Vx32: Lightweight User-level Sandboxing on the x86

Bryan Ford and Russ Cox
Massachusetts Institute of Technology
{baford,rs¢@ pdos.csail.mit.edu

Abstract 1 Introduction

Code sandboxing is useful for many purposes, but mos sandboxis a mechanism by which host software
sandboxing techniques require kernel modifications, deystem may execute arbitraggestcode in a confined
not completely isolate guest code, or incur substantiaenvironment, so that the guest code cannot compromise
performance costs. Vx32 is a multipurpose user-levebr afect the host other than according to a well-defined
sandbox that enables any application to load and safelpolicy. Sandboxing is useful for many purposes, such
execute one or more guest plug-ins, confining each guesis running untrusted Web applets within a browser [6],
to a system call API controlled by the host applicationsafely extending operating system kernels [5, 32], and
and to a restricted memory region within the host’s ad-limiting potential damage caused by compromised ap-
dress space. Vx32 runs guest coffecently on several plications [19, 22]. Most sandboxing mechanisms, how-
widespread operating systems without kernel extensionsver, either require guest code to be (re-)written in a type-
or special privileges; it protects the host program fromsafe language [5, 6], depend on special OS-specific facil-
both reads and writes by its guests; and it allows the hosties [8, 15, 18, 19], allow guest code unrestricted read
to restrict the instruction set available to guests. The keyaccess to the host’s state [29, 42], or entail a substantial
to vx32's combination of portability, flexibility, andfi- performance cost [33, 34, 37].
ciency is its use of x86 segmentation hardware to sand- Vx32 is a lightweight sandbox for the x86 architec-
box the guest’'s data accesses, along with a lightweighture that enables applications to run untrusted cdile e
instruction translator to sandbox guest instructions. ciently on standard operating systems without requiring
We evaluate vx32 using microbenchmarks and wholespecial privileges or kernel extensions. The vx32 sand-
system benchmarks, and we examine four applicationbox runs standard x86 instructions, so guest code may
based on vx32: an archival storage system, an extensbe written in any language including assembly language,
ble public-key infrastructure, an experimental userdeve and may use advanced processor features such as vec-
operating system running atop another host OS, and #r (SSE) instructions. An application may host multiple
Linux system call jail. The first three applications ex- sandbox instances at once; vx32 gives each guest its own
port custom APIs independent of the host OS to theirdynamically movable and resizable address space within
guests, making their plug-ins binary-portable across hosthe host's space. Vx32 confines both guest reads and
systems. Compute-intensive workloads for the first twoguest writes to the guest’s designated address region in
applications exhibit between a 30% slowdown and a 30%he host, protecting both the host’s integrity and the pri-
speedumn vx32 relative to native execution; speedupsvacy of any sensitive data (e.g., SSL keys) it may hold
result from vx32’'s instruction translator improving the in its address space. Vx32 confines each guest's system
cache locality of guest code. The experimental user-levetalls to an API completely determined by the host appli-
operating system allows the use of the guest OS’s applieation. The guest system call API need not have any re-
cations alongside the host's native applications and runkationship to that of the host operating system, so the host
faster than whole-system virtual machine monitors suchapplication can keep its guest environments independent
as VMware and QEMU. The Linux system call jail in- of and portable across host operating systems.
curs up to 80% overhead but requires no kernel modifica- The key to vx32's combination of flexibility andie
tions and is delegation-based, avoiding concurrency vuleiency is to use dierent mechanisms to sandbox data ac-
nerabilities present in other interposition mechanisms. cesses and instruction execution. Vx32 sandboxes guest

data accesses using the x86 processor's segmentatiptications. This paper focuses on the vx32 virtual ma-
hardware, by loading a special data segment intalthe chine itself, describing its sandboxing technique in detai
es, andss registers before executing guest code. Ac-and analyzing its performance over a variety of applica-
cessing data through this segment automatically confinesons, host operating systems, and hardware. On real ap-
both reads and writes to the guest's designated addregdications, vx32 consistently executes guest code within
region, with no performance overhead since the procesa factor of two of native performance; often the overhead
sor always performs segment translation anyway. is just a few percent.

Since the vx32 sandbox runs entirely in user mode, This paper first describes background and related work
however, vx32 cannot rely on the processor’s privilegein Section 2, then presents the design of vx32 in Sec-
level mechanism to prevent the guest from escaping itsion 3. Section 4 evaluates vx32 on its own, then Sec-
sandbox—for example, the x86 privilege levels alonetion 5 evaluates vx32 in the context of the above four
would not prevent the guest from changing the segmenapplications, and Section 6 concludes.
registers. Vx32 therefore prevents guest code from ex-
ecuting “unsafe” instructions such as segment registe
loads by using dynamic instruction translation [9, 34],é Related Work
rewriting each guest code sequence into a “safe” form beMany experimental operating system architectures per-
fore executing it. This dynamic translation incurs somemit one user process to isolate and confine others to en-
performance penalty, especially on control flow instruc-force a “principle of least privilege”: examples include
tions, which vx32 must rewrite to keep execution con-capability systems [25], L3’s clgchief model [26],
fined to its cache of safe, rewritten code. Since vx32 confluke’s nested process architecture [14], and generic
fines data accesses via segmentation, it does not need ¢oftware wrappers [15]. The primary performance cost
rewrite most computation instructions, leaving safe codef kernel-mediated sandboxes like these is that of travers-
sequences as compact afiiiaient as the guest’s original ing hardware protection domains, though with careful
code. Vx32's on-demand translation can in fact improvedesign this cost can be minimized [27]. Other systems
the cache locality of the guest code, sometimes resultpermit the kernel itself to be extended with untrusted
ing in better performance than the original code, as seegode, via domain-specific languages [31], type-safe lan-
previously in dynamic optimization systems [4]. guages [5], proof-carrying code [32], or special kernel-

Because common OS kernels already provide userspace protection mechanisms [40]. The main challenge
level access to the x86 segmentation hardware, vx3 all of these approaches is deploying a new operating
does not require any special privileges or kernel extensystem architecture and migrating applications to it.
sions in order to fully sandbox all memory reads and Other work has retrofitted existing kernels with sand-
writes that guest code performs. boxing mechanisms for user processes, even taking ad-

Vx32 is implemented as a library that runs on Linux, vantage of x86 segments much as vx32 does [8]. These
FreeBSD, and Mac OS X and is being used in severamechanisms still require kernel modifications, however,
applications. VXA [13] is an archival storage system which are not easily portable even betweedfedent x86-
that stores executable decoders along with compresséshsed OSes. In contrast, vx32 operates entirely in user
content in archives, using vx32 to run these decoders a$pace and is easily portable to any operating system that
extraction time; thus the archives are “self-extracting”provides standard features described in Section 3.
but also safe and OS-independent. Alpaca [24] is an System call interposition, a sandboxing method imple-
extensible PKI framework based on proof-carrying au-mented by Janus [19] and similar systems [7,17, 18, 22,
thorization [3] that uses vx32 to execute cryptographic3e], requires minor modifications to existing kernels to
algorithms such as SHA-1 [12] that form components ofprovide a means for one user process to filter or handle
untrusted PKI extensions. Plan 9 VX is a port of the selected system calls made by another process. Since
Plan 9 operating system [35] to user space: Plan 9 kernehe sandboxed process’s system calls are still fielded by
code runs as a user-level process atop another OS, amite host OS before being redirected to the user-level
unmodified Plan 9 user applications run under the Plan 9supervisor” process, system call interposition assumes
kernel's control inside vx32. Vxlinux is a delegation- that the sandboxed process uses the same basic system
based system call interposition tool for Linux. All of call APl as the host OS: the supervisor process can-
these applications rely on vx32 to provide near-nativenot eficiently export a completely fferent (e.g., OS-
performance: if an extension mechanism incurs substarindependent) API to the sandboxed process as a vx32
tial slowdown, then in practice most users will forego host application can. Some system call interposition
extensibility in favor of faster but less flexible schemes. methods also have concurrency-related security vulnera-

Previous papers on VXA [13] and Alpaca [24] briefly bilities [16, 43], whose only clear solution is delegation-
introduced and evaluated vx32 in the context of those apbased interposition [17]. Although vx32 has other uses,

it can be used is to implementfieient delegation-based written in a particular language, making itfid¢ult to
system call interposition, as described in Section 5.4. reuse existing legacy code or use advanced processor fea-

