Xoc, an Extension-Oriented Compiler for Systems Programming

Russ Cox Tom Bergar

MIT CSAIL*

Abstract

Today'’s system programmers go to great lengths to extenldnhe
guages in which they program. For instance, system-spedific
pilers find errors in Linux and other systems, and add sugdport
specialized control flow to Qt and event-based programssé&he
compilers are dificult to build and cannot always understand each
other’s language changes. However, they can greatly ineprode
understandability and correctness, advantages thatdhewlcces-
sible to all programmers.

We describe amxtension-oriented compildor C called xoc.
An extension-oriented compiler, unlike a conventionaleegtble
compiler, implements new features vimanysmall extensions that
are loaded together as needed. Xoc gives extension writérs f
control over program syntax and semantics while hiding many
compiler internals. Xoc programmers concisely define péwer
compiler extensions that, by construction, can be combiaeen
some parts of the base compiler, such as GNU C compatilziligy,
structured as extensions.

Xoc is based on two key interfaces. Syntax patterns allow ex-
tension writers to manipulate language fragments usingrete
syntax. Lazy computation of attributes allows extensioiess to
use the results of analyses by other extensions or the cthewti
needing to worry about pass scheduling.

Extensions built using xoc includesparse, a 345-line exten-
sion that mimics Sparse, Linux’s C front end, atidmbda, a 170-
line extension that adds function expressions to C. An et&n
of xoc using these and 13 other extensions shows that xon-exte
sions are typically more concise than equivalent extessiaitten
for conventional extensible compilers and that it is pdssi com-
pose extensions.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guage¥ Processors—Compilers

General Terms Languages, Design, Experimentation

Keywords extension-oriented compilers

1. Introduction

Programmers have long found it useful to make domain-specifi
changes to general-purpose programming languages. Rexent
amples include Sparse (Torvalds and Triplett 2007), TanteHiK

et al. 2007), and Mace (Killian et al. 2007). The most common i
plementation is a monolithic preprocessor: a compilertfeon that
accepts the base language plus domain-specific changegile®m

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesatr made or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteowess or to redistribute
to lists, requires prior specific permission gk fee.

ASPLOS '08 March 1-5, 2008, Seattle, Washington, USA.

Copyright© 2008 ACM 978-1-59593-958/68/0003...$5.00

Reprinted from ASPLOS ’'08Proc. 13th International Conference on Architectural
Support for Programming Languages and Operating Systdftasch 1-5, 2008, Seat-
tle, Washington, USA., pp. 244-254.

244

Austin T. Clements

Frans Kaashoek Eddie Kohlef
UCLACS'

the changes into base language constructs, writes out theaeq
lent base program, and invokes the original compiler orprtser.
The most serious problem with this approach is that extessioe
heavyweight and isolated. Preprocessors must includeednoint
ends for the base language itself, and multiple extensimnglifi-
cult to use together.

Recent extensible compiler research (e.g., Necula et 82;20
Nystrom et al. 2003; Grimm 2006; Visser 2004) aims to solvg th
problem. Starting with an extensible compiler for the beee- |
guage, a programmer writes only the code necessary to jgriues
domain-specific changes. A typical implementation is asmibn
of Java classes that provide a front end toolkit for the base |
guage. To extend such compilers, a programmer subclasses so
or all of the classes, producingnewcompiler that accepts the base
language with the domain-specific changes. This approatites
implementation gort but still creates compilers that are roam-
posable changes implemented by twofldirent compilers can'’t be
used in the same program since the compilers can’t undelratah
process one another’s input. Recent extensible compiéessome
support for extension composition (Van Wyk et al. 2007a;thora
et al. 2006), but still require that extension writers esitlly assem-
ble each desired composition.

This paper proposes axtension-oriented compilevhere new
features are implemented by many small extensions thabvadet!
on a per-source-file basis, much as content-specific plugias
loaded by web browsers and other software. As in currennexte
sible compilers, this approach starts with a compiler fa base
language, but extensions do not create whole new compllers.
stead, the base compiler loads the extensions dynamiceilbetch
source file.

A key challenge in an extension-oriented compiler is to #o
the boundaries between thefdrent extensions and the base com-
piler, while still allowing extensions the freedom and poweal-
ter language semantics. We meet this challenge with two tkey i
terfaces. First, extension writers usgntax patterngBravenboer
and Visser 2004) to manipulate language fragments andaabstr
syntax trees (ASTSs) using the concrete syntax of the progriam
language being compiled. This hides the details of bothipgrs
and internal representation from extension modules. Sk
tension writers implement most program analysesovisdemand
(lazy) AST attributesT his hides the details of pass scheduling from
extensions; the passes exist only implicitly in the depaniis
between the various attributes. These ideas originatel etiter
systems, but combined, and augmented by other design sheice
including extensible functionsextensible data structuresand a
GLR-based parsewith modular grammars—their value is multi-
plied. The result seems to us qualitatively better for esimmpro-
gramming than systems based on a single interface, suchinas te
rewriting or Java subclassing.

We have designed and implementaxt, an extension-oriented
compiler for C, that provides these interfaces. The comjitiself
is structured as a core with a set of extensions. The contpilals
32,062 lines of code and is complete enough that it can psdbes
source files of the Linux kernel.

grammar XRotate extends C99

{

"o

" "

>>>

[Shift]
[Shift];

expr: expr
| expr

expr
expr

}

extend attribute
type(term: ptr C.expr): ptr Type
{
switch(term){
case ~expr{\a <<< \b} || ~expr{\a >>> \b}:
if(a.type.isinteger && b.type.isinteger)
return promoteunary(a.type);
error(term.line, "non-integer rotate");
return nil;
}

return default(term);

extend attribute
compiled(term: ptr C.expr): ptr
{

COutput.expr

switch(term){

case ~{\a <<< \b}:
n := a.type.sizeof * 8;
return ‘C.expr{

({ \(a.type) x = \a;
\(b.type) y = \b;
(x<<y) | O>>Q\n-y)); B
}.compiled;

case ~{\a >>> \b}:

n := a.type.sizeof * 8;

return ‘C.expr{\a <<< (\n-\b)}.compiled;
}

return default(term);

Figure 1. The xrotate extension. Note that the andy variables introduced imompiled don’t cause variable capture problems; see

section 2.3.

Using xoc we have designed and implemented 15 extensions to

date. These range from trivial extensions, such as a bitiste
operator, to extensions for which systems programmersihgle-
mented domain-specific front ends, such as Sparse (a scuolee ¢
checker for the Linux kernel). Based on these extensionsomne ¢
clude that programmerflert for an extension is relatively small
and scales with the complexity of the extension. Most extess
are short, and the ones that are larger are large becauskténe e
sion is more complicated. For example, the rotate exterisiGd
lines, while the Sparse extension is 345 lines. We also cdecl
that the extension writer need not understand much of xotés-i
nals; xoc's extension interface consists of relatively tsammar
rules and attributes, only a few of which need to be modified fo
a typical extension, and extensions can manipulate xotésrial
program representation naturally using concrete syniaallly, we
conclude that extensions can compose: an extension Waitesup-
ply several extensions to the compiler at the same time amthes
combination in a program or in another extension.

This paper identifies extension-oriented compilation ag-a r
search problem and makes the following contributions tdwar
solving that problem:

1. The use of syntax patterns to manipulate the abstractsynt
tree and attributes, and lazy computation of AST attribtiwes
eliminate explicit scheduling of compilation passes.

2. The design of xoc, a prototype extension-oriented caenlr

the C language, which implements syntax patterns and lazy

computation of AST attributes, as well as a GLR parser and
extensible functions and data structures.

3. A prototype implementation of xoc in zeta, a C-like intetied
procedural language with first-class functions. Zeta makés
ing extensions easier than standard C, although extengion w
ers must adjust to a slightly fiiérent language. Our implemen-
tation runs zeta using a bytecode interpreter and is therefo
limited in its performance; we plan to replace the bytecade i
terpreter with compilation to machine code, which should re
duce the compilation time for a large program from tens of sec
onds to a fraction of a second.

