
Interposing the Syscall Boundary: Transparent Python
Execution in SigmaOS

by

Ivy Wu
S.B. Computer Science and Engineering, Massachusetts Institute of Technology, 2025

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

MASTER OF ENGINEERING IN ELECTRICAL ENGINEERING AND
COMPUTER SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2025

© 2025 Ivy Wu. All rights reserved.

The author hereby grants to MIT a nonexclusive, worldwide, irrevocable, royalty-free license
to exercise any and all rights under copyright, including to reproduce, preserve, distribute
and publicly display copies of the thesis, or release the thesis under an open-access license.

Authored by: Ivy Wu
Department of Electrical Engineering and Computer Science
May 9, 2025

Certified by: Ariel Szekely
Ph.D. Student of Computer Science at MIT
Thesis Supervisor

Certified by: M. Frans Kaashoek
Charles Piper Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by: Katrina LaCurts
Chair
Master of Engineering Thesis Committee

Interposing the Syscall Boundary: Transparent Python Execution in
SigmaOS

by

Ivy Wu

Submitted to the Department of Electrical Engineering and Computer Science
on May 9, 2025 in partial fulfillment of the requirements for the degree of

MASTER OF ENGINEERING IN ELECTRICAL ENGINEERING AND
COMPUTER SCIENCE

ABSTRACT

σOS aims to provide both serverless and stateful support to cloud applications while
maintaining strong isolation, security, and efficient startup times and scheduling among
multiple users. While σOS and its container startup times have been successfully benchmarked
for tasks written, compiled, and statically linked in Golang and Rust, it currently lacks support
for other languages, including interpreted ones like Python. To bridge this gap, this paper
presents the first integration of an interpreted language into σOS, enabling native Python
support without compromising the system’s core principles. Our design, σPy, achieves this
through three key ideas: (1) system call interposition via LD_PRELOAD to enable just-in-time
dependency management, where Python libraries are fetched on-demand from tenant-specified
AWS S3 buckets, avoiding overhead during container initialization; (2) a multi-layered mount
namespace that spans the local machine, a per-realm Docker container, and a per-proc
σcontainer, enabling efficient dependency caching at the per-tenant granularity; and (3) a
hybrid C++, C, and Python API layer that bridges σOS’s Protobuf-based RPC system
with Python’s dynamic types. Preliminary benchmarks demonstrate that σPy achieves
performance comparable to that of compiled languages like Golang when interacting with
the σOS API, with only 0.2 - 0.3 additional milliseconds of overhead on all tested API calls,
validating the success of Python programs on the σOS architecture.

Thesis supervisor: Ariel Szekely
Title: Ph.D. Student of Computer Science at MIT

Thesis supervisor: M. Frans Kaashoek
Title: Charles Piper Professor of Electrical Engineering and Computer Science

2

Acknowledgments

I would like to express my gratitude to my thesis supervisor and advisor, Professor M. Frans
Kaashoek, for his guidance, support, and encouragement throughout my journey towards
a Master’s degree. I am incredibly thankful for the invaluable feedback that he provided
and for the opportunity to learn and grow under his mentorship while pursuing the research
directions that I am most interested in.

I am also especially grateful to Ariel Szekely, my mentor throughout this year of research,
for his patience, generosity, and constant willingness to help. His advice and expertise with
respect to the σOS infrastructure helped me navigate and overcome the technical challenges
I faced, and this work would not have been possible without his support.

Thank you both for making this experience such a meaningful part of my academic
journey, reinforcing my passion for systems work, and inspiring me to pursue future endeavors
in this field throughout the rest of my career.

3

Contents

List of Figures 5
List of Tables 6

1 Introduction 7

2 Background: σOS Design 9
2.1 σOS procs . 9
2.2 Inter-proc Interactions via Realms . 10

3 Implementation of Python procs 13
3.1 Python Program Workflow . 13
3.2 Running the Python Interpreter . 15
3.3 Runtime Library Imports . 18
3.4 Library Caching . 19
3.5 Relative Imports . 19
3.6 Communication with the σOS API . 19
3.7 σOS Python proc Workflow . 20

4 Evaluation 25
4.1 Experimental Setup . 25
4.2 Microbenchmark Results . 25

5 Related Work 27

6 Conclusion 29
6.1 Future Work . 29

References 31

4

List of Figures

2.1 proc isolation in σOS. 10

3.1 High-level overview of σPy. 14
3.2 Contents of my_file.py . 14
3.3 The Python-related mounts from the local machine to dcontainer. 16
3.4 The Python-related mounts from the dcontainer to the σcontainer. 17
3.5 pylib Started API Call . 20
3.6 Modifications made to my_file.py . 21
3.7 my_file.py Python proc workflow. 21
3.8 Sample Python proc interaction with the σOS API. 23

5

List of Tables

2.1 σOS proc API Calls . 11
2.2 σOS Namespace API Calls . 12

3.1 Allowed System Calls in proc Execution Environment 17

4.1 Latency Comparison of Go versus Python API Calls 26

6

Chapter 1

Introduction

Cloud computing has become an essential infrastructure for modern applications, offering
scalable resources, rapid deployment, and cost efficiency. Among the diverse paradigms,
serverless computing platforms like AWS Lambda provide a compelling solution for stateless,
ephemeral tasks, while containerized systems such as Docker and Kubernetes enable support
for stateful, long-running workloads. Despite these individual strengths, multi-faceted
applications that run both types of tasks often face challenges in balancing functionality,
security, and performance, leading to compromises in their design.