Virtualization has been in use for decades for purposetures such as vector instructions (SSE) to improve the
such as sharing resources [10] and migrating applicationgerformance of compute-intensive code.
to new operating systems [20]. Since the x86 architecture
did not provide explicit support for virtualization unté+ . .
cently, x86-based virtual machines such as VMware [1]3 The Vx32 Virtual Machine
had to use dynamic instruction translation to run guestrhe vx32 virtual machine separates data sandboxing
kernel code in an unprivileged environment while sim- from code sandboxing, usingftérent, complementary
ulating the appearance of being run in privileged modemechanisms for each: x86 segmentation hardware to
the dynamic translator rewrites instructions that might re sandbox data references and dynamic instruction trans-
veal the current privilege level. Virtual machines usually lation to sandbox code. The dynamic instruction trans-
do not translate user-mode guest code, relying instead oation prevents malicious guest code from escaping the
host kernel extensions to run user-mode guest code ddata sandbox. Vx32's dynamic translation is simple and
rectly in a suitably constructed execution environmentlightweight, rewriting only indirect branches and replac-
As described in Section 5.3, vx32's dynamic translationing unsafe instructions with virtual traps. The use of
can be used to construct virtual machines that need ndynamic translation also makes it possible for client li-
host kernel extensions, at some performance cost. braries to restrict the instruction set further.

Dynamic instruction translation is frequently used for This section describes the requirements that vx32
purposes other than sandboxing, such as dynamic optplaces on its context—the processor, operating system,
mization [4], emulating other hardware platforms [9, 44] and guest code—and then explains the vx32 design.
or code instrumentation and debugging [28, 34]. The
latter two uses require much more complex code trans3.1 Requirements
formations than vx32 performs, with a correspondingly Processor architectureVx32 is designed around the
larger performance cost [37]. x86 architecture, making the assumption that most sys-

A software fault isolation (SFI) system [29, 42] stati- tems now and in the foreseeable future are either x86-
cally transforms guest code, preprocessing it to create Based or will be able to emulate x86 cod@aently.
specialized version in which it is easy for the verifier to This assumption appears reasonable in the current desk-
check that all data write instructions write only to a des-top and server computing market, although it may pre-
ignated “guest” address range, and that control transfeyent vx32 from spreading easily into other domains, such
instructions branch only to “safe” code entrypoints. SFlas game consoles and handheld mobile devices.
originally assumed a RISC architecture [42], but PittS- \/x32 uses protected-mode segmentation, which has
Fleld adapted SFI to the x86 architecture [29]. SFI'sbeen integral to the x86 architecture since before its ex-
preprocessing eliminates the need for dynamic instructension to 32 bits [21]. The recent 64-bit extension of the
tion translation at runtime but increases program codearchitecture disables segment translation in 64-bit code,
size: e.g., 60%-100% for PittSFleld. Foffieiency, but still provides segmentation for 32-bit code [2]. Vx32
SFI implementations typically sandbox only writes andtherefore cannot use segmentation-based data sandbox-
branches, not reads, so the guest can freely examine hasig to run 64-bit guest code, but it can still run 32-bit
code and data. This may be unacceptable if the host agandboxed guest code within a 64-bit host application.
plication holds sensitive data such as passwords or SSL Host operating systenvx32 requires that the host OS
keys. The main challenge in SFI on x86 is the archi-provide a method of inserting custom segment descrip-
tecture’s variable-length instructions: opcode sequ&ncetors into the application’s local descriptor table (LDT9, a
representing unsafe instructions might appear in the midexplained below. The host OS can easily and safely pro-
dle of legitimate, safe instructions. PittSFleld addressevide this service to all applications, provided it checks
this problem by inserting no-ops so that all branch targetaind restricts the privileges of custom segments. All
are 16-byte aligned and then ensures that branches cleaidely-used x86 operating systems have this feature.
the bottom four bits of the target address. MiSFIT [39] To catch and isolate exceptions caused by guest code,
sidesteps this problem for direct jumps by loading onlyvx32 needs to register its own signal handlers for proces-
code that was assembled and cryptographically signed byor exceptions such as segmentation faults and floating
a trusted assembler. Indirect jumps consult a hash tablgoint exceptions. For full functionality and robustness,
listing valid jump targets. the host OS must allow vx32 to handle these signals on a

Applications can l-Jse type-safe Ianggages such as 10ne Windows vulnerability, MS04-011, was caused by inadégju
f]ava [6] or C# [30] _tO implement sandboxmg COrnplete'ychecks on application-providec’i LDT segm’ents: this was Iperéug
in user space. This approach requires guest code to Bghe 0s and not an issue with custom segments in general.

separate signal stack, passing vx32 the full saved register
state when such a signal occurs. Again, all widely-used
x86 operating systems have this capability.

Finally, vx32 can benefit from being able to map disk (xB6-32 or x86-64)
files into the host application’s address space and to
control the reagivrite/execute permissions on individual

pages in the mapping. Although these features are not /\/\/\/\/\

Host Operating System
Kernel Address Space

strictly r_equired by vx32, they_ are, once again, provided e e
by all widely-used x86 operating systems. Address Space
On modern Unix variants such as Linux, FreeBSD,

. . . (x86-32 or x86-64)
and OS X, specific system calls satisfying the above re-
quirements are@odi fy_1dt/i 386_set_-1 dt, sigaction, PO S —
sigaltstack, mmap, andmprotect. Windows NT, 2000, Flat Model as heap grows) 4
and XP support equivalent system calls, though we have Code, Data< guest heap

. . Segments
not ported vx32 to Windows. We have not examined guest code, data, bss vest
whether Windows Vista retains this functionality. default guest stack Data
Guest code Although vx32 uses x86 segmentation ¥ Segment

for data sandboxing, it assumes that guest code running G“e; v/;dygff;;;l))ace
in the sandbox conforms to the 32-bit “flat model” and 0
makes no explicit reference to segment registers. In fact, guest execution state, }ggﬁi‘ol
vx32 rewrites any guest instructions referring to segment code fragment cache Segment
registers so that they raise a virtual illegal instruction :
exception. This “flat model” assumption is reasonable vesB e Ry |
for practically all modern, compiled 32-bit x86 code; it ost Aoplcation
would typically be a problem only if, for example, the code, dath, bes, heap
sandboxed guest wished to run 16-bit DOS or Windows FEoEaRE
code or wished to run a nested instance of vx32 itself. 0\L

Some modern multithreading libraries use segmentigure 1: Guest and Host Address Space Structure
registers to provide quick access to thread-local storage

(TLS); such libraries cannot be used in guest code under
the current version of vx32, but this is not a fundamentaffinding the appropriate descriptor table entry, the proces-
limitation of the approach. Vx32 could be enhanced tosor checks permission bits (read, write, and execute) and
allow guest code to create new segments using emulatiofPmpares the virtual address of the requested memory
techniquesy perhaps at some performance cost. access against thEgment limiin the descriptor table,
Host applications may impose further restrictions onthrowing an exception if any of these checks fail. Fi-
guest code through configuration flags that direct vx32 tohally, the processor adds tsegment baste the virtual
reject specific classes of instructions. For example, foaddress to form thénear addressthat it subsequently
consistent behavior across processor implementationsises for page translation. Thus, a normal segment with
the VXA archiver described in Section 5.1 disallows the baseb and limitl permits memory accesses at virtual ad-
non-deterministic 387 floating-pointinstructions, forgi ~ dresses between 0 ah@nd maps these virtual addresses
applications to use deterministic SSE-based equivalentd0 linear addresses fromto b+|. Today’s x86 operating
systems typically make segmentation translation a no-op
3.2 Datasandboxing: segmentation by using a base of 0 and a limit of2-1. Even in this so-
In the x86 architecture, segmentation is an address tran§alled “flat model,” the processor continues to perform
lation step that the processor applies immediately beforé€gmentation translation: it cannot be disabled.
page translation. In addition to the eight general-purpose Vx32 allocates two segments in the host application’s
registers (GPRs) accessible in user mode, the processbPT for each guest instance:gaiest data segmeand a
provides sixsegment registersDuring any memory ac- guest control segmerds depicted in Figure 1.
cess, the processor uses the value in one of these seg-The guest data segmemrresponds exactly to the
ment registers as an index into one of two segment tranguest instance’s address space: the segment base points
lation tables, theglobal descriptor tablg(GDT) or lo- to the beginning of the address space (address 0 in the
cal descriptor table(LDT). The GDT traditionally de- guest instance), and the segment size is the guest's ad-
scribes segments shared by all processes, while the LDgress space size. Vx32 executes guest code with the
contains segments specific to a particular process. UpoBrocessor'sis, es, andss registers holding the selec-