4. An evaluation of xoc and 15 currently implemented exiemsi
Some of the extensions support features that others have-imp
mented as separate front ends for C, allowing for a compariso
of the extension-oriented compiler and front-end appreach

245

We implemented one extension (bitwise rotate) in multiple e
tensible compilers, allowing a comparison with our apphoac

After presenting the xoc extension interface, we desctien-
plementation, present several extension case studiegxamdine
our extensions as a group. We then discuss related work and co
clude.

2. The Xoc Extension Interface

The xoc prototype is a source-to-source translator. ltg&agro-
grams that might use extensions, analyzes the programgilesm
them into equivalent standard C code, and then invokes gcc to
create an object file. If extensions are specified on the cardma
line, xoc dynamically loads those extensions before pgingshe
possibly-extended input files. This section describes hgigre
sions are written by presenting the interface xoc providesx:
tension writers.

Because the xoc prototype focuses on the front end—back-end
extensions are left for future work—its primary data stunetis the
internal representation of the input program. Xoc's irgeeffor this
data structure must support parsing, constructors, amsesand
analysis passes. It is important to make these fundameortgditer
manipulations as easy as possible. Xoc achieves this Sicapion
by hiding parsing details behind context-free grammardinii
program manipulation behind concrete syntax patternshatidg
analysis scheduling behind lazily-computed attributes.

As a running example throughout this section, we will coaesid
an extension that adds bitwise rotate operatersand>>> to the
language. The operators behave like the standaeahd>> bit shift
operators except that bits shifteéf the end of the 32- or 64-bit
word are shifted back in at the other end. Figure 1 gives thenex
sion’s full source code. Even this trivial extension stillistrates
the dificult issues inherent to extension-oriented compiler desig
For example, the extension’s grammar statementsad@nd>>>
expressions to the language, but in the context of a soue;@fiier
extensions may have added other expression types as wedx-An
pression like a <? (b <<< c)) <<< 4" (<? is gcc’s minimum
operator) forces therotate extension to analyze, compute with,
and generate code for an operand that uses an extensionwmkno
to xrotate’s author; thexgnu-minmax extension that implements
<? must do the same. Our work has concentrated on finding sim-
ple interfaces that make extension composition naturapls, and
robust to errors.

2.1 Grammars and parsing C99+XRotate, C99+XAlefIter, and C99+XRotate+XAlefIter

Xoc provides special syntax—grammar statement—for defining ~ (C99+XAlefIter+XRotate is the same grammar). When parsing
and extending the context-free grammar rules used to plaesie-t the input, X0C Useg99 plus all loaded extensions, bqt other parts
put. There are three main subproblems: providing a defmiifocC of the compiler may expect only certain kinds of input syntax
that is easily extended, keepingfdrent extension grammars sep- <0C'S type system helps enforce these expectations.

arate, and handling ambiguity (inputs that can be parsetipteul Xoc's type system can express that a particular AST corre-
ways). sponds to a particular non-terminal, a£@9 . expr. Distinguishing

different kinds of ASTs is useful for defining what kind of syntax a
Extending grammars Xoc must provide a base C grammar that function expects. For example, a function that analyzeg stain-

is easy for extension writers to understand and to extend’sXo dard C99 expressions could tak€®®. expr, while a function that
base C grammar has 72 symbols, but few are relevant to a typi- also allows rotate expressions could tal@9+XRotate) .expr.

cal extension writer (for example, 13 are dedicated to mfjsiish- These types are defined statically, but subtype instanaesea
ing between numeric constant formats). Knowing oekpr (ex- checked dynamically: for example, xoc lets extensions khec
pressions)stmt (statements), and a few others relating to C type whether a value that is statically typed @@9+XRotate is actu-
declarators is surprisinglyffective; a working vocabulary of un- ally pure c99. Finally, the type system also allows a “wildcard”
der a dozen symbols fliices for the vast majority of extensions, as grammar, as irc99+?. A wildcard represents an arbitrary set of

discussed in section 4. grammar extensions that is not known statically. This is xo@
Xoc defines a base grammar for standard C: shares syntax trees between extensions that have no kgavbéd
extensible grammar C99 { each other’s syntax.
%left Add Shift Ambiguity Typically, there will be only one possible parse tree

%precedence Add > Shift for a given input, but the possibility of ambiguity—multgparse
trees—is unavoidable when using a context-free grammahes t
input specification. Others have proposed using parsingeegon

expr: name. - grammars (Ford 2004), which replace the context-free radtésn
Zig; i :is: Eﬁjj% operator with an ordered-choice operator so that ambigsiity-
expr ">>" expr [Shift] possible. This approa_ch _essentla_lly resolves amblguquae_;tly;
expr "<<" expr [Shift] we prefer to treat ambiguity as a signal that the programmightm
. not be getting the expected result and to respond with a rgdifla
} there are multiple ways to parse an input string, xoc wiltdiger
all possible parses and report an error.

Detecting ambiguity is particularly important when usinglé-
pendently written extensions that might definfetient meanings

Extensions add new grammar rules with éttend grammar
statement. For example, the rotate extension defines itopeva-

tors using: for the same syntax. For example, if using rotate and a “be lik

grammar XRotate extends C99 Java” extension, a programmer might not realize that thesénwn

{ definitions for>>> (rotate or Java’s unsigned right shift). We'd pre-
expr: expr "<<<" expr [Shift] fer that extensions loaded infBrent orders produce the same re-

| expr ">>>" expr [Shift]; sult, so it is important to detect the ambiguity, rather tedently

choosing one or the other.
Unlike in parser generators such as yacc, the grammar rales d Checking context-free grammars for ambiguity is uncom-

not specify parsing actions. Xoc’s only parsing action idbtild putable (Lewis and Papadimitriou 1997, pp. 259-261), so xoc

a generic parse tree. The interface for manipulating theeptiee settles for detecting the ambiguity when it arises in theuinin

is discussed in section 2.2. Not requiring the extensiortiewtd the example just given, a conflict will be reported only if #reant

provide explicit actions makes it easier to define new syntax developer uses the-> operator in his program. We have not had
This example also illustrates xoc’s use of precedence to col many problems with ambiguity so far; future experience may e

lapse the C standard’s many expression typeilitive-expr, courage the use of heuristics to detect obvious extensiofiicts

multiplicative-expr, and so on) into juséxpr. The bracketed statically.

[Shift] tags specify named precedence levels: the new rotate op-

erators have the same precedence as the shift operators. 2.2 Syntax patterns
An extension can also introduce a new precedence level be-

tween existing ones; for examplealef-iter introduces Alef’s

iteration operator : with precedence betweer and<= (Winter-

Once an input program has been parsed, xoc and its extem&eds
to traverse the AST, computing its properties and oftenitagrit

bottom 1995). into different forms. Rather than expose the AST using traditional
data structures, xoc extensions refer to the AST using etacr
grammar XAlefIter extends C99 syntax (the syntax of the programming language).
{ For example, the expressiast ~ expr{\a <<< \b} evalu-
%right AlefIter; ates true ifast is an AST node generated by the first rule in the

%priority Shift > AlefIter > Relational;

expr: expr "ii" expr [AlefIter]: XRotate grammar above. When thiestructuringexpression eval-

} uates true, it binds the variablasandb to the AST nodes for the

subexpressions. A similar syntax creates new ASTs alfidb are
Keeping grammars separate The grammar declarations above already ASTs corresponding to expressions, themaseucturing
define one grammarc99, and two extensions t@99: XRotate expressiortexpr{\a <<< \b} constructs a new AST representing
and XAlefIter. Since the latter two come from independent the <<< syntax. Like Lisp, xoc unifies internal and external pro-
extensions, it is important to be clear which grammars are be gram representation. Whereas Lisp makes programs loolalike
ing used in which contexts. After the above definitions, xoc internal data structure, xoc makes the internal data streidbok
distinguishes between four fiérent possible grammars99, like a program.