Take, for example, the startup of new containers in orchestration systems like Kubernetes.
These containers are built from large, complex images, which, if not already cached on the
machine, require much time to download from a remote server. Once the image has been
pulled, the container must be initialized, often requiring setting up the runtime environment,
loading relevant data, or even starting long-running background services, all of which are
time-consuming tasks that greatly increase the cold start latency. The tradeoff between
containerized services and serverless computing lies in the fact that while container designs
offer more control and flexibility for complex, stateful workloads, they can introduce higher
cold start latencies due to infrastructure and image initialization, resulting in inefficiency
and unsuitability for short-lived, stateless functions.

To address this, σOS introduces a unified platform that integrates serverless and stateful
capabilities into a single framework. Central to σOS is the concept of lightweight, isolated
procs, which ensure rapid initialization, strong isolation, and efficient communication between
processes. While σOS has demonstrated its efficacy with compiled languages like Go and Rust,
extending its support to interpreted languages such as Python introduces unique challenges.
Python’s dynamic nature, reliance on interpreters, and need for runtime library management
require careful adaptation to the existing proc infrastructure without compromising the
system’s speed, security, and simplicity.

This thesis aims to integrate Python support into σOS, enabling users to leverage Python’s
rich ecosystem of libraries and frameworks while benefiting from the platform’s inherent
strengths. The key goals of this work are as follows:

1. Seamless Integration of the Python Interpreter: Modifying the σOS build
process and container startup to support Python execution without requiring specialized
containers or changes to the Python interpreter itself.

7

2. Dynamic Library Management: Developing mechanisms to fetch and manage
Python libraries on demand, optimizing storage and performance, in contrast to con-
ventional containerized approaches that require all dependencies to be bundled into the
image at startup.

3. Interfacing with the σOS API: Creating a C++ and Python-backed library for
accessing σOS features such as proc control and inter-proc communication.

4. Benchmarking Python Program Performance: Measuring and analyzing the per-
formance of Python programs running on σOS, including startup time, runtime efficiency,
and resource utilization, to compare with alternative cloud computing platforms.

To achieve these goals, this work introduces a new way of running procs into σOS
to accommodate Python’s dynamic execution model while preserving the existing σOS
lightweight isolation model. Unlike container-based solutions that require preloading all
dependencies, inflating startup times and storage costs, the σPy framework enables developers
to run Python programs that fetch libraries on-demand via standard, unmodified import
statements via system call interposition, decoupling library management from container
initialization. σPy further leverages existing σOS architecture to achieve multi-tenant
dependency isolation, creating overlay mounts in σOS’s per-tenant realms to store tenant-
specific library caches. Finally, σPy offers Python access to σOS platform-specific features,
such as proc coordination and realm storage, with a C++/Python hybrid library for σOS
API access that reconciles Python’s types with the σOS RPC system designed in Go. The
result is a system where Python programs interact natively with σOS features while behaving
exactly as they would outside of σOS, requiring no invasive modifications to the Python
interpreter while simultaneously offering the full suite of security, isolation, and performance
benefits of σOS.

Our evaluation of 16 critical σOS API calls (12 handling local storage, and 4 interacting
with remote AWS S3 storage) demonstrates Python’s viability in σOS’s isolation model.
Python matches Golang in all of the tested functions, maintaining performance within 0.3
milliseconds of the Golang latency through an optimized C++ binding layer for efficient
RPC formatting, delivery, and handling. These results validate that Python can meet
σOS’s performance demands while fully preserving σOS’s security guarantees, all without
modifications to the Python interpreter itself. This success establishes a template for
supporting other interpreted languages in σOS, as the same framework — system-call
interception for dynamic imports, hybrid native RPC bindings, and tenant-isolated dependency
caching — can generalize to any runtime with similar dynamic linking behavior.

8

Chapter 2

Background: σOS Design

Modern cloud applications often leverage serverless functions to handle bursts of stateless
traffic, while employing containerized services for stateful, long-running tasks. σOS, a multi-
tenant cloud operating system, unifies these two needs in a single platform, introducing the
concept of procs that are able to start up quickly, maintain state, and communicate with
each other [1]. The key abstractions that support these advantages are the σOS API and
per-tenant realms, which not only ensure security but also enable inter-proc communication
and access to filesystem storage, critical for supporting rich user programs and Python
integration.

2.1 σOS procs

As a cloud operating system, σOS isolates each user proc that it runs, limiting its privileges
to prevent any interference with σOS services and other procs, as depicted in Figure 2.1.
σOS establishes two layers of isolation with a per-tenant Docker container and a per-proc
σcontainer. The Docker container enables support for group infrastructure and coordination
among procs created by the same tenant, creating a clean, isolated filesystem environment,
save for a few mounts from the local machine, and a shared space for establishing communi-
cation endpoints. The σcontainer imposes a strict jail on the proc, limiting the Linux system
calls it can invoke via a seccomp filter and further confining its filesystem access to ensure
that most runtime modifications have no effect on the underlying machine.

These σcontainers are light-weight and enable the fast start-up time of σOS in comparison
to many other containerized services. Most of the features used by the proc require either
only a short amount of time to create, such as the seccomp filter and the necessary mounts,
or have already been established prior to the proc’s initialization, such as the setup done in
the per-tenant Docker container. As such, σcontainers ensure privacy and isolation while
minimizing the proc’s dependency on and usage of the underlying operating system.

σOS procs are able to interact with one another and realm resources via the σOS API.
The list of relevant proc API calls that σOS provides is shown in Table 2.1.

9

Figure 2.1: proc isolation in σOS.

2.2 Inter-proc Interactions via Realms

To enable communication between procs invoked by the same tenant, σOS introduces
the concept of realms. Each realm allows procs to register endpoints by which they can
communicate with each other, called σEPs, and per-proc filesystem-like subtrees with unique
pathnames that allow procs to recognize and refer to other procs and necessary resources.
This allows procs of the same tenant to share information among themselves, helping them
coordinate to accomplish tasks.