grow-down area (fragment index table) ™ scanning and dynamic translation to prevent guest code

v from performing such unsafe operations.
Code fragment cache As in Valgrind [34] and just-in-time compilation [11,
4 Guest 23], vx32's code scanning and translation is fully dy-
Control namic and runs on demand. The guest s allowed to place
grow-up area (code fragments) Segment

arbitrary code sequences in its address space, but vx32
never executes this potentially-unsafe code directly. In-
stead, whenever vx32 enters a guest instance, it translates
Fixed execution state, register save area _J a fragment of code starting at the guest’s current instruc-
Figure2: Guest Control Segment Structure tion pointer g1p) to produce an equivalent safe fragment
in vx32's code fragment cache, which liesitsidethe
guest’s address space. Vx32 also recordsetireand
tor for the guest data segment, so that data reads anghidress of the translated fragment in the entrypoint hash
writes performed by the guest access this segment by deable for reuse if the guest branches to @it again. Fi-
fault. (Code sandboxing, described below, ensures thaially, vx32 jumps to the translated code fragment; after
guest code cannot override this default.) The segmentaxecuting, the fragment either returns control to vx32 or
tion hardware ensures that the address space appears@hps directly to the next translated fragment.
address 0 in the guest and that the guest cannot accesspn 32-bit hosts, vx32 never changes the code segment
addresses past the end of the segment. The translatigagister ¢s): it jumps directly to the appropriate frag-
also makes it possible for the host to unmap a guest’s adnent in the guest’s code fragment cache. This is safe be-
dress space when it is not in use and remap it later at @ause the code fragment cache only contains safe trans-
different host address, to relieve congestion in the host'fations generated by vx32 itself. The code translator en-
address space for example. sures that all branches inside translated code only jump
The format of the guest data segment is up to vx32'sg the beginning of other translated fragments or back to
client: vx32 only requires that it be a contiguous, page-yx32 to handle events like indirect branches or virtual-
aligned range of virtual memory within the host addressized guest system calls.
space. Vx32 provides a loader for ELF executables [41], On 64-bit hosts, since segmentation only operates
but clients can load guests by other means. For examplgyhile executing 32-bit code, vx32 must create a special
Plan 9 VX (see section 5.3) usesap andmprotect t0 32-bit code segment mapping the low 4GB of the host ad-
implement demand loading of Plan 9 executables. dress space for use when running guest code. The guest
The guest control segmenshown in Figure 2, con- control and data segments must therefore reside in the
tains the data needed by vx32 during guest executionow 4GB of the host address space on such systems, al-
The segment begins with a fixed data structure containthough other host code and data may be above 4GB.
ing saved host registers and other data. &heypoint Because vx32 never executes code in the guest's ad-
hash tableandcode fragment cachmake up most of the dress space directly, vx32 requires no static preprocess-
segment. The hash table maps guest virtual addressesitey or verification of guest code before it is loaded, in
code sequences in the code fragment cache. The trangontrast with most other sandboxing techniques. In-
lated code itself needs to be included in the guest condeed, reliably performing static preprocessing and verifi-
trol segment so that vx32 can write to it when patchingcation is problematic on the x86 due to the architecture’s
previously-translated unconditional branches to jump di-ariable-length instructions [29, 39].
rectly to their targets [38]. Translation overview Vx32's translation of guest
Vx32 executes guest code with the processbs'®r code into code fragments is a simple procedure with four
gs register holding the selector for the guest control segstages: scan, simplify, place, and emit. The stages share
ment. The vx32 runtime accesses the control segment by “hint table” containing information about each instruc-
specifying a segment override on its data access instrugion in the fragment being translated. The eventual out-
tions. Whether vx32 uses or gs depends on the host put is both the translated code and the hint table, which
system, as described in the next section. the translator saves for later use by exception handlers.

Entrypoint hash table

3.3 Codesandboxing: dynamic translation 1. Scan The translator first scans guest code starting
Data sandboxing ensures that, using the proper segments, at the desire@ip, decoding x86 instructions to de-

data reads and writes cannot escape the guest's address termine their lengths and any required transforma-
space. Guests could still escape using Segment override tions. The translator scans forward until it reaches
prefixes or segment register loads, however, which are ~ an unconditional branch or a fragment size limit
unprivileged x86 operations. Vx32 therefore uses code (currently about 128 bytes of instructions). The

scan phase records the length, originfiket, in- override prefixes in guest code, it is free to insert them
struction type, and worst-case translated size in thdor its own use in the code fragment translations.)

hint table. Jumps are the only instructions whose It is common nowadays for thread libraries to use one
translated size is not known exactly at this point. of these two segment register$s—or gs—as a pointer
L . . to thread-local storage. If vx32 reused the thread-local
2. Simplify The next phase scans the hint table for OII'segment register, it would have to restore the segment

rect branches within the fragment being translated register before calling any thread-aware library routjines

it marks the ones that can be translated into short 'nincluding routines that perform locking, suchgsint.

trgfragment bran(_:hes using 8'b'.tju' PS@tS. Aftgr n recent GCC-based systems, the thread-local segment
this phase, the hint table contains the exact size o e

. o . ; gister is even used in function call prologues to look up
the translation for each original guest instruction. the stack limit during a stack overflow check. Also, some
3. Place Using the now-exact hint table information, 64-bitx86 operating systems (e.g., Linux) use privileged

the translator computes the exadfiset of each in- instructions to initialize the thread-local segment ragis
struction’s translation. Thesdfsets are needed to With a base that is impossible to represent in an ordinary

emit intrafragment branches in the last phase. 32-bit segment descriptor. On such systems, restoring
the thread-local segment register would require a system

4. Emit The final phase writes the translation into call, increasing the cost of exiting guest code. For these
the code fragment cache. For most instructions, theeasons, vx32 uses whichever segment register is not be-
translation is merely a copy of the original instruc- ing used by the host OS's thread library. With care, vx32
tion; for “unsafe” guest instructions, the translation ¢quld share the thread library’s segment register.
is an appropriate sequence chosen by vx32. Control transfers To keep guest execution safely con-

Vx32 saves the hint table, at a cost of four bytes Ioer1‘ined to its cache of translated cod_e fragments, vx32

original instruction, in the code fragment cache along-mUSt ensure that all control transfer mstructlons—c_alls,
side each translation, for use in exception handling as dd4MPS: and returns—go to vx32-generated translations,
scribed in Section 3.4. The hint table could be discarded'®t tO the original, unsafe guest code.

and recomputed during exception handling, trading ex- In the worst case, a control transfer must search the

ception handling performance for code cache space. translation hash table, invoking the instruction transla-
The rest of this section discusses specific types ofor if no translation exists. Once a translation has been

guest instructions. Figure 3 shows concrete examples. found, vx32 can rewrite or “patch” direct jumps and di-
Computational codeTranslation leaves most instruc- "€t calls to avoid future lookups [34, 38]. To implement

tions intact. All ordinary computation and data accessth's patching, the instruction translator initially tréates

instructions &dd, mov, and so on) and even floating-point each f|xe-d-target jump or call instruction to jump to a
and vector instructions are “safe” from vx32's perspec-_s'tUb thatllnvokesthe hash table_ lookup a}nd branch patch-
tive, requiring no translation, because the segmentatioff'd function. The branch patching function looks up the
hardware checks all data reads and writes performed b%prget address and then rewrites the jump or call instruc-
these instructions against the guest data segment’s limi ion to tr_ansfer directly to the ta_rge_t translation. .
The only computation instructions that vx32 does not, Pgtchmg cannot be used for |qd|rect branches, includ-
permit the guest to perform directly are those with X86!ng_|nd|rect calls and returns. Th|§ hash tablg Iookup for
segment override prefixes, which change the segmerﬁ‘?d'reCt b_ranches, especially dL_lrlng return instructjons
register used to interpret memory addresses and could € main source of slowdowninvx32.
thus be used to escape the data sandbox. Other dynamic translation systems optimize indirect
Guest code may freely use all eight general-purpos@ramhes by caching the last target of each indirect

registers provided by the x86 architecture: vx32 avoidéjranCh and the corresponding translation address, or by

both the dynamic register renaming and spilling of trans-Maintaining a cache of subroutine return targets analo-

lation engines like Valgrind [34] and the static register 90US t0 what many modern processors do [37]. Such op-
usage restrictions of SFI [42]. Allowing guest code to timizations would be unlikely to benefit vx32: its indirect
use all the registers presents a practical challenge fd@r9etlookup path is only 21 instructions in the common
vx32, however: it leaves no general-purpose registeF,ase of an immediate hash table hit. Only the computa-

available where vx32 can store the address of the savetP" of the hgsh '”C?'ex—5 instructions—would be elimi-
host registers for use while entering or exiting guest1@t€d by using a single-entry branch cache. Most of the
code. As mentioned above, vx32 solves this problem b}pther instructions, which save and _restore th_e x86 condi-
placing the information in the guest control segment anf!0" c0de flags and a few guest registers to give the target
using an otherwise-unused segment registeraf gs) lookup code ‘room to work, vyould still be required no
to address it. (Although vx32 does not permit segmenf“atter how simple the lookup itself.

