frees the programmer from
needing to know exactly which checks to invoke in every single case, because Resin
invokes the checks. Instead, programmers need to only wrap code that might fail a
check with an appropriate exception handler, and specify how to present an exception
to the user.

2.6 Security Evaluation

The main criteria for evaluating Resin is whether it is effective at helping a program-
mer prevent data flow vulnerabilities. To provide a quantitative measure of Resin’s
effectiveness, we focus on three areas. First, we determine how much work a pro-
grammer must do to implement an existing implicit data flow plan as an explicit data
flow assertion using Resin. We then evaluate whether each data flow assertion actu-
ally prevents typical data flow bugs, both previously-known and previously-unknown
bugs. Finally, we evaluate whether a single high-level assertion can be general enough
to cover both common and uncommon data flows that might violate the assertion,
by testing assertions against bugs that use surprising data paths.

2.6.1 Programmer Effort

To determine the level of effort required for a programmer to use Resin, we took
a number of existing, off-the-shelf applications and examined some of their implicit
security-related data flow plans. We then implemented a Resin data flow assertion
for each of those implicit plans. Table 2.4 summarizes the results, showing the ap-
plications, the number of lines of code in the application, and the number of lines of
code in each data flow assertion.

The results in Table 2.4 show that each data flow assertion requires a small amount
of code, on the order of tens of lines of code. The assertion that checks read access to
author lists in HotCRP requires the most changes, 32 lines. This is more code than
other assertions because our implementation issues database queries and interprets
the results to perform the access check, requiring extra code. However, many of
the other assertions in Table 2.4 reuse existing code from the application’s existing
security plan, and are shorter.

Table 2.4 also shows that the effort required to implement a data flow assertion
does not grow with the size of the application. This is because implementing an as-
sertion only requires changes where sensitive data first enters the application, and/or
where data exits the system, not on every path data takes through the application;
Resin’s data tracking handles those data paths. For example, the cross-site scripting
assertion for phpBB is only 22 lines of code even though phpBB is 172,000 lines of
code.

41

A
pp.

A
ssertion

K
now

n
D

iscovered
P

revented
A

pplication
L
ang.

L
O

C
L
O

C
vuln.

vuln.
vuln.

V
ulnerability

type

M
IT

E
E

C
S

grad
adm

issions
P

ython
18,500

9
0

3
3

SQ
L

injection
M

oinM
oin

P
ython

89,600
8

2
0

2
M

issing
read

access
control

checks
15

0
0

0
M

issing
w

rite
access

control
checks

F
ile

T
hingie

file
m

anager
P

H
P

3,200
19

0
1

1
D

irectory
traversal,

file
access

control
H

otC
R

P
P

H
P

29,000
23

1
0

1
P
assw

ord
disclosure

30
0

0
0

M
issing

access
checks

for
papers

32
0

0
0

M
issing

access
checks

for
author

list
m

yP
H

P
scripts

login
library

P
H

P
425

6
1

0
1

P
assw

ord
disclosure

P
H

P
N

avigator
P

H
P

4,100
17

0
1

1
D

irectory
traversal,

file
access

control
phpB

B
P

H
P

172,000
23

1
3

4
M

issing
access

control
checks

22
4

0
4

C
ross-site

scripting
m

any
[23,

40,
16,

61,
4]

P
H

P
–

12
5

0
5

Server-side
script

injection

T
ab

le
2.4:

R
esu

lts
from

u
sin

g
R

e
sin

assertion
s

to
p
reven

t
p
rev

iou
sly

-k
n
ow

n
an

d
n
ew

ly
d
iscovered

v
u
ln

erab
ilities

in
several

W
eb

ap
p
lication

s.

42

As a point of comparison for programmer effort, consider the MoinMoin access
control scheme that appeared in the Flume evaluation [46]. MoinMoin uses ACLs to
limit who can read and write a wiki page. To implement this scheme under Flume, the
programmer partitions MoinMoin into a number of components, each with different
privileges, and then sets up the OS to enforce the access control system using infor-
mation flow control. Adapting MoinMoin to use Flume requires modifying or writing
about 2,000 lines of application code. In contrast, Resin can check the same Moin-
Moin access control scheme using two assertions, an eight line assertion for reading,
and a 15 line assertion for writing, as shown in Table 2.4. Most importantly, adding
these checks with Resin requires no structural or design changes to the application.

Although Flume provides assurance against malicious server code and Resin does
not, the Resin assertions catch the same two vulnerabilities (see Section 2.6.2) that
Flume catches, because they do not involve binary code injection. By focusing on
a weaker threat model, Resin’s lightweight and easy-to-use mechanisms provide a
compelling choice for programmers that want additional security assurance without
much extra effort.

2.6.2 Preventing Vulnerabilities

To evaluate whether Resin’s data flow assertions are capable of preventing vulnera-
bilities, we checked some of the assertions in Table 2.4 against known vulnerabilities
that the assertion should be able to prevent. The results are shown in Table 2.4,
where the number of previously-known vulnerabilities is greater than zero.

The results in Table 2.4 show that each Resin assertion does prevent the vul-
nerabilities it aims to prevent. For example, the phpBB access control assertion
prevents a known missing access control check listed in the CVE [71], and the Hot-
CRP password protection assertion shown in Section 2.3.1 prevents the password
disclosure vulnerability described in Section 2.2. The assertion to prevent server-side
script injection described in Section 2.5.2 prevents such vulnerabilities in five different
applications [23, 40, 16, 61, 4].

Since we implemented these assertions with knowledge of the previously-known
vulnerabilities, it is possible that the assertions are biased to thwart only those vul-
nerabilities. To address this bias, we tried to find new bugs, as an adversary would,
that violate the assertions in Table 2.4. These results are shown in Table 2.4 where
the number of newly discovered vulnerabilities is greater than zero.

These results show that Resin assertions can prevent vulnerabilities, even if the
programmer has no knowledge of the specific vulnerabilities when writing the asser-
tion. For example, we implemented a generic data flow assertion to address SQL
injection vulnerabilities in MIT’s EECS graduate admissions system. Although the
original programmers were careful to avoid most SQL injection vulnerabilities, the
assertion revealed three previously-unknown SQL injection vulnerabilities in the ad-
mission committee’s internal user interface.

As a second example, File Thingie and PHP Navigator are Web based file man-
agers, and both support a feature that limits a user’s write access to a particular
home directory. We implemented this behavior as a write access filter as described in

43

Section 2.3.2. Again, both applications have code in place to check directory accesses,
but after a careful examination, we discovered a directory traversal vulnerability that
violates the write access scheme in each application. The data flow assertions catch
both of these vulnerabilities.

As a final example, phpBB implements read access controls so that only certain
users can read certain forum messages. We implemented an assertion to verify this
access control scheme. In addition to preventing a previously-known access control
vulnerability, the assertion also prevents three previously-unknown read access vio-
lations that we discovered. These results confirm that Resin’s data flow assertions
can thwart vulnerabilities, even if the programmer does not know they exist. Fur-
thermore, these assertions likely eliminate even more vulnerabilities that we are not
aware of.

The three vulnerabilities in phpBB are not in the core phpBB package, but in
plugins written by third-party programmers. Large-scale projects like phpBB are a
good example of the benefit of explicitly specifying data flow assertions with Resin.
Consider a situation where a new programmer starts working on an existing applica-
tion like HotCRP or phpBB. There are many implicit rules that programmers must
follow in hundreds of places, such as who is responsible for sanitizing what data to
prevent SQL injection and cross-site scripting, and who is supposed to call the access
control function. If a programmer starts writing code before understanding all of
these rules, the programmer can easily introduce vulnerabilities, and this turned out
to be the case in the phpBB plugins we examined. Using Resin, one programmer
can make a data flow rule explicit as an assertion and then Resin will check that
assertion for all the other programmers.

These results also provide examples of a single data flow assertion thwarting more
than one instance of an entire class of vulnerabilities. For example, the single read
access assertion in phpBB thwarts four specific instances of read access vulnerabili-
ties (see Table 2.4). As another example, a single server-side script injection assertion
that works in all PHP applications catches five different previously-known vulnera-
bilities in the PHP applications we tested (see Table 2.4). This suggests that when
a programmer inevitably finds a security vulnerability and writes a Resin assertion
that addresses it, the assertion will prevent the broad class of problems that allow
the vulnerability to occur in the first place, rather than only fixing the one specific
instance of the problem.

2.6.3 Generality

To evaluate whether Resin data flow assertions are general enough to cover the many
data flow paths available to an adversary, we checked whether the assertions we wrote
detect a number of data flow bugs that use surprising data flow channels.

The results indicate that a high-level Resin assertion can detect and prevent vul-
nerabilities even if the vulnerability takes advantage of an unanticipated data flow
path. For example, a common way for an adversary to exploit a cross-site scripting
vulnerability is to enter malicious input through HTML form inputs. However, there
was a cross-site scripting vulnerability in phpBB due to a more unusual data path.

44

In this vulnerability, phpBB requests data from a whois server and then uses the re-
sponse without sanitizing it first; an adversary exploits this vulnerability by inserting
malicious JavaScript code into a whois record and then requesting the whois record
via phpBB. The Resin assertion that protects against cross-site scripting in phpBB,
listed in Table 2.4, prevents vulnerabilities at a high-level; the assertion treats all ex-
ternal input as untrusted and makes sure that the external input data flows through a
sanitizer before phpBB may use the data in HTML. This assertion is able to prevent
both the more common HTML form attack as well as the less common whois style
attack because the assertion is general enough to cover many possible data flow paths.

A second example is in the read access controls for phpBB’s forum messages. The
common place to check for read access is before displaying the message to a user,
but one of the read access vulnerabilities, listed in Table 2.4, results from a different
data flow path. When a user replies to a message, phpBB includes a quotation of
the original message in the reply message. In the vulnerable version, phpBB also
allows a user to reply to a message even if the user lacks permission to read the
message. To exploit this vulnerability, an adversary, lacking permission to read a
message, replies to the message using its message ID, and then reads the content of
the original message, quoted in the reply template. The Resin assertion that checks
the read access controls prevents this vulnerability because the assertion detects data
flow from the original message to the adversary’s browser, regardless of the path
taken.

A final example comes from the two password disclosure vulnerabilities shown in
Table 2.4. As described in Section 5, the HotCRP disclosure results from a logic bug
in the email preview and the email reminder features. In contrast, the disclosure in the
myPHPscripts login library [59] results from the library storing its users’ passwords
in a plain-text file in the same HTTP-accessible directory that contains the library’s
PHP files [62]. To exploit this, an adversary requests the password file with a Web
browser. Despite preventing password disclosure through two different data flow
paths, the assertions for password disclosure in HotCRP and myPHPscripts are very
similar (the only difference is that HotCRP allows email reminders and myPHPscripts
does not). This shows that a single Resin data flow assertion can prevent attacks
through a wide range of attack vectors and data paths.

2.7 Performance Evaluation

Although the main focus of Resin is to improve application security, application
developers may be hesitant to use these techniques if they impose a prohibitive per-
formance overhead. In this section, we show that Resin’s performance is acceptable.
We first measure the overhead of running HotCRP with and without the use of
Resin, and then break down the low-level costs that account for the overhead using
microbenchmarks. The overall result is that a complex Web application like HotCRP
incurs a 33% CPU overhead for generating a page, which is unlikely to be noticeable
by end-users.

45

The following experiments were run on a single core of a 2.3GHz Xeon 5140 server
with 4GB of memory running Linux 2.6.22. The unmodified PHP interpreter is
version 5.2.5, the same version that the Resin PHP interpreter is based on.

2.7.1 Application Performance

To evaluate the system-level overhead of Resin, we compare a modified version of
HotCRP running in the Resin PHP interpreter against an unmodified version of
HotCRP 2.26 running in an unmodified PHP interpreter. We measured the time to
generate the Web page for a specific paper in HotCRP, including the paper’s title,
abstract, and author list (if not anonymized), as if a PC member requested it through
a browser. The measured runtime includes the time taken to parse PHP code, recall
the session state, make SQL queries, and invoke the relevant data flow assertions.
In this example, Resin invoked two assertions: one protected the paper title and
abstract (and the PC member was allowed to see them), and the other protected the
author list (and the PC member was not allowed to see it, due to anonymization).
We used the output buffering technique from Section 2.5.5 to present a consistent
interface even when the author list policy raised an exception. The resulting page
consisted of 8.5KB of HTML.

The unmodified version of HotCRP generates the page in 66ms (15.2 requests
per second) and the Resin version uses 88ms (11.4 requests per second), averaged
over 2000 trials. The performance of this benchmark is CPU limited. Despite our
unoptimized Resin prototype, its performance is likely to be adequate for many real
world applications. For example, in the 30 minutes before the SOSP submission
deadline in 2007, the HotCRP submission system logged only 390 user actions. Even
if there were 10 page requests for each logged action (likely an overestimate), this
would only average to 2.2 requests per second and a CPU utilization of 14.3% without
Resin, or 19.1% with Resin on a single core. Adding a second CPU core doubles
the throughput.

2.7.2 Microbenchmarks

To determine the source of Resin’s overhead, we measured the time taken by individ-
ual operations in an unmodified PHP interpreter, and a Resin PHP interpreter both
without any policy and with an empty policy. The results of these microbenchmarks
are shown in Table 2.5.

For operations that simply propagate policies, such as variable assignments and
function calls, Resin incurs a small absolute overhead of 4-21ns, but percentage wise,
this is about a 10% overhead. This overhead is due to managing the policy set objects.

The overhead for invoking a filter object’s interposition method (filter read, fil-
ter write, and filter func) is the same as for a standard function call, except that
Resin calls the interposition method once for every call to read or write. Therefore
the application programmer has some control over how much interposition overhead
the application will incur. For example, the programmer can control the amount of

46

Unmodified Resin Resin
Operation PHP no policy empty policy
Assign variable 0.196 µs 0.210 µs 0.214 µs
Function call 0.598 µs 0.602 µs 0.619 µs
String concat 0.315 µs 0.340 µs 0.463 µs
Integer addition 0.224 µs 0.247 µs 0.384 µs
File open 5.60 µs 7.05 µs 18.2 µs
File read, 1KB 14.0 µs 16.6 µs 26.7 µs
File write, 1KB 57.4 µs 60.5 µs 71.7 µs
SQL SELECT 134 µs 674 µs 832 µs
SQL INSERT 64.8 µs 294 µs 508 µs
SQL DELETE 64.7 µs 114 µs 115 µs

Table 2.5: The average time taken to execute different operations in an unmodified
PHP interpreter, a Resin PHP interpreter without any policy, and a Resin PHP
interpreter with an empty policy.

computation the interposition method performs, and the number of times the appli-
cation calls read and write.