Each proc can create a σEP, which serves as a communication channel accessible by
other procs within the same tenant realm. When a σEP is created, it generates a unique
token that identifies the endpoint. The creator proc can listen on this channel, waiting
for and processing any incoming connections. This token can be shared with other procs
via the realm’s filesystem-like interface, enabling secure and controlled communication and
ensuring that procs outside of this realm cannot interfere with the creator proc’s activities.
Other procs of the same realm can connect to the σEP via the shared token, establishing
a messaging channel with the creator and allowing for inter-proc coordination and data
exchange within the tenant’s execution environment.

The per-proc filesystem subtrees converge under the same root, a name server called
named. The same root also holds σOS’s proxy services, including ones for Mongo, Db, Ux, and
S3. These services enable both local and remote storage and retrieval, such as the capability
to connect to the tenant’s Amazon S3 buckets through the S3 proxy. The data that the
tenant would like to use, specific versions of libraries that they depend upon, and backups

10

Methods Description

Spawn(descriptor) Queue proc, return pid
Evict(pid) Notifies a proc that it will be evicted
WaitStart(pid) Wait until pid starts
WaitExit(pid) Wait until pid exits
Started() proc marks itself as started
Exited(status) proc marks itself as exited
WaitEvict(pid) pid waits for eviction notice

Table 2.1: σOS proc API Calls

of any important results can thus be efficiently managed and fetched from remote to local
storage when necessary, achieving a good balance between network communication overhead
and local storage efficiency.

The API enabling these proc filesystem changes and realm resource accesses are shown in
Table 2.2. Each of the calls may resolve to either the remote or local filesystem depending on
the given pathname prefixes — for example, to access the S3 buckets, tenants provide paths
prefixed with “name/s3”, directing the given request to the S3 proxy to be resolved. The
methods for creating, establishing a connection to, and finally closing a σEP are included as
well, providing a structured and efficient interface for inter-proc communication within the
same realm.

11

Methods Description

Create(path, p, m) Create a file, directory, link, or pipe
with the given permissions

Open(path, m, w) Open the given file, directory, link, or
pipe, potentially waiting for the path
to be created

Stat(path) Fetch information on an object
CloseFd(fd) Close an object fd
Rename(srcpath, dstpath) Rename an object
Remove(path) Remove an object
GetFile(path) Return of contents of an object
PutFile(path) Overwrite the contents of an object
Read(fd, b) Read data from fd
Write(fd, b) Write data to fd
Seek(fd, o) Change offset of an fd
DirWatch(fd) Watch for changes in the given direc-

tory

NewSigmaEP() Create a σEP
Accept(Listener) Accept a σEP connection
Dial(SigmaEP) Connect to a σEP
Close(SigmaEP) Close a σEP

Table 2.2: σOS Namespace API Calls

12

Chapter 3

Implementation of Python procs

σPy seeks to integrate Python support into σOS while maintaining the security level and
isolation principles of the current proc design and without having to adapt the original
Python interpreter specifically for the σOS architecture. Changing the Python interpreter
itself would introduce significant risks, including the potential for introducing bugs and
deviations from expected behavior. Additionally, modifying the interpreter would complicate
the integration of future Python versions into σOS, requiring reincorporation of σOS-specific
changes and creating an ongoing maintenance burden. At the same time, Python procs
should integrate smoothly into the σOS architecture and be able to utilize and call the σOS
API, which includes important functions like spawning and controlling child procs, enabling
inter-proc communication, and handling access to realm files and folders.

Figure 3.1 provides a high-level overview of the σPy framework, illustrating how the
system calls made unmodified Python interpreter are isolated, intercepted, and handled by
σOS and enabling communication with outside services like remote AWS S3 buckets. These
design goals, constraints, and workarounds are explored in depth in the following sections.

3.1 Python Program Workflow

Python is an interpreted language, where code is not directly compiled into machine language
but is instead executed line-by-line by the Python interpreter. The interpreter acts as the
runtime engine, processing each line of Python code and converting it into instructions that
the computer can execute. This dynamic execution provides significant flexibility compared
to compiled languages — Python supports dynamic typing, where variable types can change
during runtime, and interactive execution, allowing developers to quickly experiment with,
test, and modify small snippets of code.

We introduce a sample Python program, my_file.py, to demonstrate the Python workflow.
The contents of the file are shown in Figure 3.2.

13

Figure 3.1: High-level overview of σPy.

1 import numpy
2

3 print(numpy.array ([1, 2, 3]))

Figure 3.2: Contents of my_file.py

One powerful feature of the Python interpreter is its ability to handle dynamic imports, en-
abling the program to load external libraries or modules at runtime. For example, my_file.py
imports numpy module at the beginning of the program. When import numpy is executed,
the interpreter searches for the module through a series of directories, including the current
working directory, Python’s standard library paths, and locations specified by environment
variables like PYTHONPATH. This lookup process allows Python programs to remain lightweight,
loading libraries only when they are actually needed during execution.

To help with the installation of these libraries, Python comes with pip, a built-in package
manager that simplifies the maintenance of third-party libraries. Developers can use pip to
download and install specific versions of third-party libraries such as numpy directly from
their official sources at the Python Package Index, allowing them to easily access Python’s
vast ecosystem of external packages and supporting complex projects in machine learning,

14

web development, and more.
While these features make Python a popular choice for developers, they also present

challenges when integrating Python with σOS. It would be impossible for σOS to cache all
versions of the hundreds of thousands of Python libraries available, given their sheer volume
and constant updates — for example, even without counting patch updates, numpy alone
has had 16 minor releases [2] [3]. Python’s support for dynamic imports introduces further
complications, as σOS was designed to support mainly compiled, statically-linked executables
for languages like Rust and Go. To handle dynamic imports, σPy must monitor the runtime
behavior of Python programs, detect import attempts, and distinguish them from unrelated
system calls made by either the Python runtime or other programs. It further must located
the imported library and store it locally for future usage, requiring interaction with the
σOS infrastructure. This interaction is facilitated by key aspects of the σOS design, such
as realm-based storage, allowing Python packages to be persisted in an isolated, per-tenant
filesystem.