(@) Anindirect jump to the address stored at 08049248

08048160 jmp [0x08049248]

U
b7d8d0f9 mov ebx, fs:[0x2c]
b7d8d100 mov fs:[0x2c], ebx
b7d8d107 mov ebx, [0x08049248]
b7d8d10d jmp vxrun_lookup_indirect

The fs segment register points to the guest control segmentThe translation is almost identical to the one in (a). Theeadd

The first line ofeverytranslated code fragment is a prologue
that restores the guestbx (atb7d8d0f9 in this case), because
vx32 jumps into a fragment usingjap [ebx] instruction.

The translation of thgmp instruction itself begins on the
second line (ab7d8d100). The translated code savelsx back
into the guest control segment, loads the target into ebx,
and then jumps taxrun_lookup_indirect, which locates
and jumps to the cached fragment for the guest addressxin

The first two lines cannot be optimized out: other fragmentsy74sq105

may directly jump past the first instruction, as shown below.

(b) A direct jump to 08048080:

08048160 jmp
U

mov
jmp
mov
jmp
dword
dword

0x08048080

b7d8d0f9
b7d8d100
b7d8d105
b7d8d110
b7d8d115
b7d8d119

ebx, fs:[0x2c]
0xb7d8d105

fs:[0x5c], 0x00008115
vxrun_lookup_backpatch
0x08048080

0xb7d8d105

The first jmp in the translation is initially a no-op that just
jumps to the next instruction, bwixrun_Tookup_backpatch
will rewrite it to avoid subsequent lookups. The word
stored into fs:[0x5c] is an fs-relative dfset telling
vxrun_lookup_backpatch where in the control segment to
find the two dwords arguments lstd8d115. The control seg-
ment for the guest begins bBtd85000 in this example.

The first argument is the targetip; the second is the
address of the end of the 32-bit jumpifset to be patched.
Since ebx has not been spilled at the point of the jump,
vxrun_lookup_backpatch patches the jump to skip the one-
instruction prologue in the target fragment that restetes

(c) A returninstruction:

08048160 ret

U
b7d8d0f9 mov ebx, fs:[0x2c]
b7d8d100 mov fs:[0x2c], ebx
b7d8d107 pop ebx
b7d8d108 jmp vxrun_lookup_indirect

Areturnis an indirect jump to an address poppédie stack.

Figure 3: Guest codand vx32 translations. Most instructions—arithmeticadabves, and so on—are unchanged by translati

(d) An indirect call:

08048160 call [0x08049248]

U
b7d8d0f9 mov ebx, fs:[0x2c]
b7d8d100 mov fs:[0x2c], ebx
b7d8d107 mov ebx, [0x08049248]
b7d8d10d push 0x08048166
b7d8d112 jmp vxrun_Tookup_indirect

push instruction saves the guest return address onto the stal

(e) A direct call:

08048160 call 0x8048080

U
b7d8d0f9 mov ebx, fs:[0x2c]
b7d8d100 push 0x8048165

jmp 0xb7d8d10a
b7d8d10a mov fs:[0x5c], 0x000081la
b7d8d115 jmp vxrun_Tlookup_backpatch
b7d8d1la dword 0x08048080
b7d8dlle dword 0xb7d8d10a

The translation is identical to the one in (b) except for tteia
tion of thepush that saves the return address.

(f) A softwareinterrupt:

08048160 1int 0x30

U
b7d8d0f9 mov ebx, fs:[0x2c]
b7d8d100 mov fs:[0x20], eax
b7d8d106 mov eax, 0x230
b7d8d10b mov fs:[0x40], 0x8048162
b7d8d116 jmp vxrun_gentrap

The translation saves the gueak into the guest control seg-
ment, loads the virtual trap number irtax (the0x200 bit indi-

cates annt instruction), saves the nexip into the guest con-
trol segment, and then jumps to the virtual trap handlerctvh
will stop the execution loop and return from vx32, letting th
library’s caller handle the trap.

(9) An unsafeor illegal instruction:

08048160 mov ds, ax

U
b7d8d0f9 mov ebx, fs:[0x2c]
b7d8d100 mov fs:[0x20], eax
b7d8d106 mov eax, 0x006
b7d8d10b mov fs:[0x40], 0x8048160
b7d8d116 jmp vxrun_gentrap

The translation generates a virtual trap with c@se06. In
contrast with (f), for illegal instructions the savetp points at
the guest instruction itself rather than just past it.

Traps Vx32 translates instructions likent, syscall, function; whenrun eventually returns a virtual trap code,
andsysenter, which normally generate hardware traps, handle the virtual trap; repeat. Diversity in vx32 appli-
into code sequences that generate virtual traps insteadations arises from what meaning they assign to these
they record the trap code and then cause vx32 to returtraps. Section 5 describes a variety of vx32 applications
to its caller, allowing the host application to handle theand evaluates vx32 in those contexts.
trap as it wishes. Typical applications look for a specific Vx32 allows the creation of multiple guest contexts
trap code to interpret as a “virtual system call” and treatthat can be run independently. In a multithreaded host
any other trap as reason to terminate the guest. application, diferent host threads can rurfiérent guest

Privileged or unsafe instructions Vx32 translates contexts simultaneously with no interference.
privileged or unsafe instructions (for example, kernel-
mode instructions or those user-mode instructions tha

manipulate the segment registers) into sequences thal Vx32 Evaluation

generate (virtual) illegal instruction traps. This section evaluates vx32 in isolation, comparing
vx32's execution against native execution through mi-
3.4 Exception handling crobenchmarks and whole-system benchmarks. Sec-

With help from the host OS, vx32 catches processor extion 5 evaluates vx32 in the context of real applications.
ceptions in guest code—for example, segmentation viBoth sections present experiments run on a variety of test
olations and floating point exceptions—and turns themmachines, listed in Figure 4.
into virtual traps, returning control to the host applioati
with full information about the exception that occurred. 4.1 Implementation complexity

Since theeip reported by the host OS on such an ex-The vx32 sandbox library consists of 3,800 lines of C
ception points into one of vx32's code translations, vx32(1,500 semicolons) and 500 lines of x86 assembly lan-
must translate thigip back to the correspondingip guage. The code translator makes up about half of the
in the guest’s original instruction stream in order for it C code. Vx32 runs on Linux, FreeBSD, and Mac OS X
to make sense to the host application or the developewithout kernel modifications or access to privileged op-
To recover this information, vx32 first locates the trans-erating system features.

lation fragment containing the curreatp and converts In addition to the library itself, the vx32 system pro-
theeip’s offset within the fragment to anfiset fromthe vides a GNU compiler toolchain and a BSD-derived C
guest code address corresponding to the fragment. library for optional use by guests hosted by applications

To locate the translation fragment containing the trap-that provide a Unix-like system call interface. Host ap-
ping eip efficiently, vx32 organizes the code fragment plications are, of course, free to use their own compilers
cache into two sections as shown earlier in Figure 2:and libraries and to design new system call interfaces.
the code translations and instructiofiset tables are al-
located from the bottom up, and the fragment index is4.2 Microbenchmarks
allocated from the top down. The top-down portion of To understand vx32’s performance costs, we wrote a
the cache is thus a table of all the translation fragmentssmall suite of microbenchmarks exercising illustrative
sorted in reverse order by fragment address. The excepases. Figure 5 shows vx32’s performance on these tests.
tion handler uses a binary search in this table to find the Jump This benchmark repeats a sequence of 100 no-
fragment containing a particularip as well as the hint op short jumps. Because a short jump is only two bytes,
table constructed during translation. the targets are only aligned on 2-byte boundaries. In con-