246

Syntax patterns can be arbitrarily complex program fragmen
not just single rule applications. For example, the follogvsnippet
rewrites repeated rotation into an equivalent single imtat

if(ast ~ expr{\a <<< \b <<< \c})
ast = ‘expr{\a <<< (\b + \0)};

Section 3 discusses how the grammar symbols, &, andc are
inferred.

The examples so far have assumed tat was declared as
C99+XRotate, SO that the<<< operator is available for use in the
destructuring and restructuring patterns. When the grantype
includes+?, syntax from any extension can appear in slots \ike

attribute
type(term: ptr C.expr): ptr Type
{
switch(term){
case ~{\a << \b} || ~{\a >> \b}:
if(a.type.isinteger && b.type.isinteger)
return promoteunary(a.type);
error(term.Tine, "non-integer shift");
return nil;
// ... other cases ...
}
error(term.Tine,
return nil;

"cannot type check expression");

and\b, but the concrete syntax used in the pattern is restricted to }

the named grammars. Consider these three lines:

1 (99.expr{\a <<< \b}; // invalid!
2 (C99+XRotate).expr{\a <<< \b};
3 (C99+XRotate+?).expr{\a <<< \b};

Line 1isinvalid in xoc (xoc will print an error when loadiniye ex-
tension), because there are no rules involvirgin the C99 gram-
mar. Lines 2 and 3 are valid but havefdrent meanings. Suppose
an extension that introduced-a exponentiation operator were also
loaded. Line 2 would not allow exponentiation expressioitiiw
\a and\b, but line 3 would.

Xoc provides a few mechanisms to make syntax patterns even

more convenient. By convention, xoc defireasC99 plus all ex-
tensions currently in scope plasAlso, xoc uses static type infor-
mation to infer the grammar and symbol name in syntax pattdfn
the static type information is fiicient, explicit names can be omit-
ted. For example, ifst is declared as.expr, then one can write
ast ~ {\a <<< \b} instead ofast ~ expr{\a <<< \b}. Also,
conversion routines can be registered to convert autoailgtice-
tween non-AST types and AST nodes, allowing the use of zéta va
ues like integers and strings directly in slots.

C'’s type syntax does not always align with the top-down struc
ture of the underlying types. Even so, xoc arranges for speci
processing of the syntax patterns before they are used trudes
turing and restructuring, so that expressions kke {\tt*} and
t ~ {\tt(*)(void*, int)} work as expected.

2.3 Lazy attributes

In addition to traversing and rewriting the program, coragslana-
lyze the program to determine how to compile it. Many compile
are structured as a series of passes: first variable scapamgtype
checking, then constant evaluation, and so on. Extensiagsweed
to use the results of some of these analyses or even intradeice
own. Other extensible compilers expose this pass-basectuste
to extensions, requiring them to declare how they fit intoetkist-
ing compiler passes. Inspired in part by attribute gramrtiansith
1968; Paakki 1995; Van Wyk et al. 2007a,b), xoc eliminatespa
and pass scheduling by representing analyses as lazilpwdeoh
attributes.

Xoc'’s attributes arenot attribute grammars: there is no strict
enforcement that attribute computations proceed in a quéati
order, and attribute computations are free to examine tsieafe
the AST without using the attribute framework.

Attributes are referred to using structure member notaterin

The rotate extension extends thgpe attribute with support for
rotations:

extend attribute
type(term: ptr C.expr): ptr Type

switch(term){

case ~{\a <<< \b} || ~{\a >>> \b}:
if(a.type.isinteger && b.type.isinteger)

return promoteunary(a.type);

error(term.line, "non-integer rotate");
return nil;

}

return default(term);

}

Inside anextend attribute body, the namealefault refers to
the definition of the attribute before it was extended. Thateo
extension checks for and handles the rotate cases, busledive
other behavior unchanged by deferringitgault. If different xoc
extensions extend the same attribute, the extensions areech
together via theseefault calls.

Thetype attribute proceeds top-down, but the full power of lazy
attributes is realized when attributes are not purely topsd For
example, the set of variables in scope on entry to each AS€ nod
depends on nodes to the left in the abstract syntax tree. [po he
compute this, xoc provides builtin attributearent, prev, and
next, which are a node’s parent, left sibling, and right sibling i
the AST. These attributes can be used to define any travedsl o
which is expanded lazily as it is used. Because of this desigm
variable scope at any node can be queried at any time.

Compiler Structure Xoc is implemented using a library of at-
tributes that extensions use and sometimes augment. Theites
described here make up the core of the compiler. The depeieden
implicit among xoc’s attributes determine the complete piben
structure.

After parsing the initial input to produce an ASbot, xoc
looks at the root'swelltyped attribute, a boolean specifying
whether the entire tree is free of type errors. Extensioasittiro-
duce new statements extemell 1typed to check those statements.
For expressions, theype attribute (shown above) evaluates to the
C type of the expressionsnt, void*, and so on—or null if the
expression contains type errors. Type checking dependsaon v
able scoping, which is provided Byrs andvars_out, the sets of

a.type, but they are computed on demand at first access and thenvariables in scope at entry to and exit from an AST node.

cached. (Caching the value is safe because ASTs are imraytabl

Each attribute is defined by the ordinary xoc code that coesput
it. A key feature is that extensions can change the behafithi®
code. For example, theype attribute, which specifies the type of
an expression, is defined in the xoc core as:

247

If root.welltyped is true, xoc usesoot.vars_out as the
list of globals defined in the program. Each global&npiled
attribute holds the equivalent standard C representatorthiat
global. This representation uses gramntautput, a synonym
for C99+XGnuStmtExpr. (Allowing the GNU statement expression
simplifies the compilation of expressions with sidéeets.) Xoc
passes theseompiled attributes to the C output code. Finally xoc
invokes gcc on the C output.

Variable Capture Any program rewriting system must worry 1,083 C Utility routines (hash tables, lists, etc.)
about unintended variable capture in expanded code: if ex-ref 1,727 C GLR parser

ence to a variable is copied into a new AST, it should by default 1259 C DFA-based lexer

continue to refer to the same variable, even if there isflzmint 14316 C Zeta interpreter core

definition of x in scope at the new location. Avoiding unintended 295 C AST support for Zeta

variable capture in expansions is calleghiene(Kohlbecker et al. 7,707 Zeta Xoc

1986). To enforce hygiene, xoc provides a builictpiedfrom at- 3,015 Zeta Extensions

tribute that links a copied AST node to the node it was copiechf 32,062 Total

To computesym, the attribute for the symbol associated with a vari-
able name reference, xoc usepiedfrom.sym whencopiedfrom

is not null, which guarantees that the meaning of names will n
change, even when moved between scopes. For example, in the

rotate extension (Figure 1), the introduction of the terapesx

andy does not cause any problems even if the fragmenend\b

refer to other variables namecbr y. The C output library renames ~ Section. Figure 2 gives line counts for zeta and xoc. Of the@ede

Figure2. Line counts for xoc source code.

variables appropriately when two distinct variables steaname. making up xoc, half is devoted to type checking C and a quéster
printing C output for gcc.
2.4 Other interfaces We wrote the earlier two prototypes directly in extended C,

using xoc to compile itself, but bootstrapping xoc in itselade

it difficult to experiment with new extensibility features. Using
zeta has made it much easier to try (and discard) featurese On
X0C is more mature, we are interested in revisiting the duest
of implementing xoc using itself, but we have found zeta taabe
fruitful base for experimenting with extensible compiléusture.

Several secondary Xoc interfaces, including extensibta duc-
tures, extensible functions, higher-order tree rewrjtarsl a con-
trol flow analysis module, enhance the power of the main exben
interfaces.