In running Python via σPy, we aim not only for compatibility but for enhanced func-
tionality through the σOS API. Python procs should be able to access realm resources
and coordinate with other procs, necessitating the creation of custom Python libraries to
interact with the σOS API. These key goals make designing σPy a challenging engineering
exercise, requiring careful design to cohesively integrate Python’s unique advantages with the
multi-proc environment of σOS.

3.2 Running the Python Interpreter

In order to run any Python programs, all users must be able to access the Python interpreter.
This required substantial changes to the σOS build process across both the per-realm Docker
container and per-proc σcontainer. First, σOS must download and compile CPython 3.11
— the only Python version that σOS currently supports — to generate the interpreter file
itself and copy it to a location accessible to all users. The interpreter introduces further
dependencies on other files and libraries that must be present in the same location; this
includes information on the Python build, a file specifying Python PATH, and the Python
standard libraries present in the original CPython source code [4]. All of these necessary
directories and files must be aggregated into a new Python directory and mounted into the
build and eventually proc containers for ease of access once a proc is run.

Figure 3.3 shows the mounting process from the local machine to the per-realm Docker
container (dcontainer), previously described in section 2.1. To support Python’s dynamic
import system, an overlay directory is created from three base directories: /python/lower,
/python/upper, and /python/work. CPython 3.11 is downloaded to the local machine and
built before being bound as a read-only mount to the /python/lower directory. This provides
the basic Python interpreter, the Python default libraries, and the custom Python library
enabling communication with the σOS API. A dedicated Python directory is created on the
local machine under the path /tmp/{kernel_id} to bind to and keep track of any changes
made in the /python/upper directory of the dcontainer, ensuring that realm changes are
persisted and visible to other procs of the same realm. /python/work is a newly created
directory inside of the Docker container, serving as scratch space of the overlay directory.

15

Figure 3.3: The Python-related mounts from the local machine to dcontainer.

The final Python-related bind mount inside the dcontainer, /tmp/pysl, contains any shared
Linux libraries that Python depends on, such as the OpenBlas library that NumPy requires.
The only directory created in dcontainer without any underlying mount on the local machine,
/tmp/spproxyd, enables communication with the σOS API, as all writes to the sockets under
this directory are processed by the relevant proxy services of the realm.

Figure 3.4 depicts the mounts from the per-realm dcontainer to the per-proc σcontainer.
The /python/lower, /python/upper, and /python/work directories are combined into an
overlay mount into the /tmp/python directory inside the σcontainer, allowing any proc’s
changes, such as newly downloaded libraries, to be reflected to all other procs of the same
realm. This shared visibility is critical for maintaining both storage and time efficiency: if
one proc downloads a library from remote storage, subsequent procs can reuse the same
it directly, reducing latency and network overhead. The other Docker container directories,
/tmp/pysl and /tmp/spproxyd, are also mounted into σcontainer, allowing the Python proc
to respectively access its required Linux shared libraries dependencies and make relevant σOS
calls.

16

Figure 3.4: The Python-related mounts from the dcontainer to the σcontainer.

Supporting the Python interpreter further required an expansion of the system calls
allowed by the seccomp filter establishing the proc jail. In addition to the 67 system calls
currently allowed, Python requires access to the readlink, getcwd, gettid, stat, readv,
and uname system calls. All 73 required system calls are shown in Table 3.1.

ioctl poll lstat clock_gettime
membarrier accept4 access arch_prctl
brk close epoll_create1 epoll_ctl
epoll_ctl_old epoll_pwait epoll_pwait2 execve
exit exit_group fcntl fstat
fsync futex getdents64 getpeername
getpid getrandom getrlimit getsockname
getsockopt lseek madvise mkdirat
mmap mremap mprotect munmap
nanosleep newfstatat openat open
pipe2 pread64 prlimit64 read
readlinkat recvfrom recvmsg restart_syscall
rt_sigaction rt_sigprocmask rt_sigreturn sched_getaffinity
sched_yield sendto sendmsg setitimer
setsockopt set_robust_list set_tid_address sigaltstack
sync timer_create timer_delete timer_settime
tgkill write writev

readlink getcwd gettid stat
readv uname

Table 3.1: Allowed System Calls in proc Execution Environment

17

To let users specify which AWS S3 bucket contains the libraries their Python program
depends on, σOS adds a new API call: NewPythonProc(args []string, bucket string).
The args argument specifies the Python file to run and any supported interpreter flags, while
bucket tells σOS where to look when dynamic imports of non-standard Python libraries occur.
σPy directly leverages σOS’s built-in S3 proxy service, which already provides secure, tenant-
isolated access to cloud storage. Requiring users to supply their own S3 bucket gives them
full control over the set and versions of Python packages available to their program, enabling
support for customizations that may not be available through the standard repositories.
Inside the σcontainer, this API call ultimately runs the command “python {args}”, with
the system dynamically fetching libraries from the specified bucket as needed.

These changes establish the basic functionality of σPy and prepare the system to import
and use the default Python libraries. The aggregation of the Python interpreter and its
required files, the expansion of the seccomp filter to allow several more system calls, and
the introduction of a new API call facilitate the safe invocation of Python programs as σOS
procs.

3.3 Runtime Library Imports

As Python is an interpreted language, all imports of required libraries, be it the default
Python libraries or custom ones uploaded by the tenant, must be caught and handled by σOS
during the lifetime of the program itself. To intercept all imports, σPy sets the LD_PRELOAD
environment variable to ensure that a shim library is loaded before any other shared object
[5]. This C-based shim library, ld_fstatat.so overrides system calls related to fetching and
opening files and directories, and must verify, for each path that is passed into it, whether
or not the path refers to a potentially not-yet-downloaded Python library based on the
pathname alone.