Once vx32's exception handler has located the correcirast, vx32’s generated fragments are aligned on 4-byte
fragment, it performs a second binary search, this one imoundaries. The processors we tested vary in how sensi-
the fragment’s hint table, to find the exact address of theive they are to jump alignment, but almost all run con-
guest instruction corresponding to the curret. siderably faster on vx32’s 4-byte aligned jumps than the

Once the exception handler has translated the fault2-byte jumps in the native code. The Pentium 4 and the
ing eip, it can finally copy the other guest registers un- Xeon are unfiected.
changed and exit the guest execution loop, transferring Jumpal This benchmark repeats a sequence of 100
control back to the host application to handle the fault. short jumps that are spaced so that each jump target is

aligned on a 16-byte boundary. Most processors execute
3.5 Usage vx32's equivalent 4-byte aligned jumps a little slower.
Vx32 is a generic virtual execution library; applications The Pentium 4 and Xeon are, again, fiaated.
decide how to use it. Typically, applications use vx32 Jumpfar This benchmark repeats a sequence of 100
to execute guest code in a simple control loop: load gumps spaced so that each jump target is aligned on a
register set into the vx32 instance, and call vx32ia 4096-byte (page) boundary. This is a particularly hard

L abel CPU(s) RAM Operating System

Athlon64 x86-32 1.0GHz AMD Athlon64 2800+ 2GB Ubuntu 7.10, Linux 2.6.22 (32-bit)
Core 2 Duo 1x2 2.33GHz Intel Core 2 Duo 1GB Mac OS X 10.4.10

Opteron x86-32 1.4GHz AMD Opteron 240 1GB Ubuntu 7.10, Linux 2.6.22 (32-bit)
Opteron x86-64 1.4GHz AMD Opteron 240 1GB Ubuntu 7.10, Linux 2.6.22 (64-bit)
Pentium 4 3.06GHz Intel Pentium 4 2GB Ubuntu 7.10, Linux 2.6.22
Pentium M 1.0GHz Intel Pentium M 1GB Ubuntu 7.04, Linux 2.6.10

Xeon 2x2 3.06GHz Intel Xeon 2GB Debian 3.1, Linux 2.6.18

Figure4: Systems used during vx32 evaluation. The two Opteromtistare a single machine runningfdirent operating systems.
The notation 1x2 indicates a single-processor machinetwittcores. All benchmarks used gcc 4.1.2.

o |o N @
o) 8 o
~ — 0] —
) [T}
5 ©
< <
i
X x x b il
4 233 © O @ @
= c Cc .
« — 33 2] <
5 [N x ©]
X g oS3 3 = ™
[/ I - Sy £ p= P
3 x O < xR x - OF (R ® ©
S x .= 3 X X < <
£33%55% Sesdcc I 1
- - xX X H
x 5 - 5ECE as3-cg?g EEERE g o
wES .44 N‘Evggﬁ £ £ £ © =]
] [N @ £ 8 9o x 333 >
O.-g"?gfé 90.§<(OO X:§~-- ol 2l x x
2 — oS 2 O L ok o =2 0 c [1S5 %[x S| x| x S| x| x S| x| x
S E o © © Oocooo QOS5 Emmo HEIE HEIE HEIE = ElE]
AEO® XL H omHmWm -~ 96 0 © S|E|E RUIS[E|E S|E|s S|E[E
Sag 2 ToQps Y W g SS 0 X ® X [x o =l x| |25 (3 x| % 5[5 x| 5[5
N S c c N > ¥+ X X X x o — - - x = - x Bl -
e H D231t D248 [o| =t D 2318 o] D238 o]
v § 9 c 2 9 - o 0 EEgcc c 2| c ™ c 2| 2 cl2]|x
5829 cSsgs =] ~553¢6¢ O|5|E|&[2]€ OI5| |&|R|€ O[5 S <2 | <€ o5 S| | <
SD'HEE'.E'. S 22¢88 S22 8] 0 |© S o oo s| |- |©|© || |©|©
1 @ L9 S(sl<lR[2|2—18|= X228 || R |22 SIsl<lRIR|R—
~ B < OO 50 o oo a <I‘<r><>< a ZX[% 8 *vxx 8 ‘I‘ﬁxx
53| oo ofazoOO0 E|E|@|5|5 E|l |2|5|5 E|E|@|5|5 E|E|@|5|5S
S N A A SIZ2IB1515(5 SI2s5(5(5 N313|5(g(8 N312(s(L(E
oo o Eagcgaa o[ElB12]|2|2 = S EE o2 SISl 8 2 o 23S 22
0 92 s o S|gla Sla|la S(2|la Sla|la
o 9%9cs o S|lo|d|s S|o S Slo|a|s S|lo|d|S
0 — 19 °r—14 Ola|a|<|0|0 O|a <|0|0 Ola|ja|<|O|0 Ola|a|<|O|0
jump jumpal jumpfar call callind nullrun syscall

Figure 5. Normalized run times for microbenchmarks running unde32:xxEach bar plots run time using vx32 divided by run
time for the same benchmark running natively (smaller baaskrfaster vx32 runs). The benchmarks are described indde4tp.
Results for the Intel Xeon matched the Pentium 4 almost Bxant are omitted for space reasons.

case for native execution, especially if the processor's Syscall This benchmark compares a virtual system
instruction cache uses only the low 12 bits of the instruc-call relayed to the host system against the same system
tion address as the cache index. Vx32 runs this case sigall executed natively. (The system calldsose(-1),
nificantly faster on all processors, because of better inwhich should be trivial for the OS to execute.)
struction cache performance in the translation.

Call. This benchmark repeatedly calls a function con-4.3 Large-scale benchmarks
taining only a return instruction. The call is a direct The microbenchmarks help to characterize vx32's per-

branch, though the return is still an indirect branch. formance executing particular kinds of instructions, but
Callind. This benchmark is the same eall, but the the execution of real programs depends critically on how
call is now an indirect branch, via a register. often the expensive instructions occur. To test vx32
Comparing the bars farall against the bars farall- on real programs, we wrote a 500-line host application

ind may suggest that vx32 takes longer to execute directalled vxrun that loads ELF binaries [41] compiled for
function calls than indirect function calls, but only rela- a generic Unix-like system call interface. The system
tive to the underlying hardware: a vx32 indirect call takescall interface is complete enough to support the SPEC
about twice as long as a vx32 direct call, while a nativeCPU2006 integer benchmark programs, which we ran
indirect call takes about four times as long as a nativeboth using vx32 (vxrun) and natively. We ran only the C
direct call. Thecall bars are taller than theallind bars integer benchmarks; we excluded 403.gcc and 429.mcf
not because vx32 executes direct calls more slowly, bubecause they caused our test machines, most of which
because native hardware executes them so much fasterhave only 1GB of RAM, to swap.

Nullrun. This benchmark compares creating and ex- Figure 6 shows the performance of vx32 compared to
ecuting a vx32 guest instance that immediately exitshe native system on five fiiérent 32-bit x86 processors.
against forking a host process that immediately exits. On three of the seven benchmarks, vx32 incurs a perfor-

<]
SN ~
— o n
n N o = o — 2 © ©
o_"o.w © o N o o — o
[P ~ < = n 3 —
[= R] N g 7 — o)
4 S - < 35] ®
- —— o)
© = — o N =R
- F!@mm\—! N~ o — Lo —
ER-E = (S a8 og — <
S — — o< s < —
o — N N - -
; o N~ O~ o —

1 = 5| x S8R x| x s X Sl x 5| x | x | x
:3 ‘OOJJ 5 :3 :3 :3 :3 :3
= o B = © B = = Sl = =