For operations that track byte-level policies, such as string concatenation, the
overhead without any policy is low (8%), but increases when a policy is present
(47%). This reflects the cost of propagating byte-level policies for parts of the string
at runtime as well as more calls to malloc and free. A more efficient implementation
of byte-level policies could reduce these calls.

Operations that merge policies (such as integer addition, which cannot do byte-
level tracking) are similarly inexpensive without a policy (10%), but are more expen-
sive when a policy is applied (71%). This reflects the cost of invoking the programmer-
supplied merge function. However, in all the data flow assertions we encountered, we
did not need to apply policies to integers, so this might not have a large impact on
real applications.

For file open, read, and write, Resin adds potentially noticeable overhead, largely
due to the cost of serializing, de-serializing, and invoking policies and filters stored in
a file’s extended attributes. Caching file policies in the runtime will likely reduce this
overhead.

The INSERT operation listed in Table 2.5 inserts 10 cells, each into a different
column, and the SELECT operation reads 10 cells, each from a different column.
When there is an empty policy, each datum has the policy. The overhead without
any policy is 229–540µs (354%–403%), and that with an empty policy is 443–698µs
(521%–684%). Resin’s overhead is related to the size of the query, and the number
of columns that have policies; reducing the number of columns returned by a query
reduces the overhead for a query. For example, a SELECT query that only requests
six columns with policies takes 578µs in Resin compared to 109µs in unmodified PHP.
The DELETE operation has a lower overhead because it does not require rewriting
queries or results.

Resin’s overhead for SQL operations is relatively high because it parses and
translates each SQL query in order to determine the policy object for each data item

47

that the query stores or fetches. Our current implementation performs much of the
translation in a library written in PHP; we expect that converting all of it to C would
offer significant speedup. Note that, even with our high overhead for SQL queries,
the overall application incurs a much smaller performance overhead, such as 33% in
the case of HotCRP.

2.8 Deployment

Another important aspect to consider for Resin is deployment. An individual Web
site can benefit from adopting Resin in isolation. Resin does not require Web clients
to do anything, nor does it require more than one Web site to adopt Resin before
it becomes useful. For these reasons, each Web site can decide to use Resin on a
case-by-case basis for its own benefit without regard for other Web sites or users. This
is beneficial for a new technology like Resin, and should make it easier to penetrate
the market.

2.9 Limitations and Future Work

Resin currently has a number of limitations which we plan to address in future work.

2.9.1 Data Flow Assertion Model

Data Integrity Assertions

In its current design, a data integrity assertion can only check whether a write is
allowed before the write actually takes place. Therefore, the assertion must have
prior knowledge of whether the write will be valid after completion. Currently, an
assertion cannot permit the write to proceed and then check whether the write is
valid afterward.

One way to improve support for integrity assertions is to use transactions. For
example, consider a banking application, where a bank wants to ensure that all money
transfers are properly authorized, and that the sum of all debits and credits adds up
to zero. The execution of a request, including any database updates, file changes,
and memory modifications, would be wrapped in a transaction, and Resin would not
commit the updates until a policy object approves them. The policy would check
that the sum of all bank account balances remains the same, and that the requesting
user had permission to access each account that was touched, before committing the
transaction. In a sense, this mechanism would take the integrity constraints often
found in databases and run them within the application, with access to all the extra
information in the application’s runtime.

48

Internal Data Flow Boundaries

Second, Resin does not have good support for constructing internal data flow bound-
aries within an application. For example, it would be difficult to implement an as-
sertion to prevent clear-text passwords from flowing out of the software module that
handles passwords. Attaching filter objects to function calls is a step in the right
direction, but languages like PHP and Python allow code to read and write data in
another module’s scope as if they were global variables. In the Resin runtimes for
PHP and Python, an internal data flow boundary would need to address these data
flow paths. Other runtimes, like Java’s, have stronger scope enforcement, and might
require fewer changes.

Server Boundary

Currently, Resin only checks assertions up to the edge of the Web server. After
sensitive data leaves the server, a Web browser has access to the sensitive data, and
can perform computation and communication that can violate data flow assertions.
One way to address this limitation is to add Resin-like functionality to the browser,
which is discussed more in Chapters 3 and 4.

2.9.2 Language Runtimes

Multiple Runtimes

Currently, Resin is limited to the PHP and Python runtimes. Although saving poli-
cies persistently allows polices to propagate to different instances of the same runtime
(the Resin-aware Apache Web server invokes PHP to check policies), the policy se-
rialization is runtime-specific. For example, in a SQL server, the SQL commands
can compute on data, transform it, and save it to the database. Resin’s SQL trans-
lator understands some simple SQL computations and propagates policies in those
cases, but in general, Resin loses track of data within the SQL runtime. Currently,
Resin’s prototype SQL translator understands a few basic functions, and can com-
pute the policy on the result of a function, like addition, before writing the result
to the database, but a general solution would require the SQL runtime, and other
runtimes, to be aware of policy objects.

Resin also does not propagate policies across different machines, so Resin will
lose track of policies in a distributed system, like a three-tiered Web architecture.
One way to address this limitation is to extend Resin to propagate policies between
machines in a distributed system similar to the way DStar [90] does with information
flow labels.

Runtime Modifications

Adding Resin to a runtime currently requires substantial changes to the runtime,
and it might be difficult to persuade runtime developers to adopt those changes.
For example, adding data tracking to PHP required modifying the interpreter in 103

49

locations to propagate policies; ideally, applying these techniques to new runtimes
would require fewer changes.

One approach to implementing Resin with fewer changes to the runtime might be
to use OS or VMM support. It might also be possible to implement Resin without
modifying the language runtime at all, given a suitable object-oriented system. The
implementation would override all string operations to propagate policy objects, and
override storage system interfaces to implement filter objects.

Static Analysis

Dynamic data tracking adds runtime overheads and presents challenges to tracking
data through control flow paths. It may be possible to use static analysis or program-
mer annotations to check Resin-style data flow assertions at compile time instead of
at runtime. However, Resin’s use of general purpose code to express assertions does
pose a challenge to this approach.

2.9.3 Applications

More Security Applications

One advantage of Resin over existing data tracking systems is that Resin is general
purpose and can support many different security policies. One area for future work
is to explore the space of security policies and try to implement Resin policies to
preserve them. Some possible candidates are HTTP response splitting and cross-site
request forgery.

Non-Security Applications

Finally, this work focuses on security as the driving need for Resin, but not all
data flow bugs are related to security; some bugs just produce incorrect application
behavior. Programmers may be able to use Resin to catch these bugs. For example,
a Web store might have the high-level assertion that goods are paid for before sending
a request to the shipping department. It may be possible to capture this assertion
by attaching a Resin policy object to the request, and interposing on the messaging
interface to the shipping department.

2.10 Related Work

Resin makes a number of design decisions regarding how programmers specify policies
and how Resin tracks data. This section relates Resin’s design to prior work.

2.10.1 Policy Specification

When using Resin, programmers define a data flow assertion by writing policy objects
and filter objects in the same language as the rest of the application. Previous work

50

in policy description languages focuses on specifying policies at a higher level, to
make policies easier to understand, manage [7, 17, 21], analyze [30], and specify [3].
While these policy languages do not enforce security directly, having a clearly defined
policy specification allows reasoning about the security of a system, performing static
analysis [25, 24], and composing policies in well-defined ways [73, 2, 9]. Doing the
same using Resin is challenging because programmers write assertions in general-
purpose code. In future work, techniques like program analysis could help formalize
Resin’s policies [5], to bring some of these benefits to Resin, or to allow performance
optimizations.

Lattice-based label systems [58, 15, 14, 22, 89, 46, 18] control data flow by as-
signing labels to objects. Expressing policies using labels can be difficult [21], and
can require re-structuring applications. Once specified, labels objectively define the
policy, whereas Resin assertions require reasoning about code. For more complex
policies, labels are not enough, and many applications use trusted declassifiers to
transform labels according to application-specific rules (e.g. encryption declassifies
private data). Indeed, a large part of re-structuring an application to use labels
involves writing and placing declassifiers. Resin’s design can be thought of as spec-
ifying the declassifier (policy object) in the label, thus avoiding the need to place
declassifiers throughout the application code.

Since Resin programmers define their own policy and filter objects, program-
mers can implement data flow assertions specific to an application, such as ensuring
that every string that came from one user is sanitized before being sent to another
user’s browser. Resin’s assertions are more extensible than specialized policy lan-
guages [27], or tools designed to find specific problems, such as SQL injection or
cross-site scripting [37, 81, 53, 51, 76, 60, 66, 38, 83].

PQL [53] allows programmers to run application-specific program analyses on their
code at development time, including analyses that look for data flow bugs such as
SQL injection. However, PQL is limited to finding data flows that can be statically
analyzed, with the help of some development-time runtime checks, and cannot find
data flows that involve persistent storage. This could miss some subtle paths that an
attacker might trigger at runtime, and would not prevent vulnerabilities in plug-ins
added by end-users.

FABLE [70] allows programmers to customize the type system and label transfor-
mation rules, but requires the programmer to define a type system in a specialized
language, and use the type system to implement the applications’ data flow schemes.
Resin, on the other hand, implements data tracking orthogonal to the type system,
requiring fewer code modifications, and allowing programmers to reuse existing code
in their assertions.

Systems like OKWS [45] and Privman [43] enforce security by having programmers
partition their application into less-privileged processes. By operating in the language
runtime, Resin’s policy and filter objects track data flows and check assertions at a
higher level of abstraction, avoiding the need to re-structure applications. However,
Resin cannot protect against compromised server processes.

51

2.10.2 Data Tracking

Once the assertions are in place, Resin tracks explicit flows of application data at
runtime, as it moves through the system. Resin does not track data flows through
implicit channels, such as program control flow and data structure layout, because
implicit flows can be difficult to reason about, and often do not correspond to data
flow plans the programmer had in mind. Implicit data flows can lead to “taint creep”,
or increasingly tainted program control flow, as the application executes, which can
make the system difficult to use in practice. In contrast, systems like Jif [58] track
data through all channels, including program control flow, and can catch subtle bugs
that leak data through these channels. By relying on a well-defined label system, Jif
can also avoid runtime checks in many cases, and rely purely on compile-time static
checking, which reduces runtime overhead.

Resin’s data tracking is central to its ability to implement data flow assertions
that involve data movement, like SQL injection or cross-site scripting protection.
Other program checkers, like Spec# [7, 6], check program invariants, but focus on
checking function pre- and post-conditions and do not track data. Aspect-oriented
programming (AOP) [77] provides a way to add functionality, including security
checks, that cuts across many different software modules, but does not perform data
tracking. However, AOP does help programmers add new code throughout an appli-
cation’s code base, and could be used to implement Resin filter objects.

By tracking data flow in a language runtime, Resin can track data at the level
of existing programming abstractions—variables, I/O channels, and function calls—
much like in Jif [58]. This allows programmers to use Resin without having to
restructure their applications. This differs from OS-level IFC systems [22, 89, 88,
46] which track data flowing between processes, and thus require programmers to
expose data flows to the OS by explicitly partitioning their applications into many
components according to the data each component should observe. On the other
hand, these OS IFC systems can protect against compromised server code, whereas
Resin assumes that all application code is trusted; a compromise in the application
code can bypass Resin’s assertions.

Some bug-specific tools use data tracking to prevent vulnerabilities such as cross-
site scripting [42], SQL injection [60, 76], and untrusted user input [72, 64, 13]. While
these tools inspired Resin’s design, they effectively hard-code the assertion to be
checked into the design of the tool. As a result, they are not general enough to ad-
dress application-specific data flows, and do not support data flow tracking through
persistent storage. One potential advantage of these tools is that they do not require
the programmer to modify their application in order to prevent well-known vulner-
abilities such as SQL injection or cross-site scripting. We suspect that with Resin,
one developer could also write a general-purpose assertion that can be then applied
to other applications.

52

2.11 Summary

Programmers often have a plan for correct data flow in their applications. However,
today’s programmers often implement their plans implicitly, which requires the pro-
grammer to insert the correct code checks in many places throughout an application.
This is difficult to do in practice, and often leads to vulnerabilities.

This work takes a step towards solving this problem by introducing the idea of
a data flow assertion, which allows a programmer to explicitly specify a data flow
plan, and then have the language runtime check it at runtime. Resin provides three
mechanisms for implementing data flow assertions: policy objects associated with
data, data tracking as data flows through an application, and filter objects that define
data flow boundaries and control data movement.

We evaluated Resin by adding data flow assertions to prevent security vulnerabil-
ities in existing PHP and Python applications. Results show that data flow assertions
are effective at preventing a wide range of vulnerabilities, that assertions are short
and easy to write, and that assertions can be added incrementally without having to
restructure existing applications. We hope these benefits will entice programmers to
adopt our ideas in practice.

53

54

Chapter 3

BFlow

Some web sites provide interactive extensions using browser scripts, often without in-
specting the scripts to verify that they are benign and bug-free. Others handle users’
confidential data and display it via the browser. Such new features contribute to the
power of online services, but their combination would allow attackers to steal confi-
dential data. This chapter presents BFlow, a security system that uses information
flow control to allow the combination while preventing attacks on data confidentiality.

BFlow allows untrusted JavaScript to compute with, render, and store confi-
dential data, while preventing leaks of that data. BFlow tracks confidential data
as it flows within the browser, between scripts on a page and between scripts and
web servers. Using these observations and assistance from participating web servers,
BFlow prevents scripts that have seen confidential data from leaking it, without
disrupting the JavaScript communication techniques used in complex web pages. To
achieve these ends, BFlow introduces an information flow control model for the
JavaScript environment, a mapping from that model to the browser’s existing secu-
rity mechanisms, and a new “protection zone” abstraction.

We have implemented a BFlow browser reference monitor and server support. To
evaluate BFlow’s confidentiality protection and flexibility, we have built a BFlow-
protected blog that supports Blogger’s third party JavaScript extensions. BFlow’s
blog is compatible with every legitimate Blogger extension that we have found, yet
BFlow prevents malicious extensions from leaking confidential data. We have also
built a social networking site that supports third-party JavaScript, and a Web ap-
plication platform that allows applications to share user data without leaking that
data.