Using a heuristic like checking for the appearance of “python" in the path name may not
necessarily catch all desired imports, and it may even interfere with fetching the Python
interpreter itself or with files used by non-Python procs that happen to have the matching
keywords in its filename. To circumvent this issue, σOS sets the PYTHONPATH environment
variable to the /tmp/python/Lib directory, the directory inside of the σcontainer responsible
for storing all of the tenant’s Python-related programs, libraries, and files. The Python
interpreter, upon encountering an import statement in a Python file, first searches for libraries
under the directory given by this environment variable. The shim library, upon receiving a
path name prepended with /tmp/python/Lib delivers the request to a σOS Python proxy
service referred to as PyProxy, which handles the fetching of remote libraries from the tenant’s
Amazon S3 buckets if necessary. If the specified file or directory is already present under
/tmp/python/Lib, the PyProxy server simply lets the request proceed as normal. Otherwise,
it delivers a request to the σOS S3 proxy service to fetch the library to local storage.

The system call interposition of σPy enables seamless, on-demand importing of both
default and tenant-supplied Python libraries in a way that is transparent to the Python
interpreter. By leveraging a custom preload library and environment variable configuration,
σPy efficiently intercepts import-related system calls and defers to a proxy for library retrieval
from and communication with AWS S3, ensuring robust and performant execution of Python

18

programs within the σOS infrastructure while maintaining isolation between procs of different
tenants.

3.4 Library Caching

The mounting infrastructure and fetches of stored S3 libraries to the /tmp/python/Lib
directory, the contents of which are bind mounted from the local machine, enable per-realm
per-machine caching of these tenant-supplied Python libraries. If the tenant started multiple
procs that all relied on the same library, the S3 fetching process would only occur once,
with the remaining procs gaining access to the same library through the system of bind
mounts. To ensure that σPy can correct any library content errors, such as crashes whilst in
the middle of fetching the content from AWS, it computes and stores a checksum for each
library, both on the remote side and on the local side. If the checksum file does not exist
locally, or if the contents do not match that of the remote checksum, σPy redownload the
entire library. This checksum applies only to libraries fetched from AWS — default Python
libraries and our custom σOS API library are marked with an override and do not need to
have their checksums computed.

3.5 Relative Imports

Python allows for relative imports, enabling a script to import other files located in the same
directory. In σOS, this poses a challenge because the script may not be executed from its
original directory, causing its sibling files to no longer appear as local neighbors. To address
this, σPy modifies the PYTHONPATH during each NewPythonProc invocation by appending all
parent and ancestor directories up to but not including the pyproc root. As the file to run
is prefixed with /∼∼/pyproc, all of the new additions to PYTHONPATH share the same /∼∼
prefix and are caught by the LD_PRELOAD shim. This ensures that related files are recognized
as independent libraries, distinct from the ones present in the tenant’s AWS bucket as they
have no need for local caching, and can be accessed regardless of where the original Python
file is actually executed.

3.6 Communication with the σOS API

To take full advantage of all realm resources, Python programs must be able to interact with
the σOS API. As such, σPy relies on a newly created Python library file, splib.py, and
copies it into the default Python library directory for ease of access from all Python programs
and files.

σPy’s initial implementation of splib.py took advantage of the convenience provided by
the preload library. Instead of having the Python library communicate directly with each
service via their dedicated Unix sockets and RPC handlers, all interactions are funneled
through the PyProxy service by issuing open system calls on specially formatted pathnames
prefixed with “/∼∼/api”. Figure 3.5 shows the Python code snippet for the initial version of
the Started API call.

19

1 import os
2

3 def Started ():
4 try:
5 fd = os.open('/~~/ api/Started ', os.O_RDWR , 0o666)
6 except:
7 pass

Figure 3.5: pylib Started API Call

This approach, however, is unideal as it introduces unnecessary complexity. The σOS archi-
tecture already provides a Unix socket under the pathname /tmp/spproxyd/spproxyd.sock,
which procs can use to interact with proxy services and access the σOS API. This socket
serves as the entry point for all RPC requests to the API, and Python procs can interface
with it directly, eliminating the need for an additional layer of proxying for σOS API calls
alone.

To support this direct communication, a C++ library is used to construct and format
the RPC requests. C++ was chosen specifically to facilitate integration with the existing
Protobuf definitions, enabling reuse of the message formats already employed by the σOS
RPC infrastructure. As a result, requests issued by Python procs are indistinguishable from
those issued by native Go procs and are handled uniformly.

A C wrapper was implemented around the core functionality to support Python’s usage
of the C++ library. While Python’s native ctypes module can integrate smoothly with C
libraries, it lacks support for C++ features, such as custom class representations and name
mangling during the compilation process [6]. The C wrapper exposes a clean interface for
Python to interact with, performing the necessary type conversions between the complex
C++ classes generated by the Protobuf definitions to plain C types. This design allows the
final shared object generated from the C wrapper, /tmp/python/clntlib.so, to be correctly
loaded and called from splib.py using ctypes.

The evolution of σPy’s API integration from the initial /∼∼/api approach, designed to
trigger intervention from the PyProxy service, to the direct Unix socket communication now
employed demonstrates how σOS’s existing RPC infrastructure can be efficiently adapted
for Python. Through a carefully designed C++/C binding layer, σPy achieves direct
integration with σOS’s RPC infrastructure, maintaining Protobuf compatibility for Python
while eliminating redundant proxying layers and ensuring that Python, Go, and Rust procs
share identical RPC formatting and transport semantics.

3.7 σOS Python proc Workflow

We modify my_file.py to act as a Python proc, importing splib.py to interact with the
σOS API while otherwise maintaining its original functionality. The σOS-compatible version
of my_file.py is shown in Figure 3.6.