1 X<l 122 x| (2= <o |22 <Ixlsol |27 x|l (2|7 x|l (2|2 x| (2=
0|2 S 023 S 023 S w2l Sl nl2l3 Sl w213 S 0|2 - N
O|ElE 2| O|E|E 2| olE IS ks o|E|E 2o O|E|E 2| O|E|E 2| ols s Yo
d =l = [d =l = © | L A=l = © | & A=l = © |4 A=l = © | & d =l = © | L d =l = © | L
o x| |8 = x| |8 = x|0|9 = x| |9 - x| |Q = x||Q = x|0|8
4 |g BB [°) [%]|2(3 [°) [%]|2(3) - 3|22 °) [3]2(3 [°) [3]2(3 [°) 323
BEQEQX SEQCQ‘X 8§<r:q_>< BEchx SEwcvx BEvax aﬁw:wx
EIE(D|o|S EIE(D|[o|S EIE|TD|@| S EIE|D|0|S EIE|D|o|S EIE|D|o|S EIE(D|o|S
NI3|2]zl5]2 N EL = e N33 zl5]2 NEIEIEEE N EIEIE NI312[zl5]8 NI312]z[5]2
1 |ol|E|E 5] REl = 5 o |E|E 5 G E 5] = 5] G 5 REE 5
c|c = cl|c = c|c =i c|c - c|c == c|c == c|c -
SR EERE P EERE P EERE A EEER S EEEE 5|6|8|8|S|5 5|6|6|2|S|5

0 Ola|a|X|<|O Ola|a|X|<|O Ofa|a|X|<|O Ola|a(X|<|O Ola|a(X|<|O Oola|a(X|<|O Oola|a|X|<|O

401.bzip2 456.hmmer 462.libquantum 445.gobmk 458.sjeng 400.perlbench 464.h264ref

Figure 6: Normalized run times for SPEC CPU2006 benchmarks runnimgguvx32. Each bar plots run time using vx32 divided
by run time for the same benchmark running natively (smddées mark faster vx32 runs). The left three benchmarks wgerfe
indirect branches than the right four, resulting in less2/g8erhead. The results are discussed further in Section 4.3

27 S
; 1o} 1o}
Q [[} @ — Al © ©
1 © i o o 1 [] Ll —
— - - - —
B ™
o] o~ B ie] [To)
2 o =]
— = o o 4
1 < Q =2 — 1O lo] |-
~ =)
=)
)))) [[}))))) [}))
= S = | =B = BEE] = |1 B =B = BEE
9 |18[R|8(R T |R|2[R B[R 8% TR 8|R 3 |R|2|R B[R 8% TR |8|R
c|S|<|5 c|S|(c[s c|s[<c|5 c|S|<c|5 c|S[c|s c|s[<c|5 c|S|<c|5
SlL|L| L ZlL| L)L 2L L= SlL|L| L ZlL| L L ZlL|L(L2 SlL|L| L
T 12222 =R =2 R R =2 R
o s s INE N B B NI ENE B B NI D B NN S B NI ENE B B oo s s
0 m|m|o|o ®m|m|O|© m|m|o|© m|m|o|o m|m|O|© m|m|o|© m|m|o|o

401.bzip2 456.hmmer 462.libquantum 445.gobmk 458.sjeng 400.perlbench 464.h264ref

Figure7: Normalized run times for SPEC CPU2006 benchmarks runmifiguir configurations on the same AMD Opteron system:
natively on 32-bit Linux, under vx32 hosted by 32-bit Linungtively on 64-bit Linux, and under vx32 hosted by 64-bit it
Each bar plots run time divided by run time for the same berekmunning natively on 32-bit Linux (smaller bars mark &ast
runs). Vx32 performance is independent of the host operatystem’s choice of processor mode, because vx32 alwaggueast
code in 32-bit mode. The results are discussed further iticdes.3.

mance penalty of less than 10%, yet on the other four, the 401.bzip2]

penalty is 50% or more. Thefiiérence between these 456.hmmer [

two groups is the relative frequency of indirect branches, 462.libquantum]

which, as discussed in Section 3, are the most expensive ~ 445.gobmk [

kind of instruction that vx32 must handle. 458.sjeng ' |
Figure 8 shows the percentage of indirect branches re- 400:peribench '

tired by our Pentium 4 system during each SPEC bench- 464.h264ref ,' ' ,

mark, obtained via the CPU’s performance counters [21]. 0% 1% 204

The benchmarks that exhibit a high percentage of indi-

rect call, jump, and return instructions are precisely ¢hos

that sufer a high performance penalty under vx32. Figure8: Indirect branches as a percentage of total instructions
We also examined vx32's performance runr"ng undelretired during SPEC CPU2006 benChmarkS, measured USing

a 32-bit host operating system compared to a 64-bit hoﬁerformance counters on the Pgntium 4 The Ieﬁ pqrtion of

operating system. Figure 7 graphs the results. Eveff2ch bar corresponds to return instructions; the rightiqrort

under a 64-bit operating system, the processor switch cSorresponds to indirect jumps and indirect Ca”.s' The Em.m

. . , . eavy workloads are exactly those that experience notieeab

to 32-bit mode when exe_cutmg v>_<32 S 32-l_3|t que $€0-gl0wdowns under vx32.

ments, so vx32's execution time is essentially identical

in each case. Native 64-bit performance ofteffeds

from 32-bit performance, however: the x86-64 architec-compiled code, but its larger pointer size can hurt per-

ture’s eight additional general-purpose registers can imformance by decreasing cache locality, and the balance

prove performance by requiring less register spilling inbetween these factors depends on the workload.

Oreturn instructions retired [other indirect branches retired

vices. PCA systems before Alpaca assumed a fixed set
of cryptographic algorithms, such as public-key encryp-
In addition to evaluating vx32 in isolation, we evaluatedtion, signature, and hash algorithms. Alpaca moves these
vx32 in the context of several applications built using algorithms into the logical language itself, so that the ex-
it. This section evaluates the performance of these aptensibility of PCA extends not just to delegation policy
plications, but equally important is the ability to create but also to complete cryptographic suites and certificate
them in the first place: vx32 makes it possible to creatdormats. Unfortunately, cryptographic algorithms like
interesting new applications that execute untrusted x8Bound-based hash functions arefi@ent to express and
code on legacy operating systems without kernel modifi-evaluate explicitly using Alpaca’s proof language.

5 Applications

cations, at only a modest performance cost. Alpaca uses Python bindings for the vx32 sandbox to
support native implementations of expensive algorithms
5.1 Archival storage like hashes, which run as untrusted “plug-ins” that are

VXA [13] is an archival storage system that uses vx32 tofully isolated from the host system. The lightweight
“future proof” compressed data archives against changesandboxing vx32 provides is again crucial to the appli-
in data compression formats. Data compression algoeation, because an extensible public-key infrastructure
rithms evolve much more rapidly than processor archidis unlikely to be used in practice if it makes all crypto-
tectures, so VXA packages executable decoders into thgraphic operations orders of magnitude slower than na-
compressed archives along with the compressed data itive implementations would be.
self. Unpacking the archive in the future then depends Figure 10 shows the performance of vx32-based hash
only on being able to run on (or simulate) an x86 pro-functions compared to native ones. All run within 25% of
cessor, not on having the original codecs used to comnative performance. One surprise is the Core 2 Duo’s ex-
press the data and being able to run them natively on theellent performance, especially on whirlpool. We believe
latest operating systems. Crucially, archival storage systhe Core 2 Duo is especially sensitive to cache locality.
tems need to beficiently usable now as well as in the
future: if “future proofing” an archive using sandboxed 5.3 Plan 9 VX
decoders costs too much performance in the short ternRlan 9 VX (9vx for short) is a port of the Plan 9 oper-
the archive system is unlikely to be used except by proating system [35] to run on top of commodity operating
fessional archivists. systems, allowing the use of both Plan 9 and the host sys-
VXA uses vx32 to implement a minimal system call tem simultaneously and also avoiding the need to write
API (read, write, exit, sbrk). Vx32 provides exactly hardware drivers. To run user programs, 9vx creates an
what the archiver needs: it protects the host from buggyappropriate address space in a window within its own ad-
or malicious archives, it isolates the decoders from thedress space and invokes vx32 to simulate user mode exe
host’s system call API so that archives are portable acrossution. Where a real kernel would execttet to enter
operating systems and OS versions, and it executes desser mode and wait for the processor to trap back into
coders diciently enough that VXA can be used as a kernel mode, 9vx invokes vx32 to simulate user mode,
general-purpose archival storage system without noticewaiting for it to return with a virtual trap code. 9vx
able slowdown. To ensure that VXA decoders behavaises a temporary file as a simulation of physical memory,
identically on all platforms, VXA instructs vx32 to dis- calling the hostimap andmprotect system calls to map
able inexact instructions like the 387 intrinsics whoseindividual memory pages as needed. This architecture
precise results vary from one processor to another; VXAmakes it possible to simulate Plan 9's shared-memory
decoders simply use SSE and math library equivalents. semantics exactly, so that standard Plan 9 x86 binaries
Figure 9 shows the performance of vx32-based derun unmodified under 9vx. For example, Plan 9 threads
coders compared to native ones on the four test archirave a shared address space except that each has a pri-
tectures. All run within 30% of native performance, of- vate stack. This behavior is foreign to other systems and
ten much closer. The jpeg decoder is consistently fastevery hard to simulate directly. Because all user-mode ex-
under vx32 than natively, due to better cache locality. ecution happens via vx32, 9vx can implement this easily
with appropriate memory mappings.
5.2 Extensiblepublic key infrastructure The most surprising aspect of 9vx’s implementation
Alpaca [24] is an extensible public-key infrastructure was how few changes it required. Besides removing the
(PKI) and authorization framework built on the idea of hardware drivers, it required writing about 1,000 lines of
proof-carrying authorization (PCA) [3], in which one code to interface with vx32, and another 500 to interface
party authenticates itself to another by using an explicitwith the underlying host operating system. The changes
logical language tgrove that it deserves a particular mainly have to do with page faults. 9vx treats vx32 like
kind of access or is authorized to request particular seran architecture with a software-managed TLB (the code