3.1 Introduction

Three important trends in Internet-based computing have emerged in recent years.
First, Web sites are increasingly hosting sensitive user data and applications; hosted
e-mail has been joined by other applications, such as hosted spreadsheets and con-
fidential blogs. Second, large swathes of Web user interface code now run in the
browser, as JavaScript and other browser scripting languages. Third, many Web

55

sites use JavaScript that they might not fully understand, including large imported
libraries and even extension scripts written by arbitrary third-party programmers.
These extensions can use server-side APIs to access and manipulate users’ server-
based data, giving rise to application-like third-party extensions on “platform” sites
such as Facebook [26] and Blogger [12].

The combination of third-party browser scripts and sensitive user data raises the
possibility of scripts stealing confidential data. For this reason, today’s Web appli-
cations that value user privacy must forbid browser script extensions, or refuse to
reveal sensitive user data to extensions. These approaches cut off useful behavior,
undermining the value of extensibility. For example, Web applications like Gmail
would benefit from third-party JavaScript extensions, but confidentiality problems
make them difficult to support. As a substitute, Gmail users modify their browsers
to do things like optimize Gmail’s UI for particular mobile devices and alter the way
Gmail renders email [28].

Existing Web sites that support extensions tend to do so with less sensitive, but
still confidential data. For example, the Blogger Web site hosts confidential blogs, yet
permits users to install third-party JavaScript extensions, that they might not fully
understand, on their blogs. These extensions can read confidential data, compute
on it, and display it to the user (which is reasonable by itself), but they can also
communicate any information they read to outside parties (which can violate the
user’s privacy). Part of the underlying problem is that the browser security policy
gives all scripts that come from a given Web site full privileges with respect to that
site.

Recent work [80, 55, 41] proposes improvements to today’s browser security policy
such as finer-grained separation of privileges between different parts of the browser.
But these solutions still force users or developers to make up-front decisions as to
whether or not to trust third-party code with confidential data. Mistakenly deciding
“no” inhibits extensibility; mistakenly deciding “yes” invites data theft.

This chapter describes BFlow, a new browser security system. BFlow lets
browser scripts compute with confidential data while restricting their ability to reveal
that data. BFlow uses a reference monitor in the browser to enforce information
flow control (IFC), observing the communication of each script with other scripts
and with Web sites. These observations help BFlow decide whether each script has
seen confidential data (whether directly or transitively through another script) and
from what site that data came. The BFlow reference monitor uses the tracking
information to restrict how data is revealed: if a script has seen confidential data, it
can only communicate with the site whence the confidential data came unless that
site explicitly permits communication with other servers. BFlow places few new
restrictions on scripts that have not been exposed to confidential data. To take
advantage of BFlow, a Web site must cooperate by marking outgoing confidential
data with security metadata and recording the confidentiality of incoming data.

The challenges in designing BFlow differ from those solved by operating system
IFC systems [11, 54, 19, 22] because the browser has somewhat unusual notions of the
principals that own data (Web sites), of the natural code unit at which to apply IFC

56

(the frame), and of the special flows of information that must be supported (among
frames and to Web servers).

We have implemented a prototype BFlow browser reference monitor as a Firefox
plug-in. We have also implemented the server part of BFlow as a gateway layer
that sits between an Apache Web server and the Web site’s application logic. These
implementations are intended to be easy to deploy: the Firefox plug-in is easy to
install, and the BFlow reference monitor supports the full JavaScript language so
that most scripts run with no changes.

To evaluate BFlow’s privacy protection and flexibility, we implemented three
Web sites that incorporate third-party JavaScript: a Web site compatible with Blog-
ger’s third-party extensions, a social networking site that implements common appli-
cation features in untrusted JavaScript, and Web platform that supports third-party
server applications that share confidential user data. The blog example shows that
many existing scripts will work with few modifications and that malicious JavaScript
that leaks confidential data in Blogger does not leak within BFlow. The social net-
work example shows that BFlow supports a wide range of third-party functionality,
and the Web platform demonstrates how developers can use BFlow to build new
kinds of Web architectures.

The contributions of this work are a set of information flow control rules that
govern the JavaScript communication mechanisms, a mapping from BFlow’s IFC
rules to the browser’s existing JavaScript isolation system, and an abstraction called
a protection zone that eases the deployment of existing JavaScript into BFlow.
Together, these techniques allow untrusted JavaScript to read, compute with, and
display confidential data without the risk of leaking that data.

3.2 Background: JavaScript

Web sites use in-browser JavaScript to provide high-quality user interfaces. This
section briefly reviews what JavaScript can do within a browser, focusing on commu-
nication.

A browser consists of one or more frames, each containing a separate HTML
document and JavaScript interpreter. Browser frames can contain sub-frames using
the frame and iframe HTML directives. Each browser window or tab is a top-level
frame, each frame that embeds a sub-frame is a parent, and each sub-frame is the
child of its parent.

The browser represents the displayed document in each frame as a data struc-
ture called the Document Object Model (DOM). JavaScript code is allowed to read
and modify the DOM of any frame from the same origin server as the code.1 Two
JavaScript scripts, each running in a different frame, but from the same origin,
can communicate with each other via modification to each other’s DOMs. Also,
JavaScript can communicate with any Web server by fetching a Web document, in-
cluding HTML pages and images, from that server.

1An origin is defined as a triple: domain name, protocol, and port.

57

The restriction that JavaScript only access DOMs from the same origin is called
the same-origin policy (SOP). The SOP also only allows a script to send AJAX
requests to its origin server. The high-level goal of the SOP is to guard the operation
of each Web site and its JavaScript from interference by other sites’ JavaScript. The
SOP does not restrict JavaScript from interacting with different-origin sites in a
number of ways which would be unlikely to interfere with their proper operation.
For example, a script can modify its frame’s document to fetch an image from any
Web site, which allows the script to communicate with the site through the name of
the requested image. The SOP also allows scripts to use JavaScript’s intra-browser
channels to send messages to listening scripts from any origin. The result is that
scripts that have access to confidential data can leak that data to cooperating outside
Web sites and JavaScript.

3.3 Challenges

BFlow requires a stronger policy than the SOP because it must prevent data
movement even when untrusted scripts and untrusted servers collude against the
user’s wishes. BFlow must accomplish this while maintaining support for untrusted
JavaScript extensions without encumbering deployment.

3.3.1 Threat Model and Security

BFlow applies to Web sites that both store confidential user data and allow un-
trusted JavaScript to access that data. The adversary’s goal is to read, with his
own eyes, data that he should not be able to read according to the Web site’s stated
confidentiality policy. The adversary’s capabilities are limited to creating his own ac-
counts on the Web site, running his own Web servers, and writing JavaScript which
the site includes in pages viewed by other users. Neither the site operators nor the
users inspect the adversary’s JavaScript.

More general adversaries might have other tools at their disposal. They might:
compromise the host site; eavesdrop on or corrupt network traffic; infect the user’s
operating system with malware; infect the user’s browser with malware; and use
social-engineering attacks like “phishing” to lure the user or her friends into giving
confidential data away. BFlow does not defend against these attacks, and its correct
operation depends on adequate defenses to them that are outside the scope of this
work (e.g. SSL, timely application of O/S security patches, etc.).

The ability to inject arbitrary JavaScript into a page is quite powerful and is
commonly referred to as a cross-site scripting vulnerability. While BFlow does not
aim to solve all attacks available through XSS, it does aim to prevent XSS attacks
from leaking confidential data.

58

Figure 3-1: Malicious JavaScript reads confidential data (a) via the DOM and (b) by
exploiting vulnerable JavaScript.

Figure 3-2: After reading confidential data, the malicious JavaScript leaks confidential
data to an adversary via the (a) adversary’s server (b) Web site’s public data.

Attack Paths

Once the adversary injects JavaScript into the Web site’s pages and a user views a
page, the JavaScript can attempt to read the confidential data displayed on the page
and leak it to the adversary.

There are two possible scenarios for reading the confidential data in this model.
In the first case, the malicious JavaScript runs in the same origin as the confiden-
tial data. This could occur for many reasons; today, Web sites incorporate large
JavaScript libraries like Scriptaculous [69] or Google Maps [34] into their site’s origin
and platforms like Blogger.com inline completely unaudited third-party scripts. In
this case, the JavaScript can read the confidential data directly from the DOM as
shown in Figure 3-1a. In the second case, malicious JavaScript can steal data even
if there is no malicious code in the same origin as the confidential data. Today’s
browsers now support intra-browser communication between scripts from different
origins and developers are already building libraries to use these channels [75]. If li-
braries like these are buggy, then malicious JavaScript running in the browser from a
different origin (and a different frame) could exploit their bugs to read the confidential
data as in Figure 3-1b.

After reading confidential data, the malicious JavaScript can send it to a Web
server using an HTTP request, either to the Web site’s own server or to a third-party
external server. For example, the JavaScript can encode the data in an image name
to be fetched from a server the adversary controls (see Figure 3-2a).

59

Even if the same-origin policy applied to all types of requests and the script could
only send HTTP requests to the Web site’s server, the malicious JavaScript could
leak data via the Web site’s own server. The malicious script could craft an HTTP
request that stores the confidential data back onto the server in a public area. Since
the server no longer realizes that the data is confidential, the adversary can read it
with his own browser (see Figure 3-2b). Similarly, malicious JavaScript could write
confidential data into a browser cookie and then any other code that comes from the
same domain could read the data.

3.3.2 Flexibility and Adoption

The second challenge is to design a system that is easy for developers, Web sites, and
users to adopt.

One aspect of this challenge lies in preventing data leaks while preserving fea-
tures popular among JavaScript developers, such as eval(), communication among
concurrent browser scripts, and communication with remote Web servers. This last
JavaScript use is particularly commonplace and dangerous. Today’s browser scripts
routinely load images and data from multiple independently-administered servers. In
the context of BFlow, such requests can encode confidential information. If one
considers (as one should) a large majority of Web servers to be untrustworthy recep-
tacles for data leaks, BFlow must block requests (e.g, image loads) to such servers
by scripts privy to confidential information. At the same time, BFlow can allow
such requests from scripts that have not seen confidential data. In sum, BFlow
should allow harmless requests to external servers, allow requests that release infor-
mation if the release is the intention of the site owning the data, and detect and forbid
accidental or malicious releases.

The design of BFlow should also be easy for users to install, site developers to
adopt, and extension developers to adopt (in that order of priority). Some level of
complexity is inevitable, but the goal is that deployment effort should be limited to:
1) users installing a browser plugin, 2) site developers deciding which data on their
site is confidential and rearranging the site’s HTML to partition data by confiden-
tiality constraints, and 3) third-party developers designing extensions that handle
confidential data to live within BFlow’s communication restrictions.

3.4 Design

The goal of BFlow is to enforce two properties on how a browser handles data. First,
if confidential data arrives from a Web site, only the human user and that origin Web
site should see any information derived from the data unless the site specifically allows
it to go to another Web site. Second, if the browser sends information derived from
confidential data to the origin Web site, the information must be marked as confiden-
tial unless the site specifically allows the removal of the confidentiality marking. The
main tension in the BFlow design is the enforcement of these properties in a way
that is compatible with how developers use JavaScript in complex Web pages.

60

Figure 3-3: BFlow overview. Untrusted protection zones are shaded.

In outline, the BFlow design is as follows. The BFlow browser reference mon-
itor watches how data flows into, out of, and within the browser. A BFlow-aware
server sends a label along with data it sends to the browser to tell the reference
monitor whether the data is confidential. The reference monitor uses a form of infor-
mation flow control [18] to enforce a confidentiality policy, tracking what data within
the browser might be derived from confidential data. Each browser script runs in a
browser frame, and frames are grouped into protection zones. BFlow tracks data at
the granularity of a protection zone (see Figure 3-3). When data is about to leave the
browser via the network, the reference monitor enforces a safety property on the data’s
label; if the data is going to its origin Web site, the reference monitor includes the
label; otherwise, if the label indicates the data is confidential, the reference monitor
forbids its release unless an explicit declassification exception applies.

3.4.1 Information Flow Control

The BFlow reference monitor’s information flow control system keeps track of what
categories of confidential data the JavaScript in each protection zone may have seen.
The reference monitor (RM) maintains a label for each zone. A label is a set of tags.
A tag is an opaque token supplied by a server that indicates a particular category of
confidential data. The meaning of a zone having a label containing a tag t is “the
JavaScript or HTML in this zone may have observed information derived from data
with confidentiality category t.” A label with multiple tags indicates that the zone
may have observed data in multiple confidentiality categories.

To ensure that a zone’s label reflects the categories of confidential data it has seen,
the RM enforces some rules relating to communication across zone boundaries. The
effect of the rules is that, if information is to flow from zone S to zone R, R’s label
must be a superset of S’s. In the special case of data flowing from a server to a zone,
the zone’s label must be a superset of the label provided with the data. Table 3.1
summarizes this and BFlow’s other IFC rules described below.

A zone explicitly asks to change its own label and specifies which tags to add;
BFlow does not automatically change zone R’s label in response to the data R
receives. BFlow always permits a zone to add any tag to its label. This is safe
because the communication rules described above get strictly more restrictive as the

61

Sender
R

eceiver
D

efault
R

ule
E

xception
Script

in
trusted

zone
A

ny
A

llow
N

/A

Script
in

zone
S

,fram
e

F
,
from

server
W

Script
in

W
’s

trusted
zone

A
llow

N
/A

Script
in

zone
S

A
llow

N
/A

Script
in

zone
R

,
sub-fram

e
of

F
L

S
⊆

L
R

(alw
ays

true)
N

/A
Script

in
zone

R
,
not

sub-fram
e

of
F

L
S
⊆

L
R

T
rusted

zone
proxy.

Source
server

of
W

A
llow

N
/A

E
xternal

server
E

L
S

=
{}

L
S
⊆

D
E

Source
server

W
sending

data
w

ith
label

L

Script
in

W
’s

trusted
zone

A
llow

N
/A

Script
in

zone
R

L
⊆

L
R

N
one

T
ab

le
3.1:

D
efau

lt
IF

C
com

m
u
n
ication

ru
les

an
d

d
eclassifi

cation
ex

cep
tion

s;
zon

es
S

an
d

R
are

u
n
tru

sted
.