20

1 import splib
2 import numpy
3

4 splib.Started ()
5 print(numpy.array ([1, 2, 3]))
6 splib.Exited ()

Figure 3.6: Modifications made to my_file.py

Figure 3.7: my_file.py Python proc workflow.

The workflow of my_file.py under σPy is shown in Figure 3.7. The steps taken by σPy
after the creation of a new Python proc are as follows:

1. Inside of the σcontainer, σOS creates a directory under the path /tmp/python/superlib,

21

which contains a superset of the names of the direct contents of /tmp/python/Lib and
the ones of the user-provided AWS S3 bucket. Note that, to reduce startup latencies
and memory usage, the true library contents are not copied to this directory; for each
library, superlib contains just a file of the same name.

2. The Python interpreter is invoked as a proc and searches for all available libraries at
PYTHONPATH (/tmp/python/Lib), making system calls like stat to the given directory
to mmap the directory contents for ease of later access.

3. The system call gets intercepted by the shim library, ld_fstatat.so. To ensure that all
libraries, including the ones uploaded to the tenant’s S3 bucket, are seen, ld_fstatat.so
redirects the system call to open the contents of /tmp/python/superlib instead, as
/tmp/python/Lib contains only the default Python libraries. This is done transpar-
ently, with the Python interpreter still believing that it is reading the contents of
/tmp/python/Lib instead.

4. The Python interpreter, after completing its initial setup, opens and begins to exe-
cute the Python program specified by the tenant. Note that σOS currently requires
all Python programs to be located in the sigmaos/pyproc folder of the local ma-
chine. During the build and proc initialization process, these Python programs are
copied and mounted into the /tmp/python/pyproc directory. All Python filename
arguments to NewPythonProc must be prefixed with “/∼∼” so that it can be caught
by ld_fstatat.so while remaining distinguishable from dynamic library imports; for
example, to access sigmaos/pyproc/my_file.py, NewPythonProc would be called with
the argument /∼∼/pyproc/my_file.py instead.

5. my_file.py attempts to import splib, referring to the file splib.py already present
under the /tmp/python/Lib directory.

6. The system calls used to read the path /tmp/python/Lib/splib.py are caught by
ld_fstatat.so, which examines all pathnames to identify which ones are prefixed by
/tmp/python/Lib. For these matching pathnames, it writes them to the PyProxy Unix
socket, whose file descriptor is stored in the SIGMA_PYPROXY_FD environment variable,
and blocks until it receives a response. This file descriptor points to a Unix socket that
the PyProxy service reads from and writes a response back to.

7. The PyProxy service examines the contents of the local /tmp/python/Lib directory
and sees that splib.py is stored there already, allowing the import command to return
and for my_file.py to continue executing.

8. my_file.py then seeks to import numpy, a non-default library located in the tenant’s
S3 bucket. The Python interpreter first checks to make sure this library exists, which
we have ensured is true via the creation of superlib. Then, it seeks to actually open
and examine the contents of /tmp/python/Lib/numpy.

9. Similar to what happened with the splib import, the system calls used to read from
the /tmp/python/Lib/numpy directory are caught by ld_fsatat.so and forwarded to
the PyProxy service.

22

10. The PyProxy service, upon receiving the /tmp/python/Lib/numpy pathname, sees that
it is not yet present under the /tmp/python/Lib directory. As a result, it communicates
with the S3 proxy service to fetch the numpy directory recursively from AWS, storing
it in /tmp/python/Lib for the tenant to use. It then writes a response back to the
original system call that triggered the ld_fstatat.so intervention, allowing it and
the remaining commands in my_file.py to proceed as normal. Libraries of different
tenants do not interfere with each other, as their per-proc /tmp/python/Lib directories
bind to different directories on the underlying host machine.

The above workflow demonstrates how dynamic imports are handled within σPy. Having
successfully imported splib.py, my_file.py is able to interact with the σOS API. Figure
3.8 shows how the Started API call proceeds under σPy.

Figure 3.8: Sample Python proc interaction with the σOS API.

The Started API call is executed as follows:

1. my_file.py begins executing after being launched through the NewPythonProc API

23

call, carrying out the previously described setup steps and importing any necessary
libraries, including splib.py.

2. The Started function in splib.py acts as a lightweight Python binding, delegating
the call to the C wrapper’s started stub.

3. The C wrapper acts as a bridge between the Python and C++ layers, forwarding the
call to the C++ library. In this case, no type conversions are necessary, as this API
call has no input parameters or return values.

4. Once invoked, the C++ library establishes a client connection to the Unix domain
socket at /tmp/spproxyd/spproxyd.sock and issues the corresponding Started RPC.

This example demonstrates how a Python program can be securely and efficiently sup-
ported within σOS. By leveraging system call interception, on-demand library fetching, and a
lightweight API binding layer, σPy maintains the core σOS principles of isolation and security
without hindering Python’s flexibility as a dynamically interpreted language. This approach
avoids making invasive changes to the Python interpreter while ensuring compatibility with
existing workflows such as AWS S3-backed remote storage. As a result, Python programs
have full access to σOS features, including cross-proc communication and realm storage,
enabling optimizations like library caching to enhance performance while maintaining the
same degree of security present across all σOS procs.

24

Chapter 4

Evaluation

To evaluate the efficiency of Python support in σOS, we seek to assess whether Python
interactions with the σOS API achieve comparable performance to its Golang counterpart. A
critical distinction between the two implementations lies in the Python library’s reliance on the
SPProxy socket for communication, an extra hop bypassed by the Go version. This difference,
as well as Python’s nature as an interpreted language, introduces potential overhead. Our
evaluation quantifies the latency impact of these Python-specific overheads, testing to see if
the latency of Python requests remains competitive with Go for multiple σOS use cases.