First, data structures can be marked extensible, meanatg th
extensions can define additional fields that are looked up in a
per-object hash table but still use field access synsaxigld).
These extensions are lexically scoped so thfiedint extensions -
cannot accidentally see eack): othgr’s fields (Warth et al6R00 3.1 Grammarsand ambiguity
Functions can be marked extensible in the same style abuattri ~ Zeta implements thgrammar statement using a GLR parser. The
computations; a few xoc functions involve more than justralsi C99 grammar is 328 lines and 72 symbols. GLR parsers handle
AST and must be written this way. For exampi&anconvert ambiguity—multiple ways to parse a given input—by retugnal
determines whether it is possible to convert one type irifglic ~ Possible parses, letting the caller choose the correct deiag

into another. An extension might relax the rules involvihgacter a GLR parser allows checking for ambiguity. It also handles C
pointers using: type-vs.-name ambiguity without tightly coupling the lexad the
type checker, giving considerably more freedom in the desiy

extend fn from:) . boo the compiler. Finally, the GLR parser can accommodate aBgipo
’Eca“convert(rom: ptr Type, to: ptr Type): boo ble context-free grammar, unlike traditional LR parserthvixed
if((from ~ {unsigned char*} & to ~ {char*}) lookahead (including LALR(1) parsers like yacc). These ena-
[l (from ~ {char*} & to ~ {unsigned char*})) stricted language classes are not closed under union, nuetrzt
return true; some extensions would work fine in isolation but cause ursiece
return default(from, to); sary parsing conflicts when used together. In contrast,sinmply
} not possible to write a context-free grammar that a GLR pavge

be unable to handle.

When the parser returns multiple parse trees, it is duereithe
C’s name vs. type ambiguity or to ambiguity introduced byeext
sions. Xoc invokes a disambiguation function to resolverthme
vs. type ambiguities. Any ambiguities that remain are abergd
errors: xoc prints information about them and exits. Disgua-
tion is intentionally not extensible; we believe that C'iénent
ambiguity is unfortunate enough and do not encourage eriens
writers to introduce new ambiguous language constructs.

Extensible functions are similar to advice in Lisp (Teitalml966)
and in aspect-oriented programming (Kiczales et al. 199hp
combination of extensible data structures and extensilsietions
is suficient to implement attributes, but attributes are so furetam
tal in xoc that it makes sense to give them their own syntax.

To allow generic traversal of any abstract syntax (usuadly,
look for a particular type of node), the xoc functiastsplit
returns an array containing an AST’s child nodes. To allonegie
rewriters, the xoc functioastjoin performs the inverse operation,
building a new AST node given an example and a replacement set
of children. Xoc also abstracts this interface into a caitec of

higher-order tree rewriters, similar to Stratego’s styae (Visser 3.2 Absiract syntax

2004). The internal abstract syntax representation is generat rade is
Xoc also provides a traditional library for computing cartr either anAstRule, which contains a pointer to the grammar rule
flow graphs. and pointers to the appropriate number of children for thk; ran

AstString, which is a lexical token; or afstS1ot, which is a slot
like \a in a syntax pattern.

3. TheXoc Implementation AST types (e.g.(C99+XRotate) .expr) are a property of the

This section describes our current implementation of xdaickv entire subtree rooted at that node, and xoc programs need to b
is the third prototype we've built. This xoc is written in astam able to check whether an AST is an instance of a given grammar
language we call zeta. Zeta is a procedural language with firs type at run-time. This may sound like an expensive run-tiheck,
class functions. A bytecode interpreter, also called z=impiles but since ASTs are immutable, the most specific grammar tgpe ¢
and runs zeta programs. Zeta is a typical procedural larggbag be computed incrementally at AST construction time, makirey
augmented with the xoc-specific features discussed in thequrs check inexpensive.

248

3.3 Syntax patterns

Syntax patterns are implemented by parsing them using tHe GL
parser, creating a template used for destructuring oruesting?
Previous systems (e.g., Bachrach and Playford 2001; Weée a
Crew 1993) have proposed similar use of syntax patterng-esp
cially for restructuring, but they end up less conveniergaduse
the extension writer has to annotate every slot with its gnam
symbol, as irexpr{\a: :expr <<< \b::expr}. These annotations
can quickly obscure the convenience of writing in directtayn
Since xoc does not require such annotations, the first proisle
handling syntax patterns is deciding their meaning. Sinpatipro-
grams may be ambiguous, so can destructuring and restingtur
patterns. Worse, since destructuring and restructurittgnpavari-
ables can match arbitrary grammar symbols instead of jusnig
even patterns likexpr{-\a} are ambiguous: perhapa is meant
to stand in for a numeric constant, or perhaps a variable pame
perhaps just an arbitrary expression. The ambiguity\af could
be eliminated if every variable likea were tagged with its gram-

4.1 Sparse, theLinux kernel checker

Sparse (Torvalds and Triplett 2007) is a source code chéakdre
Linux kernel. Sparse checks for violations of Linux codirigles
and extends the C type system with annotations for two inaport
notions that are applicable beyond the Linux kernel.

First, Sparse addaddress space® C pointer types. Unanno-
tated pointers are considered kernel pointers, which minds
as address_space(0) and permits dereferencing. Annotating a
pointer with__user marks it asaddress_space(1) andnoderef,
which forbids dereferencing. Sparse emits warning for alits
and implicit conversions between address spaces and fdleall
gal dereferences.

Second, Sparse add®ntext modifiergdo C function types.
These can be used to statically check basic/lodiock pairings.
The contextis an integer that follows every possible flow path
through each function. By default, the context entering acfu
tion must equal the context exiting the function, but a fiorct
can be annotated as increasing or decreasing the contexiny s

mar symbol as in other systems, but doing so loses much of theamount. For example, aicquire function would be marked as

brevity and convenience of the destructuring and restringjypat-
terns. Xoc decides the meaning of syntax patterns in twerdint
ways.

First, AST subtyping likeC.expr and C.name allow xoc to
determine the kind of slot by looking at the type of expres$ieing
substituted into that slot. This is most often helpful intresturing.

Second, when the type of the slot is not uniquely specified, xo
can specify as much as it knows (e.g., “this is eitheuber or a
name”; or “this is some kind of list”; or “this could be anything”)
and let the GLR parser try all those possibilities and findvetith
work. If many work, xoc chooses the shallowest parse tree. Fo
example,expr{\a <<< \b} treats\a and\b asexprs. Another
valid parse would be to treat themrasnbers, converting them into
expr using the &xpr: number” grammar rule, but that would result
in a deeper parse tree. We have found that the shallowest jzars
almost always the one we mean; when it is not, xoc will givepeety
error and the extension writer can add an explicit annatatle
\a: :number.

4. Case Studiesand Evaluation

In order to evaluate xoc, we implemented a variety of extersi
ranging from trivial extensions such asotate from section 2

to complex extensions such a3ambda, which adds first-class
closures, anasparse, which implements the same analysis as the
Linux kernel checker, Sparse. Figure 3 summarizes the sixtes

The second column in Figure 3 gives each extension’s line
count. As we hoped, simple extensions require few lines déco
while implementations of more complex extensions seemaurop
tional to their complexity. In addition, we would like to slkidvow
xoc's extension interfaces simplify the task of writing @xsions
compared to the front-end approach and the extensible-termp
approach.

We describe four extensions in detaikparse, an analysis ex-
tension, implemented in xoc to mimic Sparseault, another
analysis extension, implemented in xoc and compared &gains
Polyglot version;xrotate, a simple rewriting extension, imple-
mented in xoc, CIL, xtc, and Polyglot; asxdambda, a more com-
plex rewriting extension, implemented in xoc and xtc. Hipake
present a few statistics and observations about the ertenas a

group.

1The idea of parsing a code pattern once and then saving tlsedpar
representation for repeated use was first proposed by Hartthaenmer
1971), who suggested it as an alternative to purely lexioglémentations
of syntax macros.

249

increasing the context by one. If an unannotated functioreve
call acquire without later releasing the lock, a context mismatch
would be flagged.

Thexsparse extension implements address spaces and context
modifiers atop xoc.