T
h
e

p
rototy

p
e

im
p
lem

en
ts

th
ese

ru
les

for
com

m
u
n
ication

th
rou

gh
p
o
s
t
M
e
s
s
a
g
e
B
F
,

th
e

F
ID

ch
an

n
el

an
d

H
T

T
P

req
u
ests,

b
u
t

it
is

m
ore

restrictive
th

an
th

ese
ru

les
for

sh
ared

D
O

M
variab

les
an

d
co

ok
ie

com
m

u
n
ication

across
zon

es.

62

sender’s label grows. In practice, BFlow adds some further restrictions which we
describe in Section 3.4.2. The RM imposes the IFC rules inside user u’s browser to
prevent buggy or malicious scripts from leaking u’s data. At the same time, it is the
server’s responsibility to avoid sending data to u’s browser that u is not permitted to
read because u could have modified her browser to extract all the data available to
it.

The ultimate source of each tag is a particular BFlow-aware Web site. The
browser RM internally adds the source server identity to each tag so that two tags
from different servers are always unique. In typical use, a zone’s label will either be
empty (indicating that the zone has seen no confidential data) or contain just one
tag. A label might contain multiple tags if a zone has consulted multiple categories of
confidential data. A zone’s label cannot contain tags from different Web sites because
it would violate the flow invariant described in Section 3.4.2

A Web site decides what its tags mean. A typical Web site might associate a
different tag with each user, or a tag with each category of confidential data a user
owns. For example, a Web site might store both a confidential photo album and
a confidential blog for user Alice, and associate a different tag with each kind of
data. Then, if the site sends blog data to Alice’s browser, and some JavaScript
that examined the data communicates with the site, the site will know that the
communication (and any resulting stored data) should have the same tag as Alice’s
confidential blog.

3.4.2 Protection Zones

One of the challenges in designing an information flow model for JavaScript comes
from how developers use JavaScript today. Often, developers will construct Web pages
out of many sub-frames, each containing its own JavaScript. Furthermore, within a
single page different sub-frames may have different purposes. For example, a top-level
page may contain a chat tool and an email tool, each contained in its own individual
sub-frame. Each of those tools may in turn contain its own sub-frames. For example,
the chat tool may use two separate sub-frames, one for showing messages and one for
data input.

Existing multi-frame modules like the chat tool typically read shared variables and
call functions across frame boundaries. Modules expect these features to be reliable,
so BFlow should accommodate this behavior; if one sub-frame in the module reads
confidential data, then it should still be able to communicate with the other frames
in the module without excessive coordination. BFlow addresses this challenge by
applying IFC at the granularity of a protection zone.

A protection zone is a group of one or more browser frames, including their DOMs
and the JavaScript running inside of them, plus its own set of browser cookies. All
the scripts and data within a zone share a common label. Grouping frames into zones
gives developers an easy way to modularize their scripts. Once the scripts are in a
common zone, they can communicate with each other regardless of any label changes,
even if a script in one of many sub-frames changes the zone’s label unilaterally.

63

A Web site also has a special trusted zone which always has an empty zone label;
JavaScript running in the trusted zone can bypass BFlow’s browser constraints. A
Web site uses the trusted zone in cases where confidential data is allowed to leave the
system by a browser script, but the Web site developers must inspect such scripts
carefully.

To create a new zone, JavaScript in an existing zone requests a new zone id from
BFlow and then loads a document from the server (specifying the new zone id)
into one of the zone’s existing frames. When the HTTP response arrives, the RM
recognizes that the zone id is new, and creates its local representation of the zone.
However, not all frames have their own zone; when a parent creates a sub-frame, by
default the RM places the sub-frame in the same zone as the parent as shown by Z1
in Figure 3-4.

Flow Invariant

BFlow maintains a flow invariant over the browser’s frames and zones: first, the
browser’s top level frame must be in the trusted zone and all its sub-frames must
be able to legally send messages to the top level frame. Second, if a parent frame
P has child frames Ci, then the P must be able to send messages to each of its
children legally. More specifically, if P has label LP and P ’s children have labels LCi

,
then ∀i, LP ⊆ LCi

. This invariant must hold regardless of what zone each frame is
a member of. The BFlow RM preserves the flow invariant by checking the target
frame F and target zone Z before changing a zone’s label.

When a zone Z changes its label, all other scripts running in Z will have the new
label even if they are running in other frames; no zone other than Z will experience
a label change. However, adding t to LZ may permit another zone ZP to add t to
its label because of the invariant, if adding t to LZ means all of ZP ’s children now
contain t.

Maintaining the invariant slightly limits the kinds of frame hierarchies possible: an
untrusted frame cannot contain tags from different Web sites and a parent frame with
LP = {t} cannot contain a child frame with LC = {}, but it ensures that BFlow can
support existing methods of JavaScript communication described in Section 3.4.3.

3.4.3 Controlling Intra-browser Communication

Tracking the flow of confidential data between scripts within the browser is critical
to preventing leaks because BFlow can only prevent a script from leaking data if
it knows what data the script has seen. This section describes which channels are
available in BFlow between scripts in the same zone and in different zones. We focus
on the Firefox 3.0 browser in which JavaScript has four techniques to communicate
between scripts (other browsers may have other techniques). They are DOM variables,
browser cookies, the postMessage channel, and the fragment-ID (FID) channel.

64

Figure 3-4: Web page frame hierarchy with zones and labels. Each box is a frame.

Within One Zone

BFlow need not restrict communication between two scripts in the same zone, since
all of the JavaScript, frame DOMs, and cookies within a zone share the same zone
label. It is important that BFlow accommodates scripts from different frames that
read and write each other’s DOM variables, since many sites have scripts that use
that feature.

Between Two Zones

Since two scripts in different zones can have different labels, BFlow must restrict
communication between two such scripts according to the IFC rules shown in Table
3.1. It does so through a combination of unconditionally forbidding some operations
between scripts from different zones, and allowing other operations only when the
zone labels allow.

Although today’s browsers allow scripts in the same origin to read and write
each other’s DOMs, BFlow unconditionally forbids JavaScript in two different zones
from reading or writing each other’s DOM variables or cookies. This is a conservative
restriction due to our implementation and the only restriction BFlow places on code
that has not seen confidential data. A better implementation would allow a script in
zone S to write to variables and cookies in zone R if R’s label were a superset of S’s
label.

Instead of using shared DOM variables and cookies, BFlow allows scripts in
different zones to send explicit messages to one another using an API function called
postMessageBF. To preserve the IFC rules, the RM only delivers the message if the
sender’s label LS is a subset of the receiver’s label LR; if not, it will drop the message.
BFlow’s postMessageBF replaces the postMessage API found in HTML5 because
postMessage does not enforce the IFC rules.

The fourth intra-zone communication method is the FID channel which is an
artifact of a script’s ability to set the location of both its sub-frames and the top

65

level frame. Setting the location of frame F communicates data to frame F [8].
BFlow does not specifically restrict the FID channel; instead, BFlow ensures that
any use of the FID channel is legal according to the IFC rules in Table 3.1 because
BFlow preserves the flow invariant. Without the invariant, a sub-frame P with
label LP = {t} that has read confidential data could leak it to a child frame C with
LC = {} that does not have the proper label, i.e. LP 6⊆ LC .

These IFC rules alone might be too strict for an untrusted script that handles both
confidential and public data, and also needs a way to reveal the public data. For ex-
ample, an untrusted script might need to read a user’s confidential email address with
label L = {t} and also need to save public data with L = {} to the server. BFlow
supports this using an exception to the strict IFC rules called browser declassification.
BFlow permits a script running in a zone from server W to send messages to scripts
in the trusted zone of server W and vice-versa, so the untrusted script with label
LR = {} can request the email address from the trusted script and the trusted script
can respond with the email address despite R’s label if the site developers allow it to.

3.4.4 Controlling Browser-Server Communication

In addition to data flowing within the browser, data can also flow between the browser
and Web servers in HTTP requests and responses. To track these flows, the BFlow
reference monitor interposes on requests sent out by the browser and on responses
that arrive at the browser. When handling an HTTP request from a zone that has
seen confidential data from server W , BFlow treats the source server W differently
from any other external server Ei. Since W sent the confidential data in the first
place, BFlow can safely send HTTP requests containing the confidential data back
to W . Sending to any other server Ei requires a declassification exception, whether
Ei is BFlow aware or not.

Source Server Protocol

For communication between the browser and the source server, the BFlow RM and
the server include labels in each HTTP request and response. The server labels re-
sponses so that the browser RM will know what label to apply to each zone. Similarly,
the browser RM labels requests so that the server will know what data is confidential
otherwise, attacks like that shown in Figure 3-2b might succeed.

When a browser script makes an HTTP request, the BFlow RM sets the label
of the request equal to the script’s zone label, i.e. Lreq = Lzone. Labeling the request
according to the script’s label ensures that the server will know what confidential
data the request may contain. If the request causes the server to store data, the
server should store the label along with the data and return the label if a subsequent
request reads it.

By default, the server’s HTTP response will have the same label as the request
(Lreq = Lresp). This ensures that any confidential data contained in the request will
propagate to the response and the label of the zone that receives the response will
reflect the confidential data in its label. To avoid inappropriately leaking confidential

66

data, the server should not use any data with tag t to generate the response unless
the response’s label will contain t.

Also, since any user’s browser can ask to add t to a zone’s label (including users
who do not have permission to read data with tag t), before sending data with tag t
to the browser, the server first checks whether the user logged into the browser has
permission to read the data.

In addition to asking the RM directly, a script can also add a tag t to the target
zone’s label as part of an HTTP request. This allows a parent frame to load a page
into one of its sub-frames in a different zone with a different label. It is short-hand for
first loading a script into the sub-frame, having the sub-frame change its own label
and then requesting the additional confidential data. The server then adds t to the
response’s label Lresp = Lreq ∪ {t}. This method only works if the frame that makes
the request has permission to load a page into the target frame which implies that
the requester can send a message to the target; either the two frames are in the same
zone, or the target frame is a sub-frame of the requester.

Propagating the information flow labels to the server and back ensures that the
client cannot leak data by bouncing it off the server. In IFC terms, if a script in zone
X tries to send data to zone Y via an HTTP request through the server, the RM will
update Y ’s label with the server response’s label LY ← LY ∪ Lresp and therefore the
communication will abide by the IFC rule LX ⊆ LY .

External Servers

BFlow forbids communication from scripts that have seen confidential data to exter-
nal servers, conservatively assuming that they are not trustworthy. This applies both
to image loads and to AJAX requests. The RM permits a script to send a request to
an external server if the script has not seen confidential data.

This rule is too restrictive for some Web sites. Applications such as mashups may
need to request data from external servers in a way that the request itself necessarily
leaks confidential information. In such sites, the developers can create a request
declassification rule which allows certain kinds of confidential data to exit to certain
external servers.

For example, a Web site W might want to fetch the weather forecast for a user
based on the user’s postal code even though the postal code is confidential. If W ’s
developers trust the weather server E enough to reveal its users’ postal codes, then
W can add a request declassification rule that says “any data tagged with tag ti may
be sent to E” and BFlow will permit scripts that have read data with ti (but only
ti) to send HTTP requests to E. More precisely, the site administrator would add ti
to E’s declassification set DE (see Table 3.1).

3.5 Visible Model

Developers and users must understand some aspects of BFlow.

67

3.5.1 Developer Visible Model

Labels

An application developer must create a labeling scheme for the application’s data, an
arrangement of the application’s HTML and scripts into frames and zones, and plan
for labeling the zones. Zone labels are usually predictable: for example, the developer
knows that a certain frame will display the user’s confidential postal address and that
its zone will always have exactly the corresponding label. This predictability prevents
unexpected increases in labels and surprise violations of BFlow’s rules.

How many tags a site uses and what the tags correspond to are largely application-
specific, and BFlow does not prescribe any particular approach. In general, for each
collection of data that some users and/or some external sites should be able to see,
but others should not, it is likely that a tag should be associated with that data.
Many sites will have a handful of tags for each user, for example one for the user’s
contact details and one for the user’s confidential blog.

Frames

A typical BFlow Web page will consist of several frames. The top level frame will
always be in the trusted zone. It will have sub-frames, each with a zone and label, to
contain untrusted scripts. Scripts that need to see different kinds of confidential data
will be in separate zones. A particularly common case will be separate frames that
display images from external servers but handle no confidential data, and frames that
handle confidential data. Existing applications may need to re-factor their HTML in
order that scripts that handle data with different confidentiality tags are in separate
frames and zones.

As an example, a page that allows a user to edit both his confidential phone
number and his public personal profile would contain two frames in separate zones:
one containing the phone number, and one containing the personal profile. Because
the zones are separate, the user can edit his profile without the risk of a script reading
the confidential phone number and inserting it into his public profile.

Data that the user enters into a form field takes on the label of the zone surround-
ing the field. Thus, even if a frame does not initially contain confidential data, if
the frame contains a form field into which the developer knows the user may enter
confidential data, the developer should put the field in an appropriately labeled zone.

Developers can also privilege-separate large pieces of code into a small portion
running in a trusted zone and a large portion running in an untrusted zone. The two
portions can communicate using browser declassification. For example, the trusted
portion could provide a limited API to access external Web servers.

Linking

If an untrusted page has not seen confidential data, it can link to external Web sites,
but if it has seen confidential data, it can only link to external Web sites if the
destination server has a request declassification rule.

68

Since the top level frame in a BFlow Web page must be in the trusted zone,
when an untrusted page with label L = {t} loads a new page into the browser’s top
level frame, the BFlow does not propagate tag t to the top level frame. Since this is
equivalent to declassifying the t tag, the trusted page should not transmit any unique
data from the HTTP request such as POST parameters to an untrusted frame unless
its label also contains t.

Confidential Data and External Servers

As described in Section 3.3.2, today’s browser scripts sometimes load images and data
from external servers after seeing confidential data.

One example of this is a confidential blog page that loads a static background
image from an untrusted photo Web site E. Since the HTML contains confidential
data and JavaScript, BFlow cannot determine if the request for the image has
been influenced by confidential data or not. If the script requested the image after
computing on the confidential blog content, the HTTP request would be leaking data
to E. However, in this scenario, the image that the page is loading is static and
is not based on the confidential data. To build such a page, the site developer can
pre-declare a set of external Web documents which BFlow prefetches directly from
the external servers and then caches on the blog’s server. Since the requests have
not been influenced by confidential data, they will not leak any data to the external
servers. When the browser loads the image, it fetches it from the blog server, not the
photo server E, thus decoupling the request made by the browser from the request
that arrives at the photo server and protecting the blog’s confidential content.