|1.22
[1.18
|1.28
[1.27

[110
|1.21

0.99
|1.08
[1.06
|1.06

[1.04
|1.07
|1.02

[o.98

|1.02
|1.16
[1.03
|1.13
[1.09

[0.95

1.00
1.00
1.00
1.00
97
0.99

|ol94
|0.97
Jo.91
[o.89
[0p2
|
[o.

0.71
0.73
0.75

@
©
=)

Athlon64 x86-32, Linux
Opteron x86-32, Linux
Athlon64 x86-32, Linux
Opteron x86-32, Linux
Athlon64 x86-32, Linux
Opteron x86-32, Linux
Athlon64 x86-32, Linux
Opteron x86-32, Linux
Athlon64 x86-32, Linux
Opteron x86-32, Linux
Athlon64 x86-32, Linux
Opteron x86-32, Linux

Pentium 4, Linux

Core 2 Duo, OS X
Pentium M, Linux
Pentium 4, Linux
Xeon, Linux

Core 2 Duo, OS X
Pentium M, Linux
Pentium 4, Linux
Xeon, Linux

Core 2 Duo, OS X
Pentium M, Linux
Pentium 4, Linux
Xeon, Linux

Core 2 Duo, OS X
Pentium M, Linux
Pentium 4, Linux
Xeon, Linux

Core 2 Duo, OS X
Pentium M, Linux
Pentium 4, Linux
Xeon, Linux

Core 2 Duo, OS X
Pentium M, Linux
Xeon, Linux

N
Sy
=
D
o

bz2 jpeg ip2 vorbis

Figure 9: Normalized run times for VXA decoders running under vx32ck bar plots run time using vx32 divided by run time
for the same benchmark running natively (smaller bars mastef vx32 runs). Section 5.1 gives more details. The jpetgtes
faster because the vx32 translation has better cachetjottadin the original code.

|1.23
|1.18
[1.17
|1.14
[1.08
|1.21
[1.10
|1.16
|1.17

[1.04
|1.15

[1.11
[1.08
|1.03
[1.07
|1.02
|1.08
[1.04
[1.11
|1.14
J0.98
|1.07
|1.07
[1.03
|1.11
[1.11
|1.03

N
Jo.92
Jo.85

0.74

Athlon64 x86-32, Linux
Opteron x86-32, Linux
Athlon64 x86-32, Linux
Opteron x86-32, Linux
Athlon64 x86-32, Linux
Opteron x86-32, Linux
Athlon64 x86-32, Linux
Opteron x86-32, Linux
Athlon64 x86-32, Linux
Opteron x86-32, Linux

Pentium 4, Linux

Core 2 Duo, OS X
Pentium M, Linux
Pentium 4, Linux
Xeon, Linux

Core 2 Duo, OS X
Pentium M, Linux
Pentium 4, Linux
Xeon, Linux

Core 2 Duo, OS X
Pentium M, Linux
Pentium 4, Linux
Xeon, Linux

Core 2 Duo, OS X
Pentium M, Linux
Pentium 4, Linux
Xeon, Linux

Core 2 Duo, OS X
Pentium M, Linux
Xeon, Linux

md5 shal sha512 ripemd whirlpool

Figure 10: Normalized run times for cryptographic hash functionsning under vx32. Each bar plots run time using vx32 divided
by run time for the same benchmark running natively (sméiés mark faster runs).

©|m — N fee] - (o]
4 — < |N o [N ~ = o b
3 o
0
— ~ i ™~
3 o w0 3 o
o 9 o
S8
2 8 i
- o
— @
8 Ral
1 IS} bl 5 8 -
gl g= gl 8l gl °|&l2 °1§l2
S8 iR IElEE ERiEE EREE EREE ElEERE
0 gl ¥[s|o 21¥|5|o gl2|s|o gl 2[s|o g ¥|s|o gl2|s|o gl ¥[s|o
syscall pipe-byte pipe-bulk rdwr shalzero du mk

Figure 11: Normalized run times for simple Plan 9 benchmarks. The bzus correspond to Plan 9 running natively, Plan 9 VX,
Plan 9 under VMware Workstation 6.0.2 on Linux, and Plan 9enf@EMU on Linux using th&gemu kernel extension. Each
bar plots run time divided by the native Plan 9 run time (serdblars mark faster runs). The tests are: swich, a systerthaall
reschedules the current process, causing a context switebp((0)); pipe-byte, two processes sending a single byte back atid fo
over a pair of pipes; pipe-bulk, two processes (one senderyeceiver) transferring bulk data over a pipe; rdwr, alsipgocess
copying from/dev/zero to /dev/nul11; shalzero, a single process readiidgv/zero and computing its SHA1 hash; du, a single
process traversing the file system; and mk, building a Plagr8et. See Section 5.3 for performance explanations.

was already present in Plan 9 to support architecturei& can only run on Linux. The performance of the SPEC
like the MIPS). 9vx unmaps all mapped pages during ebenchmarks under vxlinux is essentially the same as the
process context switch (a singhenmap call) and then performance under vxrun; we omit the graph.
remaps pages on demand during vx32 execution. A fault
on a missing page causes the host kernel to send 9vx
signal (most oftersIGSEGV), which causes vx32 to stop
and return a virtual trap. 9vx handles the fault exactlyvx32 is a multipurpose user-level sandbox that enables
as Plan 9 would and then passes control back to vx3Zany application to load and safely execute one or more
9vx preempts user processes by asking the host OS fguest plug-ins, confining each guest to a system call
deliver SIGALRM signals at regular intervals; vx32 trans- API controlled by the host application and to a restricted
lates these signals into virtual clock interrupts. memory region within the host's address space. It exe-
To evaluate the performance of 9vx, we ran benchcutes sandboxed codéieiently on x86 architecture ma-
marks on our Pentium M system in four configurations:chines by using the x86’s segmentation hardware to iso-
native Plan 9, 9vx on Linux, Plan 9 under VMware |ate memory accesses along with dynamic code transla-
Workstation 6.0.2 (build 59824) on Linux, and Plan 9 tion to disallow unsafe instructions.
under QEMU on Linux with thekgemu module. Fig- Vx32’s ability to sandbox untrusted coddieiently
ure 11 shows the results. 9vx s slower than Plan 9 at conhas enabled a variety of interesting applications: self-
text switching, so switch-heavy workloadsftar (swtch, extracting archival storage, extensible public-key isfra
pipe-byte, pipe-bulk). System calls that don’t contexttructure, a user-level operating system, and portable or
switch (rdwr) and ordinary computation (shalzero) runrestricted execution environments. Because vx32 works
at full speed under 9vx. In fact, 9vx’s simulation of sys- on widely-used x86 operating systems without kernel
tem calls is faster than VMware’s and QEMU's, becausemodifications, these applications are easy to deploy.
it doesn’t require simulating the processor’s entry into In the context of these applications (and also on the
and exit from kernel mode. File system access (du, mKEPEC CPU2006 benchmark suite), vx32 always deliv-
is also faster under 9vx than Plan 9, because 9vx usesrs sandboxed execution performance within a factor of
Linux’s in-kernel file system while the other setups usetwo of native execution. Many programs execute within
Plan 9's user-level file server. User-level file servers are10% of the performance of native execution, and some
particularly expensive in VMware and QEMU due to the programs execute faster under vx32 than natively.
extra context switches. We have not tested Plan 9 un-
der VMware ESX server, which could be mor@&ent
than VMware Workstation since it bypasses the host OﬁCKnOWIedgments