Address Space Checking xsparse’s implementation of address
space checking is straightforward. Fisstparse extends theype
attribute to checlkiddress_space andnoderef annotations on cast
expressions and pointer dereferences. The extendeduggtdbfers
to default before doing the necessary checks:

extend attribute
type(term: ptr C.expr): ptr Type
{
t := default(term);
// Sparse type checks here
return t;

}

The primary advantage of thisimplementation is its ustedfult,
which lets xsparse add new behavior without worrying about
the details of existing behavior. This makesparse address
space checking naturally composable with other extensidhs
xcanconvert function is extended in the same manner.

Context Checking For context checkingxsparse extends the
welltyped attribute for functions. This allows it to restrict the defi-
nition of “well typed” programs to exclude those with corttexs-
matchesxsparse uses a traditional control flow analysis module
supplied by xoc to generate and traverse the flow graph of each
function being type checked. In order to check new contral flo
introduced by other possible extensiorsparse passes the func-
tion’s compiled attribute—the standard C representation—to the
control flow analysis.

Evaluation To evaluatexsparse, we compare with it with Sparse,
which is implemented as an entire front end. We checked thex_i
kernel withxsparse, andxsparse produced the same warnings as
Sparse.

xsparse’s implementation is simpler than Sparse’s. Sparse is
about 25,000 lines of code, whil@parse is 345 lines of code. Of
course, this result is not surprising becawsparse can leverage
xoc's infrastructure for extensibility.

Unlike Sparsexsparse can easily be composed with other
extensions. For examplesparse can correctly analyze a program
that uses thealef-iter extension’s: : operator for iteration or
thexgnu-conditional extension’s binary: operator.

Description

9:).

Heap-allocated lexical closures that are compatibile kegular function pointers.

Perl-like syntax for the PCRE regular expression ligrarcluding flow-sensitive

Workalike for the Sparse program checker (Torvalds aiplett 2007).

Name Lines
xaif 50 Makeif andwhile anaphoric, as i®n Lisp(Graham 1996).
xalef-check 24 Addcheck statement as in Alef (Winterbottom 1995).
xalef-iter 196 Add iterator expressions as in Alef.
xgnu-asm 47 Parse (but do not analyze) GNU inline assembly.
xgnu-caserange 61 Allow ranges incase labels case 0 ...
xgnu-conditional 14 GNU binary conditional operatar:.
Xgnu-minmax 24 GNU min and max operatogg, >?, <?=, and>?=.
xgnu-typeof 33 GNUtypeof type specifier€ypeof(q) p = q;).
xT1ambda 170
xT1oop 168 Labeletbreak andcontinue, as in Java and Perl.
xpcre 452

checks for out-of-range submatch references.
xrotate 34 Rotate operators<< and>>>.
xsparse 345

(80 lines for type checking, 245 lines for flow checking.)
xtame 516 Tame style event-driven programming (Krohn et al. 2007)
xvault 641

2001) for C.

An implementation of Vault’'s flow-sensitive type systébeLine and Fahndrich

Figure 3. Extensions written using xoc. The lines column counts nemment source lines.

xsparse is not as fast as Sparse. A typical Linux source file
(do_mounts.c, 600kB and 15,000 lines after preprocessing) takes
fifteen seconds to check wittsparse but only a tenth of a second
to check with Sparse. We believe most of the slowdown is due to
zeta's interpreter and not the extensibility mechanisresgelves.
Preliminary tests suggest that replacing the zeta integpvéth an
on-the-fly compiler will produce a 20-40x speedupxXeparse.

4.2 Vault, a high-level protocol checker

For a more complex case study, we comparsult, an implemen-
tation of Vault's type system (DeLine and Fahndrich 2001yadn,
with Coffer, the implementation of Vault in Polyglot by the authors
of Polyglot.

The Vault language uses a flow-sensitive type system to emfor
protocols in low-level software. Vault uses linear capiébs, or
keys to ensure that all tracked objects are always freed and neve
used without being allocated. Pre- and post-conditionsinotfons
specify how the held set of keys iffected by a function call. Vault
includes a few other features: keys can be tagged with arstate,
keys can guard variables (which cannot be used unless tagisk
held), and variant types can support run-time checks on tegg.s

xvault implements all these features except variant types. Cof-
fer adds Vault-like keys to Java, but does not support ketesta
or key guards. Cider has to worry about classes and exceptions.
We omit those features of @er from the comparison. Gi@r and
xvault implement Vault’s type system in equivalent ways: they
add syntax for the flow-sensitive types, add type-checkinesrto
understand those types, and use a dataflow analysis to dieok t

Thexvault implementation is smaller than @er’s mainly due
to xoc’s handling of syntax trees. @er must declare semantic ac-
tions, making its grammar extension 199 lines (excludirg<land
exception parsing rules not needed in C), as opposeadanlt’'s

Language Files Lines
X0C Zeta 1 34
CIL OCaml 9 94
Xtc Java+ Rats! 7 194+ 35
Polyglot Java+r PPG 13 294+ 28

Figure 4. Files modified and lines of code added to implement
rotate in various extensible compilers.

Unlike Cafer, xvault is composable with other extensions.
For example, because Vault's flow analysis is more powelfaiht
Sparse’s, a programmer might choose to load Vault for flolyana
sis and Sparse for address space checking. We have creaed a f
small test programs to verify that this combination worksvex-
sion of Polyglot written in J& (Nystrom et al. 2006) can mix Bz
with other extensions, but this process requires the pnogner to
compose the grammars and pass schedules manually.

4.3 Bitwiserotate

To further compare xoc to recent extensible compilers, wgém
mented the bitwise rotate operator in section 2 using Clt,, ad
Polyglot. Although a trivial extension, this exercise eqed the
fixed costs of each compiler’s extension interface and fggtéd
key differences between their approaches to extensibility an@d xoc’
Figure 4 summarizes thefert required to implement each exten-
sion.

The core of the rotate extension for CIL is only 48 lines of
OCaml (not including comments and whitespace) in a single ne
file. However, because CIL is targeted only at analysis ekbes,
adding support for the parsing and abstract syntax of tleaatp-
erator required modifications to seven source files in thed®He.
OCaml’s pattern matching facilities and CIL's printf-sylestruc-

20. Further, Céier must define subclasses to represent the abstractturing library make the rotate implementation for CIL sifizantly

syntax for new method and type declarations. These clasgase

a few boilerplate methods, suchaisitChildren, reconstruct,
andprettyPrint, which are not necessary in xoc thanks to syntax
patterns and generic traversals. In totalff€ois 2276 lines of un-
commented code (excluding package and import declaratinds
code to manipulate classes and exceptions) whitul1t is 641
lines.

250

shorter than the implementations for xtc and Polyglot. Have
pattern matching required mentally translating the cdecretate
syntax into its abstract syntax, and CIL's use of printfistfyprmat
strings means syntax errors can not be statically detected.

The rotate extension for xtc is 194 lines of Java code, plus 35
lines of Rats!parser specification. The bulk of the implementation
is concerned with navigating xtc's generic syntax treesdealing

with their dynamic types. The generic syntax trees obviate t
need to know or extend any abstract syntax in the rotate sixten
however, without the benefit of destructuring syntax, theteo
extension implementation requires knowledge of precisaildeof
concrete program syntax and of the exact relationships dmtw
expression-related non-terminals in the grammar.

The Polyglot-provided extension skeleton alone is 108slioke
Java and PPG (Polyglot Parser Generator) code and 98 lisbslbf
wrapper, again not including comments or whitespace. Implg-
ing the rotate operator added 214 lines of JaP4. Because the
design patterns that make Polyglot flexible require manyraisin-
terfaces and classes, even simple extensions consist gfclzeses
and large amounts of boilerplate code. For example, in itdio
specifying the translation of rotate syntax, the rotateesion must
provide implementations and factories for its abstractayspec-
ify where it fits into the pass schedule, and provide a drieer f
compiling programs written in rotate-extended Java. Thisgar-
ison (Polyglot code that we wrote) is bolstered by the coispar
with Coffer (Polyglot code that Polyglot's authors wrote) above.