Prefetching does not work for all Web applications: a script may not know what
data it needs until after reading confidential data, or the potentially-needed data may
be too large to prefetch. For example, a mashup script that displays a user’s location
on an externally-fetched map will not know what map images to fetch until after
it reads the confidential address. In this type of mashup, BFlow cannot protect
the privacy of the addresses from the map server. However, keeping the address
confidential is an unrealistic security requirement because the map server cannot
function efficiently without the address. A more realistic security requirement is that
the mashup only sends the confidential address to the map server, and not to other
external servers. BFlow can enforce this requirement using request declassification
as described in Section 3.4.4.

Script Changes

Depending on the Web site, untrusted scripts and libraries may or may not need to
understand the information flow system. For some Web sites, the site programmers
may be able to determine what label an untrusted script should run with, so that the
untrusted script need not be aware of BFlow. For example, if a Web site imports
a JavaScript library like Scriptaculous [69] and never expects the library to contact
external servers or communicate with different zones, the site could just use the
correct non-empty label and import the library without modifications. For scripts

69

that only read data and render it to the user, the site can just load the script with a
label containing all the tags the user can read.

Server Code

A server that supports BFlow scripts must be able to record the label of data arriving
from a script, and emit that label when it later serves the same data to a script. A
straightforward approach is to store a label with each file or database entry. Though
not necessary, it might also be helpful for the server to use an IFC-aware operating
system or server framework [22, 89, 46].

Debugging

To debug applications written for BFlow, developers test their HTML and JavaScript
in a BFlow-enabled browser which reports error messages pertaining to BFlow’s
information tracking system.

3.5.2 Users Visible Model

End users interact with a BFlow site much like they do with Web sites today.
Depending on the Web site, a user may need to understand that a sub-frame may
have a different privacy policy from the rest of the page. For example, a Web site
that includes confidential content may also include an untrusted JavaScript widget
running in a sub-frame that has not read confidential data. In this case, it is the Web
site’s responsibility to indicate to the user that any data he types into the sub-frame
may be visible to the public. This responsibility is more explicit in BFlow, but
it already exists in any Web site that includes content from untrusted programmers
whether using sub-frame isolation or not.

3.6 Implementation

BFlow requires browsers to confine browser JavaScript into protection zones and
to exchange security metadata with servers in each HTTP request. Since today’s
browsers do not implement these features, and replacing the installed base of Web
browsers is difficult, the major challenge in implementing BFlow is making it easy
to deploy to browsers.

3.6.1 Client Implementation

To ensure that our BFlow client modifications are easy to install for end users, we
implemented the client-side reference monitor as a Firefox 3 plugin. The plugin is
a portable JavaScript and XML package that runs on any platform that supports
Firefox 3; users can install the plugin with only two mouse clicks. Firefox does not
provide many security related hooks in the plugin interface, but it does implement the
same-origin policy which provides fairly strong isolation between different origins. The

70

prototype plugin’s implementation currently works only with Firefox’s plugin API,
but it should be possible to implement similar plugins for other browsers.

The BFlow plugin takes advantage of the existing SOP in the browser to imple-
ment basic isolation between protection zones. It associates each zone with a unique
unforgeable domain name, and each different BFlow Web site has its own disjoint
set of zone domain names. Zone domains are of the form Z.site where Z and site

are the respective unique names of the zone and Web site. BFlow uses the form
Z.site rather than Z.site.com because browsers permit a script to remove its host
prefix from its domain name before the SOP comparison; using Z.site.com would
allow two scripts with zones Z1.site.com and Z2.site.com to remove Z1 and Z2,
and thus communicate based on the common name site.com.2 Separating zones
into different domains uses the SOP to prevent scripts in one zone from reading and
writing DOM variables and cookies in another zone.

However, the SOP alone does not prevent JavaScript in two different zones from
colluding to leak confidential data; a script in one zone can communicate with a
script in another zone using cross-domain channels like the fragment-ID channel and
postMessage described in Section 3.4.3. BFlow’s Firefox plugin disables postMessage,
and the flow invariant described in Section 3.4.2 ensures that all available fragment-ID
channels in Firefox 3 are also legal data flow paths according to BFlow’s information
flow rules. The BFlow prototype relies on the FID descendant policy in Firefox 3
and other recent browsers that limits the channel to parents sending data to children
and frames sending data to the top-level frame [8].

When the browser makes an HTTP request to a zone domain on a BFlow aware
server W , the browser RM directs the request to a Web proxy server running on
W which then forwards it to an Apache Web server process on W . Using a proxy
prevents the browser from attempting to resolve the zone’s DNS name which is not
an actual DNS domain name; however, the proxy is specific to our prototype and the
same functionality could be built into the Web server.

The browser plugin is 1003 lines of JavaScript and 89 lines of XML including com-
ments. To intercept HTTP requests for inspection and modification we use Firefox’s
“http-on-modify-request” and “http-on-examine-response” hooks in its XPCOM ob-
server service. These hooks are called before sending each HTTP request and before
returning the response to the rendering engine respectively.

3.6.2 User Authentication

A user can initially authenticate himself to a BFlow site using any technique, but
any script used in a login Web page should be a trusted script. It could be possible
to use an untrusted script on the login page with a tag to protect the password data,
but the site would need to generate a new tag for each login attempt, or else a script
could transmit the username and password to another user that attempts to log into
the system later.

2The RM uses Firefox’s SOP implementation, so it handles domains like cnn.co.uk.

71

After logging in, the user authenticates each subsequent HTTP request using an
authentication cookie. The cookie is confidential data, but BFlow does not protect
it using the information flow system because the browser must authenticate the user
for all HTTP requests, even requests for public data where L = {}, so the cookie
cannot have its own tag, otherwise a public page would also be protected by the
cookie’s tag. Instead, BFlow associates the cookie with the Web site’s real domain
name, for example, site.com.

Untrusted JavaScript running in a protection zone cannot read the Web site’s
authentication cookie because the untrusted zone’s domain is of the form Z.site

and the authentication cookie is from the domain site.com. Since the domains do
not match, or share a suffix, the same origin policy prevents the untrusted JavaScript
from reading the authentication cookie. However, a standard browser will not send the
authentication cookie for requests originating from Z.site for requests to site.com

because of the SOP, so the BFlow RM attaches the cookie to these HTTP requests.

3.6.3 Server Implementation

In the BFlow prototype, the server implements the interface described in Section
3.4.4 with server processes called gateways. The client sends raw tag values to the
server in the headers of each HTTP request, and the server response with tag values
in the response headers.

The server uses a gateway process to handle each request which in turn invokes
application logic. The gateway launches the application logic with the read privileges
of the user, so it can only read the data that the end user may read. This ensures
that the user will not receive data he does not have permission to read.

Although it is not necessary for a BFlow server to use an IFC operating system,
the prototype’s gateways and application logic both run in the Flume IFC system [46]
which provides IFC within the Linux operating system. Running the application logic
in an IFC OS has the advantage that untrusted code can safely run both in the client
and in the server in a unified IFC space.

At a lower level, each gateway is a long-running Python FastCGI process. The
gateway serves static files directly off the file system and queries application request
handlers, which are Flume-confined FastCGI processes, to serve dynamic HTTP re-
quests. The gateway is 4144 lines of Python including comments.

3.6.4 Server Storage

As described in Section 3.4.4, a BFlow server can allow untrusted scripts to store
data on the server as long as the server associates a label with the data when writing
and reading. The BFlow server prototype implements a key-value storage system
within its IFC environment. Untrusted browser scripts can read and write data to
server storage using AJAX HTTP requests.

When an AJAX request stores data on the server, the storage system labels the
data with the label of the request. Later, when an HTTP request reads that data,
the storage system only reads data whose label is a subset of the HTTP response’s

72

label. The underlying storage system is an IFC database wrapper built on top of
PostgreSQL that resembles the SeaView [52] data model.

Although the prototype storage system runs in an IFC operating system, it is not
necessary to use one. In many cases, it should be sufficient for the server to store a
label alongside the data and apply the label when reading the data. Together the IFC
database wrapper and the HTTP storage request handler are 3288 lines of Python
including comments.

3.7 Applications

To demonstrate that BFlow preserves privacy and is flexible enough to build Web
platforms, we implemented two Web applications within the BFlow framework and
a collection of untrusted JavaScript extensions.

3.7.1 BF-Blogger

Blogger [12] is a popular blog hosting service that supports confidential blogs that
only specific users can read. Blogger allows a blog’s author to install third-party
JavaScript extensions that run in the browsers of all viewers of the blog. These
extensions can use confidential data, such as recent posts in the current blog. Other
extensions talk to external Web servers: for example, one extension displays random
images from a photo-sharing Web site. All JavaScript runs in the same browser frame
with access to the blog’s confidential data, including the blog posts and the reader’s
browser cookies making it possible for malicious scripts to leak the data.

BF-Blogger is derived from Blogger’s HTML, JavaScript, and third-party exten-
sions, but it runs in BFlow. In a BF-Blogger blog, the top-level trusted zone con-
tains one child and protection zone for the main blog content (including Blogger’s
JavaScript) and a separate child and zone for each extension. BF-Blogger associates
the data from a confidential blog with tag t.

The main blog content’s zone contains the blog’s confidential content, so it starts
with the label L = {t}. Each extension zone starts with an empty label L = {}. An
extension can make an HTTP request to the server to read confidential blog contents,
thus changing its label to L = {t}.

We ported seven Blogger extensions to BF-Blogger. The Twitter and Flickr ex-
tensions fetch data from external Web servers; they do not read the confidential blog
contents, so BFlow permits them to fetch the external data. The Recent Posts
extension fetches the current blog’s contents, computes a set of post snippets, and
displays them to the user. The Cbox extension implements a multi-user chat room.
Cbox consists of multiple cooperating frames, each with its own JavaScript and the
individual frames read and write the other frame’s DOM. BF-Blogger runs Cbox as if
it had read confidential data (L = {t}) because it stores data on the server, and users
might chat about the confidential blog contents. Cbox consists of multiple frames,
but since BF-Blogger groups them into a single protection zone, BF-Blogger can set
the zone label just once. This changes the label for all of Cbox’s frames without

73

BF-Blogger being aware of all of Cbox’s sub-frames. Because the chat contents might
be confidential, we modified Cbox to store its data in BFlow server storage with
label L = {t}. We also wrote two Evil extensions that run in both Blogger and
BF-Blogger; their goal is to leak data from a confidential blog (see Section 3.8.1).

Extension developers for BF-Blogger need not understand the details of BFlow
other than that they may not make external HTTP requests after reading confidential
data.

3.7.2 BF-Socialnet

BF-Socialnet is a multi-user social network that uses BFlow to protect privacy. Each
user has a profile and a set of friends. BF-Socialnet permits JavaScript extensions to
run within its pages with access to the user’s profile and friend list. We implemented
two JavaScript extensions, a profile comparison tool and a messaging tool to exercise
BFlow’s support for different communication patterns and privacy policies.

BF-Socialnet’s base friend privacy policy is that user Alice’s profile and friend list
is only visible to Alice’s friends. In addition, BF-Socialnet supports personal data
which only Alice may read and pairwise data that a particular pair of users may read.
To implement these policies, BF-Socialnet uses a set of tags for each user, one tag
for personal data that only Alice can see (talice), one tag for the Alice’s friend-visible
data (talice:friends), and one tag for each of Alice’s friends for pairwise-visible data; for
example if Alice is friends with Bob, BF-Socialnet would use the tag talice:bob.

The BF-Socialnet page has a trusted root page that contains different sub-frames
for each third-party extension. The root page has multiple frames for each extension,
each with a different confidentiality mode. For example, in one frame, the messaging
extension runs in a mode that allows it to read all data that the user can read. In a
separate frame, the messaging extension runs with a pairwise tag determined by the
root page. The user selects who to send a message to using a drop down box in the
root frame, and the root frame adjusts the label on the frame accordingly. The profile
comparison tool only reads data, and therefore only runs in a mode that allows it to
read all data that the user can read. It uses AJAX requests to read the profiles of all
the user’s friends, compares them in the browser, and outputs a list of friends with
similar interests.

User and Developer Visible Model: In BF-Socialnet, an application writer
needs to know what confidentiality mode his application will run under and what
data it hopes to read. However, he does not need to understand labels, tags, or the
information flow model. Similarly, users should be able to understand that the differ-
ent sub-frames abide by different confidentiality modes because data that they input
to a sub-frame will abide by the frames confidentiality mode. This decision is similar
to the decision that users make currently when choosing their profile’s privacy policy,
so we expect users will be able to understand it.

74

Implementation

BF-Socialnet is implemented as 283 lines of Python and 124 lines of HTML using
the Django Web framework [20]. BF-Socialnet runs as a Flume confined process and
saves data on the server in the IFC database wrapper described in Section 3.6.3. The
profile comparison tool and the messaging tool are, respectively, 104 and 103 line
Django applications.

3.7.3 W5

W5 is a Web server platform in which any third-party programmer can write an appli-
cation and deploy it to a utility-like W5 server. W5 serves as an example application
made possible by combining BFlow with an operating system level IFC system.
The unique property of W5 is that any application running on a W5 server can read
data that other applications store on the same server even if that data is confidential
to the user (such as a user’s confidential photos). However, the W5 server prevents
applications from leaking that confidential user data to unauthorized recipients, even
to the author of the application. W5 accomplishes this by running applications in
an IFC environment on the server, running the application’s HTML and JavaScript
in BFlow, and integrating the two IFC systems in a single information flow realm.

W5 needs to use BFlow in the browser because the third-party code running on
the server can generate arbitrary JavaScript. Without BFlow, that JavaScript could
leak confidential data from the server to an adversary by sending HTTP requests that
contain confidential data to an adversary’s Web server.

Reusing and repurposing of data is an advantage to applications that want access
to existing data from other applications because an application writer need not per-
suade users to enter or upload their data into his application if it already exists in
another W5 application. Users benefit because they can try new applications with-
out the overhead of reinserting their data, and users can use applications without
worrying that the application will steal their data.