4.1 Experimental Setup

We conducted experiments measuring the performance of 12 σOS API calls, which perform a
mixture of local storage operations within the realm namespace and RPCs to σOS kernel
services. To reduce variance, each API call was executed 50 times per language. All trials
were run on a single machine equipped with Intel Xeon CPUs E5-1410 0 that achieve a
maximum frequency of 2.80GHz.

The benchmarks were intentionally lightweight, focusing on minimal data transfers to
isolate API functionality. For instance, the PutFile and Write operations used only the
12-byte string "Hello World!" as the data to be written to the specified files.

One benchmark measured purely on the Python side is the ClntID operation. This API
call is responsible purely for connecting to the SPProxy socket and does not perform any
filesystem reads or modifications, serving as a reasonable estimate for the additional overhead
introduced by Python’s reliance on communication through the SPProxy Unix domain socket.

4.2 Microbenchmark Results

We evaluated 12 σOS API calls, timing their access to files in the local realm namespace and
RPCs made to other services. The latencies measured were averaged across the 50 runs and
are presented in Table 4.1.

While Python exhibits slightly higher latency across all API calls compared to Go, the
results demonstrate extremely close performance in many cases. Most operations show modest
overhead, with Python typically adding up to 0.3 milliseconds of delay to Go’s baseline

25

API Call Go Latency (ms) Python Latency (ms)

Started() 1.14 1.16
Exited() 0.32 0.64
Create(Filepath) 0.64 0.92
Open(Filepath) 0.47 0.64
Write(FileDescriptor) 0.18 0.49
Read(FileDescriptor) 0.10 0.42
Seek(FileDescriptor) 0.00 0.20
CloseFD(FileDescriptor) 0.11 0.28
PutFile(Filepath) 0.35 0.68
GetFile(Filepath) 0.35 0.77
Stat(Filepath) 0.64 0.92
Remove(Filepath) 0.34 0.41

Table 4.1: Latency Comparison of Go versus Python API Calls

latency. This matches our results from benchmarking the ClntID API call — across all 50
runs, the average latency of this Python operation was 0.22 milliseconds. Collectively, these
measurements quantify Python’s overhead to be in the range of 0.2 - 0.3 milliseconds for
most σOS API calls as a result of the extra SPProxy Unix socket that Python must connect
to and interact with.

26

Chapter 5

Related Work

There are a variety of serverless and stateful computing services, such as AWS Lambda,
Docker, and Kubernetes.

Docker and Kubernetes are popular container systems, respectively providing support for
single nodes and clusters of containers. Docker provides multiple Python base images that
support anywhere between versions 3.9 to 3.14, and users can install any desired libraries
via pip inside of the Dockerfile [7]. Kubernetes, on the other hand, takes on the role of
container orchestration, with individual containers relying on Docker or other types of images.
Kubernetes enables communication between these clusters of containers, called pods, through
networking, enabling coordination between user processes [8].

AWS Lambda, which originated as a completely serverless platform, initially attracted
customers due to its quick start-up times and high load scalability [9]. It currently supports
Python versions 3.8, 3.9, 3.10, and 3.11, and requires uploads in the forms of ZIP files
containing both the Python source code to run as well as any necessary dependencies [10].
These dependencies include the external packages and modules referenced by the source code.
More recently, AWS Lambda has expanded its Python support by allowing users to deploy
Python Lambda functions with container images [11]. In this case, AWS Lambda will search
for any imported libraries inside of the container image itself.

While platforms like AWS Lambda and Kubernetes rely on packaging all dependencies
ahead of time or building them into container images, σOS must detect and fetch dependencies
dynamically at runtime. To accomplish this without modifying the Python interpreter, σOS
uses system call interposition to monitor and redirect library access attempts made by Python
procs. This interposition is enabled by the LD_PRELOAD environment variable, which injects
the specified shared object before any others are loaded, allowing for manual overrides and
redefinitions of Linux system calls like open, read, etc. This technique allows σOS to scan
and verify all pathnames accessed by these system calls to catch any dynamic library import
attempts, supporting compatibility with the Python interpreter while preserving the expected
behavior of all other system operations.

In contrast to existing computing services, which typically require bundling all depen-
dencies into a container image, significantly increasing startup latency, the σOS Python
protocol dynamically retrieves Python modules on demand at runtime, enabling fast ini-
tialization while preserving the flexibility of dynamic imports. By running the Python
interpreter as a proc, σOS eliminates the need for specialized containers tailored to Python

27

programs, ensuring secure execution with minimal setup. The only additional step required
during proc initialization is mounting the Python-related directories into the proc container,
granting seamless access to Python’s standard libraries. Moreover, σOS enhances flexibility
by supporting the on-demand download of libraries during the program’s lifetime with its
system call interposition, a process that transparently intercepts Python’s dynamic import
attempts without disrupting unrelated system calls from Python itself or other programs.
This approach amortizes library fetching costs over the program’s runtime and downloads
libraries only when they are explicitly imported, ensuring both efficiency and convenience for
users.

28

Chapter 6

Conclusion

This work enables Python support in σOS through three key ideas. First, σPy leverages
system call interposition via an LD_PRELOAD shim library to transparently redirect Python’s
dynamic imports to the PyProxy service, which searches for the library in both local and
remote storage, fetching and downloading the library if needed. Second, it takes advantage
of σOS’s existing isolation structures at both the per-realm and per-proc level to design
multi-layer mount architectures that enable cross-proc, per-realm caching and reuse of
already downloaded libraries. Third, σPy implements a C++, C, and Python-based API
library that all Python procs may import, enabling Python’s access to and usage of σOS’s
existing API calls, such as those for inter-proc communication and realm storage. Together,
these innovations allow Python programs to be run as σOS procs without requiring any
modifications to the Python interpreter and while preserving σOS’s isolation guarantees, with
benchmark results confirming that σPy allows Python to achieve parity with Go’s speed in
its interactions with the σOS API.