4.4 Function expressions

To exercise xoc, we wrote an extension caliddmbda that adds
first-class closures, a feature we have long wished for inf@sé
closures behave like regular function pointers, withow tisual
C workaround of an extraoid* parameter. The new keyworfth
followed by a function definition creates a heap-allocatiedure
that can be freed witlfree. For example, the following snippet
callsgsort with a newly constructed closure:

void alphabetize(int ignorecase, char **str, int nstr)
{
gsort(str, nstr, sizeof(char¥*),
fn int cmp(const void *va, const void *vb) {
const char **a = va, **b = vb;
if (ignorecase)
return strcasecmp(*a,
return strcmp(*a, *b);

1;

:‘:b) ;

x1ambda provides safe lexical scoping by capturing by-value
copies of all necessary variables from the enclosing enxient
directly in the closure structure at the time of creation-\Bjue se-
mantics allow closures to have unlimited extent; unlikelstaased
closures (for example, GNU C's nested functions),xaambda-
created closure is completely self-contained, and thusirewvalid
after the function that created it returns.

When xoc compiles thén expressionxlambda lifts the func-
tion, moving its definition to the top level of the program and
adding an additional argument that points to an environrsgnt-
ture with fields for all of the variables the closure needsrfithe
enclosing environmenti gnorecase in the example).

The codex1ambda will generate begins:

int Tambda_cmp(struct env_cmp *env, const void *a, ...)

{

if (env->ignorecase)

In addition, x1ambda emits code that allocates and initializes a
structure containingnv_cmp and a small, dynamically-generated
assembly-language trampoline that adds the extkaargument
and callslambda_cmp. The closure and the trampoline are allocated
in the same block, so that freeing the function pointer frimes
closure.

Implementation usingxoc xTambda uses xoc's grammar support
to extend the compiler's grammar witth expressions using the
grammar specification:

251

expr: "fn" fndef;

Restructuring and generic syntax allow the constructiorthef
code that allocates and initializes the closure object axipely
mimic the literal C code ultimately generated, instead qtireng a
translation into abstract syntax. For example, the folimpsnippet
generates the environment structure based on the fredlexiaf
func, the function being lifted.

fields: T1ist ptr C.sudecl;
for ((v,_) in func.freevars) {
if(!lv.isglobal)
fields +=
Tist[‘C.sudecT{\(v.type) \(mkid(v.name));}];
}

envtype := ‘C.typespec{struct {\fields}}.type;

The fine grained schedulingfarded by attributes allowsl amb-
da to construct new syntax fragments at any time. Code gerkerate
during compile time does not need to be brought “up to speed”
(e.g., if type information is necessary); analysis will leafprmed
when needed, even if xoc has finished the corresponding sisaly
of the rest of the program.

Evaluation Implementing thexlambda extension required 170
lines of Zeta code. Of these 170 lines, 4 declare the gramrar e
tension, 26 perform free variable analysis, 40 perform sxpand
type checking, and 98 compifa expressions. Given the complex-
ity of implementing closures, we were happily surprisedhatdim-
plicity of x1ambda’s implementation, and the ease with which clo-
sures can be added to the C language.

To further evaluatelambda, we also implemented it using the
xtc toolkit. This implementation was 682 lines of Java, [38dines
of Rats! Like in the xtc rotate extension, much of the code was
concerned with navigating the generic syntax trees in wagsal-
lowed the appropriate parts of the trees to be modified. litiadd
210 lines were dedicated to working around the possibilityani-
able capture due to xtc’s lack of automatic hygiene.

45 Composability

We designed xoc’s extension interfaces with extension csaipil-

ity in mind. We have no way to make sweeping statements about
composability, and it is certainly possible to design egiens that

are not usable together. Even so, we wrote a few programg usin
many extensions as a composability sanity check. Here i®a pr
gram that combinesaif, xalef-iter, x1ambda, andxpcre:

void
foreach(char

{

**str, int nstr, void(*f)(char*))

f(str[0::nstr]);
}

int
main(int argc, char

{

**argv)
while(getTine()) {
foreach(argv+l, argc-1,
fn void check(char *pat) {
if(it =~ pat)
printf("%s\n", $0.str);
i3H
free(check);

}

This convoluted program matches each line of text returned b
getline against a set of regular expressions given on the com-
mand line. The: : operator, introduced byalef-iter, executes

its containing statement repeatedly, with each value fidanstr.

The it variable, introduced byaif, is equal to the last condition

evaluated bwhile; it is copied into thefn closure properly. The
xpcre extension contributes the. match and thgo.str syntax.

We compiled this program using all possible extension ander
and verified that they all compiled to the same, correct code.

As mentioned earlier, we also checked that programs can use
xsparse andxvault together and thatsparse correctly handles
programs usingalef-iter andxgnu-conditional, which intro-
duce new control flow.

Xoc makes it possible to load extensions dynamically and to
mix extensions. These features alone are an advance oggngxi
work. Although it is certainly possible to write extensiotigt
conflict when composed—and when it detects conflicts, xot wil
report an error—we are encouraged by the fact that the egtens
we have writterdo compose. Identifying an exact set of conditions
that guarantee the composability of extensions is intiexg$titure
work. For now, we have refrained from imposing restrictionsil
we have a better sense of what kinds of extensions people will
write.

4.6 Discussion

Based on our experience implementing the extensions listeig-
ure 3, we can make some observations about the ease of wiiting
extensions. More data points are necessary to support teted s
ments, but xoc extensions seem to require relatively Iktiewl-
edge of the xoc core. The xoc core has 72 grammar symbols, 56
attributes, and 31 extensible functions. Figure 5 listsrthmber
of times particular symbols, attributes, or functions axeereded
by the extensions in Figure 3. The extensions make theirsive
language changes using relatively few of the grammar sysnbt!
tributes, and functions.

The symbolsabdecorl, decorl, andtypespec and the func-
tionsxapplydecor, xdodecor, xdosudecor, andxsplittypespec
are all involved in processing C type declarations, by fantliest
part of C. We have not been able to hide the ugliness completel
in xoc. Nevertheless, the figure shows that two core gramymar s
bols expr andstmt), and four core attributes¢mpiled, type,
welltyped, andforward) are useful for a wide variety of exten-
sions.

5. Related Work

The contribution of our work is the interfaces that allow pro
grammers to extend xoc dynamically. These interfaces dnaw o
work done in extensible compilers and other language eitiéins
mechanisms.

5.1 Extensiblecompilers

Because of the extension-oriented focus, extensions neusaby
to write and use; otherwise the basgog required to create a
new extension threatens to dwarf the incremenfidrerequired
to define the extension-specific details. The followingedion of
features are essential to xoc:

¢ dynamic loading of extensions
¢ changing syntax via extensible grammars
syntax patterns for manipulating the internal representat

a typed syntax tree

lazy attributes for computing and saving analyses
e ageneral purpose programming language for writing exoaissi
This section discusses how these features evolved in xoc by
examining a few extensible compilers which had a direct influ

ence: CIL, a compiler supporting analysis extensions (Neetal.
2002); Polyglot, an extensible Java compiler framework Ny

252

Symbol Attribute Function
6 expr 9 compiled 2 xapplydecor
4 stmt 8 type 2 xcompilefnsym
2 abdecorl 8 welltyped 1 typefncall
2 decorl 4 forward 1 xcanconvert
2 typespec 2 sym 1 xdodecor
1 attr 2 vars_out 1 xdosudecor
1 fndef 1 body 1 xsplittypespec
1 Tlabel 1 discomputation
1 qual 1 vars
1 top

Figure 5. The number of extensions (from Figure 3) that extend
each grammar symbol, attribute, and function.

trom et al. 2003); xtc, an extensible C and Java compiler éram
work (Grimm 2006; Hirzel and Grimm 2007); Stratego, a speci-
fication language for program transformations (Visser 20a4d
Silver, an extensible attribute grammar system (Van Wyklet a
2007a,b).

Dynamic loading CIL, Polyglot, xtc, Stratego, and Silver are
“compiler kits” that must be rebuilt for eachftérent extension or
set of extensions, each time producing a new standaloneilgsmp
Mixing multiple extensions requires composing them malguAl
version of Polyglot ported to the J& language (Nystrom e2@06)
addresses extension composability but still requirestoacting a
new compiler for each set of extensions.