The main challenge in building W5 is to support different types of applications
and different ways to share data between applications. Using a high-level IFC policy
helps to address this challenge because the applications can share data with each other
as long as the high-level confidentiality policy is upheld. This section demonstrates
how to combine BFlow and Flume to construct W5.

High-level Architecture

Figure 3-5 shows the high-level W5 architecture. W5 involves three main entities:
providers, developers, and end-users.

The W5 provider supplies a server3, database, and file system, and runs the W5
framework to control how applications use these resources. To enforce the framework’s
security policies, the provider supplies “gateway” processes that reside on the server

3For clarity, we use the term server, but W5 could generalize to a cluster of servers.

75

Figure 3-5: W5 overview showing three applications.

and govern all communication between the W5 server applications and the end-user
browsers.

Developers deploy application software on the W5 server. They can upload bi-
naries, libraries, and scripts to W5, and assemble them into Web applications. W5
gives developers wide latitude in how to engineer their applications, allowing use of
third-party libraries and plugins along with most of the facilities of the underlying
operating system (e.g. Linux). Applications can read and write shared data, and
applications can exchange data with external Web servers. The intent is that anyone
can be a W5 developer.

End-users interact with W5 sites through Web browsers. When establishing an
account, logging on, or configuring her security preferences, the user interacts with
the W5 gateway via an application start page. Otherwise, developer-written code
handles her data and requests via the gateway.

W5 can enforce open-ended user- or provider-specified policies. The default policy
lets a user mark data as one of three levels of privacy: private, friends-only, and public.
Any application may read a user’s private data but may only cause it to be revealed
to that user’s browser. An application may reveal a user’s friends-only data to the
browser of someone on the user’s friends list. An application may reveal public data
to anyone.

Implementation

The W5 server prototype runs on the Flume operating system [46], which provides
DIFC extensions to a standard Linux operating systems. Third-party applications run
as sandboxed Flume processes. As such, they can access the core Linux API (e.g.,
fork, file I/O, pipes, etc) but cannot access those that would allow data leaks or
privilege escalation (e.g., ioctl, ptrace, bind in certain circumstances, etc). When
Flume does allow API calls, it tracks user information as it flows between processes,
files and the database. W5 uses Flume’s DIFC file system and BFlow’s database
for persistent labels.

The W5 gateway also runs as a process in user space, but owns many sensitive
privileges (such as the ability to export user data) and must therefore run outside a
strict sandbox. In this sense, the gateway sits at the security perimeter of the server:

76

third-party applications must go through the gateway to communicate with clients
or other outside network hosts.

At a lower level, the gateway is a long-running Python FastCGI process. The
gateway serves static files directly off the file system and forks a new Flume-confined
CGI process to serve each dynamic HTTP request. W5 currently supports applica-
tions written in Python as well as binary executables. The gateway is 4641 lines of
Python and the W5 database is a 3400 line Python wrapper around a PostgreSQL
database.

W5 Applications

To demonstrate the feasibility of the W5 platform, we built a number of extensible
applications that exercise different parts of W5. All of these applications are written
in Python and use the Django framework, which explains why they require only a
small amount of source code.

Calendars: W5 has two separate calendar applications, Calendar and Weather-
Calendar. Together, they demonstrate how two mutually distrustful applications
can work together, and how an application can communicate outside the W5 server
within the W5 security policy. The Calendar is a standard calendar program that
stores event dates and times. WeatherCalendar is similar to the Calendar and reads
Calendar’s database entries, but also periodically fetches data from an online weather
database [85] and displays the weather alongside the calendar data. The Calendar
application is 206 lines of code, and the WeatherCalendar is 321.

W5 allows WeatherCalendar to read Calendar’s database entries and use them in
its event listing, but W5 ensures that WeatherCalendar cannot leak the user’s confi-
dential Calendar entries, despite communicating with the remote weather database,
even if the WeatherCalendar is malicious.

Blog: W5 has a blog application that demonstrates W5’s support for sharing data
between users, read access control and search functionality. A blog author can config-
ure each individual blog and blog post to be publicly readable, or to have restricted
read access using different levels of privacy as described above.

The Blog also supports searching through the blog posts by keyword. It might
seem that an application in W5 could not support an application that searches
through all the posts because they all have different secrecy labels. A process that
reads each post and checks for matches would likely read a post that the user is not
allowed to read and thus become unable to send its results back to the client. To
implement keyword searching, W5’s database creates a view for the user that con-
tains only data that the user has permission to read. This ensures that the keyword
matching query will only return the posts that are both readable and match the
search query. The Blog application is 268 lines of code.

W5 enforces the blog’s read access controls, so users need not trust that the blog
application implements the correct access control checks; users only need to trust that
W5’s gateway and IFC system are implemented correctly. Users configure their read

77

access controls through an interface to the W5 gateway, and the W5 enforces it on
the blog application.

Photo Sharing and Editor: The W5 photo sharing application illustrates data
sharing between applications. Users create albums, upload photos, and view albums.
Like the blog, users can also view other users’ albums, if the album’s privacy policy
allows. The photo sharing application is 451 lines of code.

The W5 photo editor works with the photo sharing application to show how sep-
arate applications can share code and writable data on the server. The photo sharing
application and the photo editing application are written by different developers, yet
the photo editor can edit the photos in the photo sharing application. To implement
sharing, the photo editor imports software modules related to the data format from
the photo sharing application. The photo editor also uses an open-source imaging
library, including C extensions to read and modify images. The photo editor is 119
lines of code, and the C extension is 45,258 lines of code.

As in the calendar and blog applications, W5 permits data sharing between users
and applications. W5 also prevents the photo editor from leaking the users’ confi-
dential photos, whether by accident or maliciously.

3.8 Evaluation

This section evaluates how well BFlow achieves its two main goals: prevention of
confidential data leaks from in-browser JavaScript, and compatibility with existing
developer uses of JavaScript. We focus on these topics rather than performance
because the performance penalty of the browser extension should be minimal and the
HTTP proxy can be eliminated by moving its functionality into the Web server.

3.8.1 Security

Attack Analysis

This section explains how BFlow prevents the example attacks described in Section
3.3.1, Figures 3-1 and 3-2.

In Figure 3-1a, malicious JavaScript resides in the same frame (and thus the same
zone) as the confidential data. BFlow ensures the a zone’s label includes tag t before
it allows the zone to read confidential data with tag t, therefore the malicious script
will be running in a zone with tag t. This label constrains the malicious script so
that it can display data only to the browser’s human reader and the source Web
server. The former is not a leak, since the source server would not have sent the data
unless the browser’s user had permission to read it. The latter is not a leak because
BFlow propagates tag t along with the data, so that the source server will know it
is confidential.

In Figure 3-1b, the confidential data (and benign JavaScript) is not in the same
zone as the malicious JavaScript. If the benign JavaScript accidentally tries to com-
municate with the malicious JavaScript, the BFlow reference monitor will forbid the

78

communication unless the malicious JavaScript’s zone’s label is a superset of the label
of the zone with the confidential data. In the latter case the malicious JavaScript will
be restricted from leaking as described in the previous example.

Attack Examples in Blogger

In order to verify that BFlow fixes existing security problems, we implemented two
JavaScript extensions for Blogger that steal confidential information.

The first extension contains a cross-site scripting (XSS) attack that exploits a
typical script injection vulnerability. We wrote this attack, but we believe that XSS
attacks in the wild would use the same leak technique since today’s Web sites do not
usually use any counter measures. In this attack, the adversary tricks user A into
placing the extension on his blog so that viewers of his blog execute the extension’s
script. When some user B views A’s blog, the extension reads user A’s confidential
blog contents and user B’s Blogger cookie and sends it to an external server using an
image request, thus leaking A and B’s confidential data. This attack works when run
on the real Blogger Web site, but the extension is unable to leak data when run on
BF-Blogger, since BFlow forbids the extension from contacting the external server
because its zone has seen confidential data.

The second attack is meant to approximate the one pictured in Figure 3-1b. We
believe this is a new style of attack and are unaware of such attacks in the wild
because intra-browser JavaScript APIs are currently uncommon. The attack consists
of two parts: the listener and the leaker. The leaker takes the place of a vulnerable
script API and the listener takes the place of an adversary that tricks the vulnerable
script into reading confidential data and sending it to the listener. In this attack the
listener script resides in a frame in the adversary’s origin, and listens for a message
from the leaker. The leaker runs in the same origin as the confidential Blogger page,
and sends confidential data to the listener using postMessage. Again, this attack
works when run on the real Blogger Web site, but the leaker is unable to send data to
the listener with postMessageBF in BF-Blogger, because BFlow forbids the leaker
(who has seen confidential data) from messaging the listener (who has an empty label
L = {}).

3.8.2 Adoption

In order to evaluate the complexity of developer adoption, we ported several existing
Blogger widgets [10, 74, 29] to BF-Blogger. They fall into three categories:

• Those that load data, images, or libraries from external servers, or link to
external servers.

• Those that read the blog’s confidential content using the blog’s JSON feed.

• Those that do both of the above.

Extensions in the first category, such as the Flickr, Twitter, and Buzz extensions
required no changes to work on BF-Blogger. These extensions need no confidential

79

Extension LOC LOC
Included

LOC
Changed

Confidential
Data?

Twitter 6 19 0 No
Flickr 10 0 0 No
Buzz 1 0 0 No
Blogger JS 60 851 0 No
Youtube 1282 610 0 No
Calendar 804 1141 0 No
Weather 2993 797 0 No
Popular Posts 16 0 1 Yes
Commenters 15 0 1 Yes
Recent Posts 9 65 2 Yes
Random Post 34 0 2 Yes
CBox 801 0 89 Yes

Table 3.2: Lines of code (LOC) changed to port existing widgets to BF-Blogger and
whether they see confidential data.

data, so they can be loaded in frames that have an empty label, and are free to fetch
data from external servers.

The Recent Posts extension is in the second category. It fetches the blog’s most
recent posts and displays a list of them on the blog’s side bar. The original version
loads a JavaScript file from an external site, which fails because the script reads
the blog content before making the external HTTP request for the JavaScript file.
To make this extension work in BF-Blogger, we copied the content of the external
JavaScript file into the extension.

The two extensions we found in the third category, namely Popular Posts and Top
Commenters are a form of mashup. They use an external server (Yahoo Pipes [84]) to
process the content of the blog’s confidential comments and then display the results
in the page. They illustrate how a mashup sometimes trusts an external server with
confidential data. To add support for these in BF-Blogger we added a comment feed
to the blog and made the feed available to only the Yahoo Pipes client host. This
feed policy is an explicit declassification of the confidential comments to the Yahoo
Pipes host.

We also examined a number of Google Gadgets [32]. The twenty most popular
Google Gadgets don’t act on confidential data, and just import data from external
sites or from Google’s platform. We ported the generated JavaScript of three Google
Gadgets to run on our platform: Youtube Search, Google Calendar, and Current
Weather. All worked without changes.

The Cbox messaging system required more code changes since it stores persistent
data to the server; it was modified to read included files from our platform and to
store messages using our server storage API.

80

3.9 Deployment

When considering deployment and adoption, it is clear that BFlow faces more hur-
dles than Resin because both the Web site developers and the end users must adopt
BFlow before it can be useful. However, adding support for BFlow in a Web site
does not make that Web site incompatible with today’s browsers; BFlow is back-
wards compatible with browsers. A Web site can adopt BFlow even if none of its
clients buy-in.

To deploy BFlow, a Web site would add support internally, and then enable
BFlow features like third-party JavaScript only for browser clients that support
BFlow. This way, the site will still work for non-BFlow clients, but the users may
be enticed to install the BFlow’s browser extension to use the Web site features. As a
concrete example, Google could integrate BFlow’s reference monitor into the Google
toolbar, and a few popular applications like Gmail. Then users can adopt BFlow
incrementally without requiring the installation of a new browser, or requiring all
users to install BFlow at once.

3.10 Limitations and Future Work

BFlow currently has a number of limitations which we plan to address in future
work.

3.10.1 Information Flow Control

Cross-Zone Communication

The current BFlow prototype isolates zones using the browser’s same-origin policy.
This means that two different zones cannot read and write each other’s DOM vari-
ables and cookies, but two zones should be able to read and write cookies and DOM
variables from other zones as long as their labels would allow.

It should be possible to add cross-zone DOM variable access through the Fire-
fox extension interface. One approach is to add a function call interface similar to
postMessageBF for variable access, but it may also be possible to provide direct lan-
guage integration to avoid changing the JavaScript API. BFlow could use the same
techniques to provide access to cookies in different zones.

Distributed IFC in BFlow

As designed, BFlow only tracks information on a per-Web site basis. For exam-
ple, a single protection zone cannot contain tags from two different Web sites, and
transferring confidential data from one site to another site in a mashup will remove
the tag information from the data. Currently BFlow does not allow this because
the prototype preserves JavaScript’s ability to send messages to the top-level frame
through the FID channel.

81

However, it should be possible to extend BFlow so that zones can read confiden-
tial data from different sites and compute on it, as long as it does not then send data
to a server. This would require a way to close the FID channel after the JavaScript
adds a cross-site tag to its label and more lenient rules for sending requests to external
servers.

Granularity

Currently, BFlow limits the way programmers can design their Web pages due to
BFlow’s coarse grained IFC. Since BFlow only tracks data at the granularity of
frames, a single untrusted browser frame cannot simultaneously handle confidential
data and public data without marking the public data as confidential. In order to
protect the confidential data, a BFlow application would label the frame with L =
{t}, but then the public data would also be labelled with L = {t} and be unavailable
to the public. This is a scenario where finer grained information tracking [57] would
help. Site developers might also have to refactor their HTML to partition data into
frames to separate confidential data with different tags.

Browser Plugins

Another limitation of BFlow is that it does not apply to browser plugins. For
example, BFlow does not support Flash [1] or Java [36] plugins. It may be possible
to integrate BFlow-like IFC to plugin like these.

3.10.2 User Interface and Understanding Labels

Given that BFlow uses frames to do privilege separation, users might be confused
that frames have different security labels and type sensitive data into frames with
L = {} which would leak the data. Web sites can help by marking frames, but
BFlow does not currently provide a solution for this. Future versions of BFlow
could use different user interface annotations to mark frames with label information.

When designing a label based confidentiality scheme, reasoning about labels is
not always straightforward and errors in designing a scheme can result in data leaks.
BFlow does not provide assistance for using labels, but other projects have made
progress in this area [21].