6.1 Future Work

While the σPy framework demonstrates Python’s viability in σOS, several directions remain
open for improvement and expansion:

1. Python libraries often depend on specific versions of a Linux shared library. For
example, one issue we experienced when testing out NumPy v1.25.0 was its dependency
on OpenBLAS v0.3.23. Furthermore, this library required compilation from source
with the SYMBOLSUFFIX=64_ flag to ensure NumPy could recognize all symbols, which
must end with 64_. σOS’s Python support requires users to supply these specific
dependencies, as pre-downloading all possible shared library versions during the build
process would be inefficient when only select versions are needed. However, the Python
built-in package manager, pip, resolves these dependencies well. As such, integrating
pip support into σOS could be a direction worth investigating. As an alternative,
σOS could offer users a choice between two dependency schemes: those prioritizing
convenience could specify the name and version of the library that they want to use,
and σOS could use pip to download and install these libraries during the dynamic
import process, while performance-focused users could continue with the current scheme.

29

This flexibility would leverage pip’s robust dependency resolution while preserving the
current system’s advantages in handling custom, user-provided Python libraries.

2. The current caching mechanism of σOS is limited to per-machine, per-realm storage
of Python libraries, which provides multiple opportunities for optimization. We can
extend caching across multiple machines by taking advantage of σOS’s existing file
sharing infrastructure, which is already used for sharing proc binaries. Additionally,
independent tenants may share dependencies on the same library versions. If these
libraries are already present on the machine as a result of another tenant’s download
process, and we can ensure that this library contains no custom modifications — for
example, if we knew that it was downloaded through the pip scheme mentioned in
the previous point — we can change the mounting process to allow for reuse of these
libraries as well.

3. The design developed for Python — combining system call interception for dynamic
imports, mount-based isolation, and C-compiled shared library bindings — establishes
a reusable framework for other interpreted runtimes. Languages like Ruby or R could
leverage similar mechanisms, with their just-in-time dependency resolutions being
managed by σOS’s shim library as well.

The σPy framework proves that interpreted languages can integrate seamlessly with σOS’s
isolation model while preserving existing developer workflows and requiring no additional
changes to the interpreted languages themselves. By solving Python’s unique challenges,
such as dynamic imports, per-tenant dependency isolation and caching, and native access
to the σOS API, σPy establishes a blueprint for supporting other runtimes like Ruby or
Node.js. Future work ono cross-machine caching and pip integration will further extend
σOS’s flexibility and ease of use, solidifying σOS as a unified platform for both compiled and
interpreted, stateful and serverless workloads.

30

References

[1] A. Szekely, A. Belay, R. Morris, and M. F. Kaashoek. “Unifying serverless and microser-
vice workloads with SigmaOS”. In: Proceedings of the ACM SIGOPS 30th Symposium on
Operating Systems Principles. SOSP ’24. Austin, TX, USA: Association for Computing
Machinery, 2024, pp. 385–402. isbn: 9798400712517. doi: 10.1145/3694715.3695947.
url: https://doi.org/10.1145/3694715.3695947.

[2] P. Stats. Analytics for PyPI packages. https://pypistats.org/.

[3] endoflife.date. NumPy. https://endoflife.date/numpy.

[4] P. S. Foundation. The Python Tutorial. https://docs.python.org/3/tutorial/index.html.

[5] ld.so(8) — Linux manual page. https://man7.org/linux/man-pages/man8/ld.so.8.html.

[6] R. Tibbetts. The Secret Life of C++: Symbol Mangling. https://web.mit.edu/tibbetts/
Public/inside-c/www/mangling.html.

[7] Docker. python. https://hub.docker.com/_/python.

[8] T. K. Authors. Production-Grade Container Orchestration. https://kubernetes.io/.

[9] M. Brooker, M. Danilov, C. Greenwood, and P. Piwonka. On-demand Container Loading
in AWS Lambda. https://arxiv.org/pdf/2305.13162.

[10] A. W. Services. Working with .zip file archives for Python Lambda functions. https:
//docs.aws.amazon.com/lambda/latest/dg/python-package.html.

[11] A. W. Services. Deploy Python Lambda functions with container images. https://docs.
aws.amazon.com/lambda/latest/dg/python-image.html.

31

https://doi.org/10.1145/3694715.3695947
https://doi.org/10.1145/3694715.3695947
https://pypistats.org/
https://endoflife.date/numpy
https://docs.python.org/3/tutorial/index.html
https://man7.org/linux/man-pages/man8/ld.so.8.html
https://web.mit.edu/tibbetts/Public/inside-c/www/mangling.html
https://web.mit.edu/tibbetts/Public/inside-c/www/mangling.html
https://hub.docker.com/_/python
https://kubernetes.io/
https://arxiv.org/pdf/2305.13162
https://docs.aws.amazon.com/lambda/latest/dg/python-package.html
https://docs.aws.amazon.com/lambda/latest/dg/python-package.html
https://docs.aws.amazon.com/lambda/latest/dg/python-image.html
https://docs.aws.amazon.com/lambda/latest/dg/python-image.html

	Title page
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	2 Background: σOS Design
	2.1 σOS procs
	2.2 Inter-proc Interactions via Realms

	3 Implementation of Python procs
	3.1 Python Program Workflow
	3.2 Running the Python Interpreter
	3.3 Runtime Library Imports
	3.4 Library Caching
	3.5 Relative Imports
	3.6 Communication with the σOS API
	3.7 σOS Python proc Workflow

	4 Evaluation
	4.1 Experimental Setup
	4.2 Microbenchmark Results

	5 Related Work
	6 Conclusion
	6.1 Future Work

	References