In contrast, an extension-oriented compiler like xoc atxep
plugins during compilation. It is not necessary to rebuibd xeach
time the user wants to try aftiérent extension.

Extensible grammars Those extensible compilers that provide
support for changing the input grammar (CIL does not) allow
extension writers to specify changes by writing additiggraimmar
rules. Polyglot and Silver accept context-free grammagsriut
use an LALR parser, making it possible for extensions to adidl v
grammar rules that are nonetheless rejected by the patssed®
solves this problem by using a GLR parser (Tomita 1987; van de
Brand et al. 2002), which allows it to handle any contexefre
grammar (and thus any arbitrary grammar additions). Xteesol
this problem by switching formalisms: it uses parsing ezpi@n
grammars (PEGs) and a packrat parser (Ford 2004), which also
handle arbitrary additions.

Like Stratego, xoc uses a GLR parser to allow arbitrary gram-
mar additions. As discussed in section 3.1, GLR parsing has t
added benefit over packrat parsing that it allows the detecif
ambiguities introduced by combinations of grammar extarsi
Unlike Polyglot and xtc, xoc’s grammar modifications areited
to rule addition; more flexible features such as rule remavalat
odds with automatic composability. Polyglot for J&, for exale,
allows rule removal but requires combined grammars to be-com
posed by hand.

Syntax patterns CIL provides simple string-based primitives for
restructuring and destructuring concrete syntax, like @&'sntf
andscanf. Polyglot provides a similagrintf-style restructuring
syntax. Xtc provides a more general mechanism in which pette
are stored in a separate file. A program calledrtfecoryFactory
compiles them to Java methods that extensions can call. The C
and Polyglot approach keeps the patterns near their usebnbt
check that they are well-formed when compiling extensidrise
xtc approach can check patterns but requires that they beedéfi

a separate file, apart from their use.

Stratego provides the best of both approaches using cencret
syntax patterns (Bravenboer and Visser 2004). Strategots
patterns are easy to use and are syntax-checked at conmpée ti
Like Stratego, xoc provides domain-specific support forccete
syntax patterns in it's implementation language. Unlikeat&go,
XO0C's syntax patterns are typed, as discussed in the netioisec

Typed syntax Parse trees have implicit types: for example, a parse
tree representing a statement cannot be used where a (g seyir
resenting a variable name is expected. Compildfeddn whether
they expose these types in the implementation langusgeode,
NameNode, etc.) or just use a single abstract syntax tyyueié).

CIL, Polyglot, and Silver use explicitly typed syntax tre€his
makes it possible for the implementation language’s coenpit
check that syntax trees are well-formed (where a statenwe n
is expected, only a statement node can be used). This ales giv
the compiler writer more control over the internal syntaeetrep-
resentation. For example, Polyglot uses Java interfacekssify
abstractly related syntax types, such asgthery interface, which
is the super type of binary expressionsTerm, which is the super-
type of AST nodes that can contribute to control flow. Suchkrint
faces allow the implementation language to check that theired
functionality of new node types has been implemented.

On the other hand, using a single abstract syntax type makes

traversals of foreign syntax particularly easy, sinceNd: object
typically defines ahildren array with pointers to the child syn-
tax nodes. Stratego and xtc both take this approach. Inasintr
generic traversal using typed abstract syntax requiresstong
more heavyweight, like the visitor pattern (Gamma et al.4)99

Xoc provides a typed syntax tree with subclassing suppeért ta
lored to the syntax tre& (expr and so on). Typed syntax is particu-
larly important for syntax patterns: because xtc and Simatse un-
typed syntax trees, they cannot diagnose errors in whictvitbag
type of node is passed to a restructuring pattern (for exanoging
syntax for a statement where a variable name is expected).

Internally, xoc’s syntax trees have a uniform represeoragix-
posed by thestsplit andastjoin primitives. This makes xtc-
and Stratego-like generic traversals possible. Howeverades
flexibility for loss of control; it is not possible to custore the
internal representation in xoc as it is in Polyglot.

Lazy attributes Compilers are traditionally organized as a se-

Stratego is based entirely on term rewriting; Silver is blese-
tirely on attribute grammars. Both models are verffedtient from
the general-purpose programming languages whose progeesnm
are xoc's target audience. Learning &elient model of computa-
tion is a significant barrier to entry for these systems.

Xoc starts with a general-purpose programming language and
adds domain-specific constructs—syntax patterns, a grarypa
system, and lazy attributes—to make writing extensionsencon-
venient. Unlike in Stratego and Silver, the domain-spedfio-
structs are integrated with a general-purpose languagga$pat-
terns and lazy attributes can be bypassed in favor of loexat|
constructs like generic traversal and extensible funstiehen nec-
essary. We have also experimented with domain-specifidreats
for implementing type checkers (Bergan 2007), but theirdses
not preclude the use of the general-purpose language. Goittee
hand, providing general-purpose constructs precludés stetec-
tion of errors like attribute circularity or coverage of neyintax.

5.2 Other approachesto language extension

Macros Macros are the most popular method for extending
a language, mainly due to the power demonstrated by Lisp’s
macros (Hart 1973; Steele and Gabriel 1993; Graham 199§). Li
was also the first to introduce restructuring expressiome-tisp
term is quasiquotatior—to make code generation easier to write
and understand. Programmers have ported Lisp’s macrostinto
languages (e.g., Bachrach and Playford 2001; Baker anchHsie
2002; Weise and Crew 1993). Macros are purely syntacticsiran
formations, making them excellent for adding new syntaxrmit
useful for semantic changes to existing syntax. Since nsacao-
not access compiler internals, they typically do not evge tsheck
their arguments, producing cryptic errors when invokedirectly.
Xoc’s extension interface is less concise than macros, rbut i
return for the loss of brevity, extension writers get autbosyntax
checking, the ability to reuse compiler analyses, and tliéyato
introduce semantic changes or restrictions.

Provableextensions Some recent work has focused on being able
to prove correctness properties for specific classes ofikyg ex-
tensions. Semantic type qualifiers (Chin et al. 2005) all@ersi

to define typing rules for extended sets of qualifiers; thesalre
automatically validated against desired runtime invasa®ther
work has made progress in proving the correctness of dataflow

quence of passes. Adding extensions in such a model requiresanalyses, compiler transformations, and optimizatioesrier et al.

defining how the extension’s computation fits into the passgcst
ture. Polyglot extensions explicitly declare their scHady re-
quirements to the Polyglot core, which deduces a schedule; C

2003, 2005). Xoc’s current design prefers flexibility ofexsion to
provable correctness. A system that enforced safety mweriand
proved correctness properties for some extensions whiwialg

xtc, and Stratego require scheduling passes by hand. Beth ap others to escape the resulting limitations would give Usdibil-

proaches complicate extension design, since extensioss ineu
aware of when various analyses take place.

Xoc’s solution to scheduling draws on Silver, where all com-
putations are expressed using an attribute grammars anthgan
draw on extensive work on attribute grammar scheduling (Knu
1968). Like Silver's attribute grammars, xoc's lazy atitiés let
the programmer define tree traversal implicitly; the reggiiorder
naturally arises from the sequence of references to ottrérudes.
However, xoc’s added flexibility comes at the loss of forrsli
xoc's attribute functions cannot be automatically anadylilee con-
ventional attribute grammars can.

General-purpose programming language Most compilers are
written using general-purpose programming language<djkava,

or ML, but some projects use custom domain-specific program-
ming models. Domain-specific models can simplify common id-
ioms or constructs and provide stronger static guaranteés jf

not coupled with a general-purpose language, they can nuaike s
tasks considerably moreficult.

253

ity to extension authors.

6. Conclusion

Xoc is an extension-oriented compiler, which allows an esien
writer to make a small change to the base language and combine
this extension with others, perhaps written by others, nlikeh
how web browsers and other software load content-specifginm.