3.10.3 Applications

Applications for Third-Party JavaScript

As we explain in Section 3.1, most of today’s Web sites do not support third-party
JavaScript for security reasons. However, given BFlow, more Web sites could safely
take advantage of third-party JavaScript including widget-like extensions. Web-based
email, calendar, and finance systems could support extensions such as encryption,
page formatting, and layout customization. Many of the popular Greasemonkey [49]
extensions could also work in a BFlow environment.

82

In-Browser JavaScript APIs

The example applications given in Section 3.7 do not use cross-zone messaging be-
cause those applications communicate through the server. In the future, applications
may use more intra-browser messaging, as evidenced by the new JavaScript API
libraries [75] that aim to ease cross-domain messaging. BFlow can provide better
assurances to programmers who want to limit their exposure to such in-browser APIs;
programmers would label their data differently depending on whether they want to
expose it to the API or not. For example, a banking application might be willing
to send information about one month’s payments, but not the account balance, to a
widget that graphs one month’s expenses.

3.10.4 Out of Scope Attacks

There are a number of attacks for which BFlow does not offer a solution; the follow-
ing challenges are left open for future work. If a malicious script with label L = {t}
uses a covert channel [48] like CPU modulation to send data to a script with label
L = {}, it can leak the confidential data. If a malicious script uses a phishing attack
to trick a user into revealing his password the attacker can subsequently login as the
user and read all his confidential data.

As described in Section 3.3.1, BFlow does not protect against a compromise in
the servers, browsers, operating systems, or the BFlow software itself. For example,
if an attacker can trick a user into installing his malicious Firefox extension, he could
disable BFlow. Similarly, Web sites with weak user authentication are vulnerable
in ways that BFlow does not fix.

If an attacker is able to cause a trusted zone in BFlow to load and run his
malicious code, then the script will act with the privileges of the trusted zone and
will be permitted to leak confidential data. However, trusted zones are intended to
be very carefully validated and to never run third-party code; BFlow protects data
in all non-trusted zones from leaks.

3.10.5 Design Variations

Intermediate Designs

Although BFlow is meant to be backwards compatible, Web site developers might
be reluctant to use all of BFlow’s elements, or browser developers might be reluctant
to implement the necessary browser changes to support BFlow. One direction for
future work is to take the BFlow’s goals and try to implement them using fewer
changes to the browser, server, or both. For example, it might be possible to get
most of BFlow’s benefits by running untrusted JavaScript within a browser sandbox,
running with limited outgoing communication channels.

83

Beyond Backwards Compatibility

BFlow incorporates a number of design choices that preserve backwards compati-
bility with existing JavaScript and browsers; redesigning BFlow without regard for
backwards compatibility would likely result in a different design. For example, to use
BFlow, a Web site developer needs to partition JavaScript into different frames and
protection zones depending on whether the Web site developers trust the JavaScript;
developers also need to communicate between these zones using message passing.
Using zones as the IFC granularity is an advantage when reusing existing browsers
because browsers already provide some isolation between frames. However, if there
were no legacy browsers, it might be more convenient if Web site developers did not
need to partition JavaScript. Instead, BFlow could use finer-grained, language-level
IFC as in systems like Jif [57] or Resin, and communication between trusted and un-
trusted JavaScript could use shared variables and function calls rather than message
passing. Future research is necessary for a clean-slate design for untrusted third-party
browser scripts, although projects like Caja [55] do show promise.

3.11 Related Work

One way to understand existing work is in two broad categories: discretionary access
control (DAC) (including capabilities-based systems and least-privilege isolation tech-
niques) and mandatory access control (MAC) (including language-based and runtime
IFC).

3.11.1 Discretionary Access Control

Works like Tahoma [68], Google Chrome [33] and MashupOS [80], Caja [55], and
Bitfrost [63] all fit the DAC model.

Tahoma isolates applications from each other using virtual machines so that even
buggy browsers running malicious code cannot tamper with cookies or DOM objects
in other browsers. Users can choose to share data across Web sites with explicit
whitelists of all other hosts that can be contacted as the page is rendered and as
the JavaScript (or other plugins) run. Thus, Tahoma offers all-or-nothing sharing at
the discretion of the original Web site; it does not allow a Web site to safely give
confidential data to potentially malicious scripts. The Chrome browser implements
the same style of isolation between browser windows, but with process-based rather
than VM based isolation.

MashupOS proposes changes to Web browsers and servers to isolate third-party
JavaScript code with more flexibility than today’s browser frames and finer gran-
ularity than inlining scripts today. MashupOS proposes HTML extensions such as
<Sandbox> and <OpenSandbox>, which occupy a middle ground: they allow the caller
and callee to communicate but only along well-understood channels (as opposed to
across the whole DOM under the status quo). However, MashupOS has the same
limitations that DAC-based operating systems have: the user (or the integrator in
MashupOS’s terminology) must still decide a priori whether to trust a third-party

84

or not with sensitive data because sandboxed scripts in MashupOS can leak data to
external servers. In BFlow, untrusted scripts can decide whether to read private
data at runtime.

Other works like Caja follow MashupOS’s lead. Caja confines a subset of JavaScript
into an object-capability model. As in MashupOS, the goal is to allow finer-grained
sharing of data between cooperating browser components. Like Caja, Bitfrost allows
an application writer to confine her own application so that they can only access
certain operating system services. For example, the author of a single-user card game
would configure the game to voluntarily, and irreversibly give up access to the network
and local storage, at install-time. This way, even if the card game is compromised,
it cannot read confidential data from local storage and send it over the network.
BFlow differs because it does not require application writers to make this choice
at install-time, instead the application can decide at runtime whether it needs these
resources or not.

3.11.2 Mandatory Access Control

By contrast, MAC systems allow untrusted software to compute with confidential
data, while preventing that software from exposing it. MAC has long been a technique
at play in programming languages [18] and operating systems [11, 54, 19], which
modern research [22, 89, 46, 57] suggests is practical for server-side Web applications.
The same tools apply in the context of browser-based security.

The SIF system [15] uses language-based information flow control to maintain
privacy constraints between browser and server, but assumes no malicious or buggy
JavaScript. The Swift system [14] uses IFC to automatically split Web applications
into trusted server-side Java and untrusted browser-side JavaScript. BFlow applies
similar information control analysis, but at runtime. BFlow retains a similar cor-
rectness property, that code will produce a fail-stop error instead of leaking data.
While Swift only applies to JavaScript output by the Swift compiler, BFlow’s refer-
ence monitor applies to all JavaScript code, such as legacy and hand-written libraries.
However, BFlow does make trade-offs; firstly, it has coarser-grained security com-
partments (browser zones) while Swift tracks information flow per variable. Secondly,
BFlow requires users to install a browser plugin and Swift-like system would not.
Using a browser plugin enables BFlow to ease the adoption burden placed on site
developers at the expense of the end users.

Vogt et al. [78] also track information flow control at runtime to prevent cross-
site scripting attacks. However, they have limited their system to client-side changes
only, and therefore cannot prevent attacks that move data back and forth between
the browser and server. Spectator [50] tracks taint between browsers and servers, but
its goal is to detect JavaScript worms, not protect privacy.

Other work proposes curtailing JavaScript’s power to solve traditional XSS prob-
lems. BrowserShield [67] rewrites arbitrary (potentially malicious) JavaScript to a
safer core. BEEP [41] firewalls unsafe JavaScript by limiting which servers it can
contact as it executes. Hallaraker et al. [39] audit JavaScript execution, and use
intrusion-detection techniques to sense anomalous execution patterns. These veins

85

of work show promise against traditional XSS attacks but do not handle data leaks
which involve sending data back and forth to the origin server.

A complementary way to build Web extensions is on the server-side, rather than
on the browser. Facebook [26] and OpenSocial [35] give third-party developers access
to server-based data, allowing them to customize and extend existing server-based
features. The Menagerie [31] system presents an interface to make server data more
accessible. All of these systems use discretionary security controls, requiring users to
either trust or reject third-party code. W5 [47] proposes to achieve similar features
with MAC, but a W5 implementation would need to solve the security challenges
discussed in Section 3.3 to allow third-party server-side extensions to push unvetted
JavaScript to browsers.

3.12 Summary

Many of today’s Web sites currently use JavaScript that they might not understand,
including large libraries and third-party extensions. The combination of these possibly
buggy or malicious scripts and confidential data leaves that data open to attack.
BFlow is a novel browser based information flow control system that allows mostly
unmodified legacy JavaScript to read, compute with, and write confidential data
without the risk of compromising user privacy.

86

Chapter 4

Integrating Resin and BFlow

BFlow and Resin are independent systems, but a Web site can use them together to
its advantage. As argued in Section 2.2, it is difficult for programmers to understand
all the data flow paths within a complex application, yet BFlow relies on the Web
site programmer to propagate IFC labels from an HTTP request to any response that
is derived from that request (see Section 3.4.4).

As a solution, the Web site programmer can use Resin to attach a policy object
to data in an HTTP request, for each tag in the request’s label. Resin will propagate
the policy to variables and persistent storage. Finally, when the application prepares
to send an HTTP response, it can check for policy objects on the data in the response
and then attach a tag for each policy object in the response’s data.

87

88

Chapter 5

Conclusion

Building secure Web sites today is difficult and error prone, despite the growing
maturity of Web technology. Web server software continues to exhibit security vul-
nerabilities such as cross-site scripting, SQL injection, HTTP response splitting, data
leakage, and forgotten authorization checks. Web sites use increasing amounts of
JavaScript, much of which they do not write. In some cases, Web sites sacrifice data
confidentiality in order to support third-party JavaScript.

At a high level, these vulnerabilities are due to data flowing where it should not,
and this work shows that by tracking data flows, it is possible to prevent these faulty
data flows, and the vulnerabilities they cause.

5.1 Resin

Resin provides programmers with tools to convert an implicit data flow plan into
an explicit data flow assertion, and then have Resin check that assertion on all data
flow paths, even where the programmer may have forgotten. The assertions allow
a programmer to reason about the security of the system as a whole and enforce a
high-level security plan without having to worry about every possible data flow path
in the bulk of the system.

The contributions of Resin are the idea of a data flow assertion; a method for
implementing data flow assertions using filter objects, policy objects, and data track-
ing; and finally, an evaluation showing that data flow assertions are concise, effective,
and incrementally deployable.

5.2 BFlow

BFlow is a system that makes it possible for Web sites to incorporate untrusted
JavaScript and allow the JavaScript to compute with confidential data without the
risk of leaking that data. To accomplish this, BFlow adds information flow control
to the browser, and to the browser-server interactions using an in-browser reference
monitor and small changes to the server. Using information flow control, BFlow
determines whether untrusted JavaScript may have seen confidential data, and if so,

89

BFlow prevents the JavaScript from leaking that data to users who lack permission
to read it.

The contributions of BFlow are a set of information flow control rules that
govern the JavaScript communication mechanisms, a mapping from BFlow’s IFC
rules to the browser’s existing JavaScript isolation system, and an abstraction called
a protection zone that eases the deployment of existing JavaScript into BFlow.
Together, these techniques allow untrusted JavaScript to read, compute with, and
display confidential data without the risk of leaking that data.

5.3 Summary

This dissertation presents Resin and BFlow, two systems that can improve the state
of Web security today through data tracking. We hope that programmers will adopt
this work, extend it to suit their needs, and find new applications for the technology.

90

Bibliography

[1] Adobe. Flash. http://www.adobe.com/products/flash, January 2009.

[2] Gail Ahn, Xinwen Zhang, and Wenjuan Xu. Systematic policy analysis for high-
assurance services in SELinux. In Proceedings of the 2008 IEEE Workshop on
Policies for Distributed Systems and Networks, Palisades, NY, June 2008.

[3] Anne H. Anderson. An introduction to the Web services policy language
(WSPL). In Proceedings of the 2004 IEEE Workshop on Policies for Distributed
Systems and Networks, Yorktown Heights, NY, June 2004.

[4] Jeremy Bae. Vulnerability of uploading files with multiple extensions in phpBB
attachment mod. http://seclists.org/fulldisclosure/2004/Dec/0347.

html. CVE-2004-1404.

[5] Steve Barker. The next 700 access control models or a unifying meta-model? In
Proceedings of the 14th ACM Symposium on Access Control Models and Tech-
nologies, Stresa, Italy, June 2009.

[6] Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and K. Rus-
tan M. Leino. Boogie: A modular reusable verifier for object-oriented programs.
In Proceedings of the Fourth International Symposium on Formal Methods for
Components and Objects, Amsterdam, The Netherlands, November 2005.

[7] Mike Barnett, K. Rustan, M. Leino, and Wolfram Schulte. The Spec# program-
ming system: An overview. In Proceedings of the Workshop on Construction
and Analysis of Safe, Secure and Interoperable Smart devices, Marseille, France,
March 2004.

[8] Adam Barth, Collin Jackson, and John C. Mitchell. Securing browser frame
communication. In Proceedings of the 17th USENIX Security Symposium, pages
17–30, San Jose, CA, USA, July 2008.

[9] Lujo Bauer, Jay Ligatti, and David Walker. Composing security policies with
Polymer. In Proceedings of the 2005 ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI), pages 305–314, Chicago, IL,
June 2005.

[10] Beautifulbeta. Blogger widgets. http://beautifulbeta.blogspot.com, Jan-
uary 2009.

91

[11] David E. Bell and Leonard La Padula. Secure computer system: Unified expo-
sition and multics interpretation. Technical Report MTR-2997, Rev. 1, MITRE
Corp., Bedford, MA, USA, March 1976.

[12] Blogger.com. Site. http://www.blogger.com, January 2009.

[13] Walter Chang, Brandon Streiff, and Calvin Lin. Efficient and extensible secu-
rity enforcement using dynamic data flow analysis. In Proceedings of the 15th
ACM Computer and Communications Security Conference (CCS), pages 39–50,
Alexandria, VA, October 2008.

[14] Stephen Chong, Jed Liu, Andrew C. Myers, Xin Qi, K. Vikram, Lantian Zheng,
and Xin Zheng. Secure Web applications via automatic partitioning. In Pro-
ceedings of the 21st ACM Symposium on Operating Systems Principles (SOSP),
pages 31–44, Stevenson, WA, October 2007.

[15] Stephen Chong, K. Vikram, and Andrew C. Myers. SIF: Enforcing confidentiality
and integrity in Web applications. In Proceedings of the 16th USENIX Security
Symposium, pages 1–16, Boston, MA, August 2007.