A challenge in the design of xoc is to give extension writbes t
power to modify the grammar and manipulate and analyze thie AS
without forcing the extension writer to understand the espnta-
tions within the compiler. Xoc resolves this tension by gsigntax
patterns, written in the syntax of the base language, to poéate
language fragments and ASTSs, and using AST attributes, atadp
on demand, to hide the scheduling of compiler passes.

Experience with using xoc to write 15 extensions that extend
the compiler in various dlierent ways confirms that these inter-
faces work well. None of the 15 extensions needed to bypass th
interfaces, and in fact xoc provides no mechanism for domg s

Furthermore, the line counts of these extensions indidatethe
extensions are easier to develop than corresponding origsnwr
using a domain-specific front end or extensible compilers.

Acknowledgments

Todd Millstein provided much useful advice on the design ad.x
Robert Grimm provided advice on using xtc. The anonymous re-
viewers gave valuable feedback on an earlier draft. During t
work, Russ Cox was supported in part by a fellowship from the

Fannie and John Hertz Foundation, and Eddie Kohler by Sloan

Research and Microsoft Research New Faculty Fellowships T
project was partially supported by the National Sciencenigation

under Grant Nos. 0430425 and 0427202, and by Nokia Research

Center Cambridge.

References

Jonathan Bachrach and Keith Playford. The Java syntadéméer (JSE).
In Proceedings of the 16th annual ACM SIGPLAN Conference on
Object-Oriented Programming Systems, Languages, andio®iphs
2001.

Jason Baker and Wilson C. Hsieh. Maya: Multiple dispatchtayexten-
sion in Java. IrProceedings of the 2002 ACM SIGPLAN Conference on
Programming Language Design and Implementat2002.

Tom Bergan. Typmix a framework for implementing modular, extensible
type systems. Master’s thesis, University of Californiaslangeles,
2007.

Martin Bravenboer and Eelco Visser. Concrete syntax foectbj domain-
specific language embedding and assimilation withouticéisins. In
Proceedings of the 19th annual ACM SIGPLAN Conference ordbbj
Oriented Programming Systems, Languages, and Applicatkii04.

Brian Chin, Shane Markstrum, and Todd Millstein. Semantetquali-
fiers. InProceedings of the 2005 ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementati®®05.

Robert DeLine and Manuel Fahndrich. Enforcing high-levedtpcols
in low-level software. InProceedings of the 2001 ACM SIGPLAN
Conference on Programming Language Design and Implementat
2001.

Bryan Ford. Parsing expression grammars: a recognitiseebayntactic
foundation. InProceedings of the 31st ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languag@804.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissidesign
Patterns Addison-Wesley, Reading, Massachusetts, 1994.

Paul GrahamOn LISP: Advanced Techniques for Common LIBRntice-
Hall, 1996.

Robert Grimm. Better extensibility through modular synteProceedings
of the 2006 ACM SIGPLAN Conference on Programming Language
Design and Implementatio2006.

Michael Hammer. An alternative approach to macro procgssirin
Proceedings of the International Symposium on Extensiblegglages
Grenoble, France, 1971.

Timothy P. Hart. MACRO definitions for LISP. Al Memo 57, MIT Al
Project—RLE and MIT Computation Center, 1973. (reproduged
Steele and Gabriel 1993).

Martin Hirzel and Robert Grimm. Jeannie: Granting Javaveainter-
face developers their wishes. Rroceedings of the 22nd annual ACM
SIGPLAN Conference on Object-Oriented Programming Systean-
guages, and Application2007.

Gregor Kiczales, John Lamping, Anurag Menhdhekar, Chrisedda
Cristina Lopes, Jean-Marc Loingtier, and John Irwin. Asme@Ented
programming. InProceedings of the European Conference on Object-
Oriented Programmingl997.

Charles Edwin Killian, James W. Anderson, Ryan Braud, RaHjala,
and Amin M. Vahdat. Mace: language support for building ritisted
systems. InProceedings of the 2007 ACM SIGPLAN Conference on
Programming Language Design and Implementat@007.

254

Donald E. Knuth. Semantics of context-free languagésathematical
Systems Theor@(2):127-145, 1968.

Eugene Kohlbecker, Daniel P. Friedman, Matthias Felleiserd Bruce
Duba. Hygienic macro expansion. Rroceedings of the 1986 ACM
Conference on LISP and Functional Programmit§86.

Max Krohn, Eddie Kohler, and M. Frans Kaashoek. Events cateraanse.
In Proceedings of the 2007 USENIX Annual Technical Confere2y.

Sorin Lerner, Todd Millstein, and Craig Chambers. Autoweelly proving
the correctness of compiler optimizations. Rmoceedings of the 2003
ACM SIGPLAN Conference on Programming Language Design and
Implementation2003.

Sorin Lerner, Todd Millstein, Erika Rice, and Craig Chanshekutomated
soundness proofs for dataflow analyses and transformatientcal
rules. InProceedings of the 32nd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming LanguageX)05.

Harry R. Lewis and Christos H. PapadimitriolElements of the Theory
of Computation Prentice Hall PTR, Upper Saddle River, New Jersey,
1997.

George C. Necula, Scott McPeak, S. P. Rahul, and Westley &veiil:
Intermediate language and tools for analysis and transftiom of C
programs. InProceedings of the 11th International Conference on
Compiler Construction2002.

Nathanial Nystrom, Michael Clarkson, and Andrew Myers. yglt: an
extensible compiler framework for Java. Rroceedings of the 12th
International Conference on Compiler Constructi@®03.

Nathanial Nystrom, Xin Qi, and Andrew Myers. J&: nested isgetion
for scalable software composiiton. RFroceedings of the 21st annual
ACM SIGPLAN Conference on Object-Oriented Programmingegys
Languages, and Application2006.

Jukka Paakki. Attribute grammar paradigm: a high-levelhodblogy in
language implementation ACM Computing Survey®7(2):196-255,
June 1995.

Guy L. Steele, Jr. and Richard P. Gabriel. The evolution spLIinProceed-
ings of the 2nd ACM SIGPLAN Conference on History of Progralgm
Languages1993.

W. Teitelman. Pilot: A step towards man-computer symbiodiechnical
Report AITR-221, Massachusetts Institute of Technolo§g6L

Masaru Tomita. An ficient augmented context-free parsing algorithm.
Computational Linguisticsl3(1-2):31-46, January—June 1987.

Linus Torvalds and Josh Triplett. Sparse —a semantic pams€r http://
www. kernel.org/pub/software/devel/sparse/ (retrieved Decem-
ber 2007), 2007.

Mark van den Brand, Jeroen Scheerder, Jurgen J. Vinju, altd Eesser.
Disambiguation filters for scannerless generalized LRgrarsInPro-
ceedings of the 11th International Conference on Compilensfruc-
tion, pages 143-158, 2002.

E. Van Wyk, D. Bodin, L. Krishnan, and J. Gao. Silver: an estble
attribute grammar system. IRroceedings of the 7th Workshop on
Language Descriptions, Tools, and Analyg€807a.

Eric Van Wyk, Lijesh Krishnan, August Schwerdfeger, and ékeBodin.
Attribute grammar-based language extensions for Jav®rdoeedings
of the European Conference on Object-Oriented Programn@fg7b.

Eelco Visser. Program transformation with Strajego rules, strategies,
tools, and systems in Strat¢i@ 0.9. Technical Report UU-CS-2004-
011, Institute of Information and Computing Sciences, thteJniver-
sity, 2004.

Alessandro Warth, Milan Stanojéviand Todd Millstein. Statically scoped
object adaptation with expanders. Broceedings of the 21st annual
ACM SIGPLAN Conference on Object-Oriented Programminge8ys
Languages, and Application2006.

Daniel Weise and Roger Crew. Programmable syntax macrd2rolceed-
ings of the 1993 ACM SIGPLAN Conference on Programming Laggju
Design and Implementatiopri993.

Phil Winterbottom. Alef reference manual.Rtan 9 Programmers Manual,
Volume TwoHarcourt Brace Jovanovich, 1995.