[16] CWH Underground. Kwalbum arbitrary file upload vulnerabilities. http://

www.milw0rm.com/exploits/6664. CVE-2008-5677.

[17] Nicodemos Damianou, Naranker Dulay, Emil Lupu, and Morris Sloman. The
Ponder policy specification language. In Proceedings of the POLICY 2001 Work-
shop, pages 18–38, Bristol, UK, January 2001.

[18] Dorothy E. Denning. A lattice model of secure information flow. Communications
of the ACM, 19(5):236–243, 1976.

[19] Department of Defense. Trusted Computer System Evaluation Criteria (Orange
Book), dod 5200.28-std edition, December 1985.

[20] Django Software Foundation. Django. http://www.djangoproject.com, May
2009.

[21] Petros Efstathopoulos and Eddie Kohler. Manageable fine-grained information
flow. In Proceedings of the 3rd ACM SIGOPS/EuroSys European Conference on
Computer Systems, pages 301–313, Glasgow, Scotland, March 2008.

[22] Petros Efstathopoulos, Maxwell Krohn, Steve VanDeBogart, Cliff Frey, David
Ziegler, Eddie Kohler, David Mazières, Frans Kaashoek, and Robert Morris.
Labels and event processes in the Asbestos operating system. In Proceedings
of the 20th ACM Symposium on Operating Systems Principles (SOSP), pages
17–30, Brighton, UK, October 2005.

[23] Emory University. Multiple vulnerabilities in AWStats Totals. http://userwww.
service.emory.edu/∼ekenda2/EMORY-2008-01.txt. CVE-2008-3922.

92

[24] Dawson Engler, Benjamin Chelf, Andy Chou, and Seth Hallem. Checking sys-
tem rules using system-specific, programmer-written compiler extensions. In
Proceedings of the 4th USENIX Symposium on Operating Systems Design and
Implementation (OSDI), pages 1–16, San Diego, CA, October 2000.

[25] David Evans and David Larochelle. Improving security using extensible
lightweight static analysis. IEEE Software, 19(1):42–51, January/February 2002.

[26] Facebook. Site. http://www.facebook.com, January 2009.

[27] David F. Ferraiolo and D. Richard Kuhn. Role based access control. In Proceed-
ings of the 15th National Computer Security Conference, October 1992.

[28] Firefox. Add-ons. https://addons.mozilla.org/, January 2009.

[29] Flickr. Badge. http://www.flickr.com/badge.gne, January 2009.

[30] Scott Garriss, Lujo Bauer, and Michael K. Reiter. Detecting and resolving policy
misconfigurations in access-control systems. In Proceedings of the 13th ACM
Symposium on Access Control Models and Technologies, Estes Park, CO, June
2008.

[31] Roxana Geambasu, Cherie Cheung, Alexander Moshchuk, Steven D. Gribble,
and Henry M. Levy. Organizing and sharing distributed personal Web service
data with menagerie. In Proceedings of the 17th International World Wide Web
Conference, pages 755–764, Beijing, China, April 2008.

[32] Google. Gadgets. http://www.google.com/webmasters/gadgets/, January
2009.

[33] Google. Google chrome: a new web browser for windows. http://www.google.
com/chrome, January 2009.

[34] Google. Maps API. http://code.google.com/apis/maps, January 2009.

[35] Google. Open Social. http://code.google.com/apis/opensocial, January
2009.

[36] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language
Specification. Addison-Wesley Professional, third edition, 2005.

[37] William G. J. Halfond and Alessandro Orso. AMNESIA: analysis and moni-
toring for neutralizing SQL-injection attacks. In Proceedings of the 20th ACM
International Conference on Automated Software Engineering, pages 174–183,
Long Beach, CA, November 2005.

[38] William G. J. Halfond, Alessandro Orso, and Panagiotis Manolios. Using positive
tainting and syntax-aware evaluation to counter SQL injection attacks. In Pro-
ceedings of the 2006 ACM SIGSOFT Symposium on the Foundations of Software
Engineering, pages 175–185, Portland, OR, November 2006.

93

[39] Oystein Hallaraker and Giovanni Vigna. Detecting malicious JavaScript code
in Mozilla. In Proceedings of the 10th IEEE International Conference on En-
gineering of Complex Computer Systems, pages 85–94, Shanghai, China, June
2005.

[40] Norman Hippert. phpMyAdmin code execution vulnerability. http://fd.

the-wildcat.de/pma e36a091q11.php. CVE-2008-4096.

[41] Trevor Jim, Nikhil Swamy, and Michael Hicks. Defeating script injection attacks
with browser-enforced embedded policies. In Proceedings of the 16th Interna-
tional World Wide Web Conference, pages 601–610, Banff, Alberta, Canada,
May 2007.

[42] Shinya Kasatani. Safe ERB plugin. http://agilewebdevelopment.com/

plugins/safe erb, January 2009.

[43] Douglas Kilpatrick. Privman: A library for partitioning applications. In Pro-
ceedings of the USENIX 2003 Annual Technical Conference, FREENIX track,
pages 273–284, San Antonio, TX, June 2003.

[44] Eddie Kohler. Hot crap! In Proceedings of the Workshop on Organizing Work-
shops, Conferences, and Symposia for Computer Systems, San Francisco, CA,
April 2008.

[45] Maxwell Krohn. Building secure high-performance Web services with OKWS.
In Proceedings of the 2004 USENIX Annual Technical Conference, Boston, MA,
June–July 2004.

[46] Maxwell Krohn, Alexander Yip, Micah Brodsky, Natan Cliffer, M. Frans
Kaashoek, Eddie Kohler, and Robert Morris. Information flow control for stan-
dard OS abstractions. In Proceedings of the 21st ACM Symposium on Operating
Systems Principles (SOSP), pages 321–334, Stevenson, WA, October 2007.

[47] Maxwell Krohn, Alexander Yip, Micah Brodsky, Robert Morris, and Michael
Walfish. A World Wide Web without walls. In Proceedings of the 6th ACM
Workshop on Hot Topics in Networks, Atlanta, GA, USA, November 2007.

[48] Butler W. Lampson. A note on the confinement problem. Communications of
the ACM, 16(10):613–615, 1973.

[49] Anthony Lieuallen, Aaron Boodman, and Johan Sundstrm. Greasemonkey.
https://addons.mozilla.org/en-US/firefox/addon/748, June 2009.

[50] Benjamin Livshits and Weidong Cui. Spectator: Detection and containment
of JavaScript worms. In Proceedings of the 2008 USENIX Annual Technical
Conference, pages 335–348, Boston, MA, USA, June 2008.

94

[51] V. Benjamin Livshits and Monica S. Lam. Finding security vulnerabilities in
Java applications with static analysis. In Proceedings of the 14th Usenix Security
Symposium, pages 271–286, Baltimore, MD, August 2005.

[52] T. F. Lunt, D. E. Denning, R. R. Schell, M. Heckman, and W. R. Shockley. The
seaview security model. IEEE Transactions on Software Engineering, 16(6):593–
607, 1990.

[53] Michael Martin, Benjamin Livshits, and Monica Lam. Finding application er-
rors and security flaws using PQL: a program query language. In Proceedings
of the 2005 ACM SIGPLAN International Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications (OOPSLA), pages 365–383,
San Diego, CA, October 2005.

[54] M. Douglas McIlroy and James A. Reeds. Multilevel security in the UNIX tra-
dition. Software—Practice and Experience, 22(8):673–694, 1992.

[55] Mark S. Miller, Mike Samuel, Ben Laurie, Ihab Awad, and Mike Stay. Caja:
Safe active content in sanitized JavaScript, 2008. http://code.google.com/p/
google-caja/downloads/list.

[56] MoinMoin. The MoinMoin wiki engine. http://moinmoin.wikiwikiweb.de/,
May 2009.

[57] Andrew C. Myers and Barbara Liskov. A decentralized model for information
flow control. In Proceedings of the 16th ACM Symposium on Operating Systems
Principles (SOSP), pages 129–142, Saint-Malo, France, October 1997.

[58] Andrew C. Myers and Barbara Liskov. Protecting privacy using the decentralized
label model. ACM Transactions on Computer Systems (TOCS), 9(4):410–442,
October 2000.

[59] Myphpscripts. Login session script. http://www.myphpscripts.net/?sid=7,
May 2009. CVE-2008-5855.

[60] Anh Nguyen-tuong, Salvatore Guarnieri, Doug Greene, Jeff Shirley, and David
Evans. Automatically hardening web applications using precise tainting. In Pro-
ceedings of the 20th IFIP International Information Security Conference, pages
295–307, Chiba, Japan, May 2005.

[61] Osirys. wPortfolio arbitrary file upload exploit. http://www.milw0rm.com/

exploits/7165. CVE-2008-5220.

[62] Osirys. myPHPscripts login session password disclosure. http://nvd.nist.

gov/nvd.cfm?cvename=CVE-2008-5855, May 2009.

[63] One Laptop per Child. Bitfrost. http://wiki.laptop.org/go/OLPC Bitfrost,
June 2009.

95

[64] Perldoc. Perl taint mode. http://perldoc.perl.org/perlsec.html, May
2009.

[65] phpMyAdmin. phpMyAdmin 3.1.0. http://www.phpmyadmin.net/.

[66] Tadeusz Pietraszek and Chris Vanden Berghe. Defending against injection at-
tacks through context-sensitive string evaluation. In Proceedings of the 8th Inter-
national Symposium on Recent Advances in Intrusion Detection, pages 124–145,
Seattle, WA, September 2005.

[67] C. Reis, J. Dunagan, H. Wang, O. Dubrovsky, and S. Esmeir. BrowserShield:
Vulnerability-driven filtering of dynamic HTML. In Proceedings of the 7th
USENIX Symposium on Operating Systems Design and Implementation (OSDI),
pages 61–74, Seattle, WA, November 2006.

[68] Charles Reis, Steven D. Gribble, and Henry M. Levy. Architectural principles
for safe Web programs. In Proceedings of the 6th ACM Workshop on Hot Topics
in Networks, Atlanta, GA, USA, November 2007.

[69] script.aculo.us. Library. http://script.aculo.us, January 2009.

[70] Nikhil Swamy, Brian J. Corcoran, and Michael Hicks. Fable: A language for
enforcing user-defined security policies. In Proceedings of the 2008 IEEE Sym-
posium on Security and Privacy, pages 369–383, Oakland, CA, May 2008.

[71] The MITRE Corporation. Common vulnerabilities and exposures (CVE)
database. http://cve.mitre.org/data/downloads/, May 2009.

[72] Dave Thomas, Chad Fowler, and Andy Hunt. Programming Ruby: The Prag-
matic Programmers’ Guide. Pragmatic Bookshelf, 2004.

[73] Michael Carl Tschantz and Shriram Krishnamurthi. Towards reasonability prop-
erties for access-control policy languages. In Proceedings of the 11th ACM Sym-
posium on Access Control Models and Technologies, pages 160–169, Lake Tahoe,
CA, June 2006.

[74] Twitter. Badge. http://twitter.com/badges/blogger, January 2009.

[75] Malte Ubl. Xssinterface: JavaScript library for secure cross browser JavaScript
messaging. http://code.google.com/p/xssinterface/, January 2009.

[76] Wietse Venema. Taint support for PHP. http://wiki.php.net/rfc/taint,
May 2009.

[77] John Viega, J T Bloch, and Pravir Chandra. Applying aspect-oriented program-
ming to security. Cutter IT Journal, 14(2):31–39, February 2001.

96

[78] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel, and G. Vigna. Cross-
site scripting prevention with dynamic data tainting and static analysis. In Pro-
ceeding of the 14th ISOC Network and Distributed System Security Symposium,
San Diego, CA, February 2007.

[79] Thomas Waldmann. Check the ACL of the included page when using
the rst parser’s include directive. http://hg.moinmo.in/moin/1.6/rev/

35ff7a9b1546. CVE-2008-6548.

[80] Helen J. Wang, Xiaofeng Fan, Jon Howell, and Collin Jackson. Protection and
communication abstractions for Web browsers in MashupOS. In Proceedings of
the 21st ACM Symposium on Operating Systems Principles (SOSP), pages 1–16,
Stevenson, WA, October 2007.

[81] Gary Wassermann and Zhendong Su. Sound and precise analysis of web appli-
cations for injection vulnerabilities. In Proceedings of the 2007 ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI),
pages 32–41, San Diego, CA, June 2007.

[82] Web Application Security Consortium. 2007 Web application security statis-
tics. http://www.webappsec.org/projects/statistics/wasc wass 2007.

pdf, May 2009.

[83] Yichen Xie and Alex Aiken. Static detection of security vulnerabilities in script-
ing languages. In Proceedings of the 15th USENIX Security Symposium, pages
179–192, Vancouver, BC, Canada, July 2006.

[84] Yahoo. Yahoo! Pipes. htpp://pipes.yahoo.com, January 2009.

[85] Yahoo. Yahoo! Weather. http://developer.yahoo.com/weather, January
2009.

[86] Alexander Yip, Neha Narula, Maxwell Krohn, and Robert Morris. Privacy-
preserving browser-side scripting with BFlow. In Proceedings of the 4th ACM
SIGOPS/EuroSys European Conference on Computer Systems, pages 233–246,
Nuremberg, Germany, March 2009.

[87] Alexander Yip, Xi Wang, Nickolai Zeldovich, and M. Frans Kaashoek. Improving
application security with data flow assertions. In Proceedings of the 22nd ACM
Symposium on Operating Systems Principles (SOSP) (to appear), Big Sky, MT,
October 2009.

[88] Aydan Yumerefendi, Benjamin Mickle, and Landon P. Cox. TightLip: Keeping
applications from spilling the beans. In Proceedings of the 4th USENIX Sympo-
sium on Networked Systems Design and Implementation (NSDI), pages 159–172,
Cambridge, MA, Apr 2007.

97

[89] Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler, and David Mazières.
Making information flow explicit in HiStar. In Proceedings of the 7th USENIX
Symposium on Operating Systems Design and Implementation (OSDI), pages
263–278, Seattle, WA, November 2006.

[90] Nickolai Zeldovich, Silas Boyd-Wickizer, and David Mazières. Securing dis-
tributed systems with information flow control. In Proceedings of the 5th
USENIX Symposium on Networked Systems Design and Implementation (NSDI),
pages 293–308, San Francisco, CA, April 2008.

98