completely. Chris Lesniewski-Laas is the primary author of Alpaca.
The new functionality 9vx creates is more important\we thank Austin Clements, Stephen McCamant, and the
than its performance. Using vx32 means that 9vx re-anonymous reviewers for valuable feedback. This re-
quires no special kernel support to make it possible tosearch is sponsored by the T-Party Project, a joint re-
run Plan 9 programs and native Unix programs side-bysearch program between MIT and Quanta Computer Inc.,
side, sharing the same resources. This makes it easy tiwan, and by the National Science Foundation under

experiment with and use Plan 9's features while avoid-£|ND project 0627065 (User Information Architecture).
ing the need to maintain hardware drivers and port large

pieces of software (such as web browsers) to Plan 9.
References

8 Conclusion

54 Vxlinux

We implemented a 250-line host application, vxlinux, [1] Keith Adams and Ole Agesen. A comparison of software

that prOVIde§ ,deleg,atlon'based Inter.posmo.n [1,7] by run- and hardware techniques for x86 virtualization. ASP-
ning unmodified, single-threaded Linux binaries under LOS XIIl. December 2006.

vx32 and relaying the guest's system calls to the host OS.[2] Advanced Micro Devices, Inc. AMD x86-64 architecture
A complete interposition system would include a policy programmer’s manual, September 2002.

controlling which system calls to relay, but for now we [3] Andrew W. Appel and Edward W. Felten. Proof-carrying
merely wish to evaluate the basic interposition mecha- authentication. I6th ACM CCSNovember 1999.

nism. The benefit of vxlinux over the OS-independent [4] Vasanth Bala, Evelyn Duesterwald, and Sanjeev Baner-
vxrun (described in Section 4) is that it runs unmodi- jia. Dynamo: a transparent dynamic optimization system.
fied Linux binaries without requiring recompilation for ACM SIGPLAN Notices35(5):1-12, 2000.

vx32. The downside is that since it implements system [5] Brian N. Bershad et al. E_xten3|b|||ty, safety and pefor
calls by passing arguments through to the Linux kernel, mance in the SPIN operating system15th SOSP1995.

(6]
(7]

(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

Brian Case. Implementing the Java virtual machikg-
croprocessor Repaortl0(4):12-17, March 1996.
Suresh N. Chari and Pau-Chen Cheng. BlueBox: A

policy-driven, host-based intrusion detection system. In[25]

Network and Distributed System Securfgbruary 2002.

Tzi-cker Chiueh, Ganesh Venkitachalam, and Prashan{26]

Pradhan. Integrating segmentation and paging protection

for safe, dicient and transparent software extensions. In[27]

17th SOSPpages 140-153, December 1999.

Bob Cmelik and David Keppel. Shade: A fastinstruction- [28]

set simulator for execution profilinggIGMETRICS PER
22(1):128-137, May 1994.

R. J. Creasy. The origin of the V@70 time-sharing
system. IBM Journal of Research and Development
25(5):483-490, 1981.

L. Peter Deutsch and Allan M. Sdfinan. Hficient im-
plementation of the Smalltalk-80 system.Rrinciples of

Programming Languagegpages 297-302, Salt Lake City, [31]

UT, January 1984.

D. Eastlake 3rd and T. Hansen. US secure hash algorithms
(SHA and HMAC-SHA), July 2006. RFC 4634.

Bryan Ford. VXA: A virtual architecture for durable cem
pressed archives. lth USENIX FASTSan Francisco,
CA, December 2005.

Bryan Ford, Mike Hibler, Jay Lepreau, Patrick Tullmann [33]

Godmar Back, and Stephen Clawson. Microkernels meet
recursive virtual machines. Bnd OSD] pages 137-151,
1996.

Timothy Fraser, Lee Badger, and Mark Feldman. Hard-
ening COTS software with generic software wrappers. In
IEEE Symposium on Security and Privapages 2-16,
1999.

Tal Garfinkel. Traps and pitfalls: Practical problems i
system call interposition based security toolsNitwork
and Distributed System Secutifebruary 2003.

Tal Garfinkel, Ben Pffi, and Mendel Rosenblum. Ostia: [37]

A delegating architecture for secure system call interposi
tion. In Network and Distributed System Securkgbru-
ary 2004.

Douglas P. Ghormley, David Petrou, Steven H. Ro-
drigues, and Thomas E. Anderson. SLIC: An extensibil-
ity system for commaodity operating systemsUSENIX
June 1998.

lan Goldberg, David Wagner, Randi Thomas, and Eric A.

Brewer. A secure environment for untrusted helper appli-[40]

cations. In6th USENIX Security Symposiu®an Jose,
CA, 1996.

Honeywell Inc. GCOS Environment SimulatoDecem-
ber 1983. Order Number AN05-02A.

Intel Corporation. 1A-32 Intel architecture softwade-
veloper's manual, June 2005.

K. Jain and R. Sekar. User-level infrastructure fortegs
call interposition: A platform for intrusion detection and

confinement. IrMNetwork and Distributed System Secu- [43]

rity, February 2000.

Andreas Krall. Hicient JavaVM just-in-time compila-
tion.
nigues pages 54-61, Paris, France, October 1998.
Christopher Lesniewski-Laas, Bryan Ford, Jacob Ssau

(30]

(32]

(36]

(38]

(39]

[41]

[42]

In Parallel Architectures and Compilation Tech- [44]

M. Frans Kaashoek, and Robert Morris. Alpaca: extensi-
ble authorization for distributed services. ACM Com-
puter and Communications Securifctober 2007.

Henry M Levy. Capability-based Computer Systems
Digital Press, 1984.

Jochen Liedtke. A persistent system in real use: experi
ences of the first 13 years. IWOOOS 1993.

Jochen Liedtke. On micro-kernel construction. 1sth
SOSR1995.

Chi-Keung Luk et al. Pin: building customized program
analysis tools with dynamic instrumentation. PwL.DI,
June 2005.

[29] Stephen McCamant and Greg Morrisett. Evaluating SFI

for a CISC architecture. 145th USENIX Security Sym-
posium August 2006.

Microsoft Corporation. C# language specification,-ver
sion 3.0, 2007.

Jefrey C. Mogul, Richard F. Rashid, and Michael J. Ac-
cetta. The packet filter: Anfigcient mechanism for user-
level network code. IiBymposium on Operating System
Principles pages 39-51, Austin, TX, November 1987.
George C. Necula and Peter Lee. Safe kernel extensions
without run-time checking. 12nd OSD] pages 229243,
1996.

Nicholas Nethercote and Julian Seward. Valgrind: A-pro
gram supervision framework. hhird Workshop on Run-
time Verification (RV'03)Boulder, CO, July 2003.

[34] Nicholas Nethercote and Julian Seward. Valgrind: A

framework for heavyweight dynamic binary instrumen-
tation. InPLDI, June 2007.

[35] Rob Pike et al. Plan 9 from Bell LabsComputing Sys-

tems 8(3):221-254, Summer 1995.

Niels Provos. Improving host security with system call
policies. In12th USENIX Security SymposiuAugust
2003.

K. Scott et al. Overhead reduction techniques for safev
dynamic translation. INSF Workshop on Next Genera-
tion Software April 2004.

Richard L. Sites, Anton Cherffip Matthew B. Kirk, Mau-
rice P. Marks, and Scott G. Robinson. Binary translation.
Communications of the ACN6(2):69-81, 1993.
Christopher Small and Margo Seltzer. MiSFIT: Con-
structing safe extensible systemdEEE Concurrency
6(3):34-41, 1998.

Michael M. Swift, Brian N. Bershad, and Henry M. Levy.
Improving the reliability of commodity operating sys-
tems. In19th ACM SOSP2003.

Tool Interface Standard (T1S) Committee. Executablé a
linking format (ELF) specification, May 1995.

Robert Wahbe, Steven Lucco, Thomas E. Anderson, and
Susan L. Graham.fEcient software-based fault isolation.
ACM SIGOPS Operating Systems Reyie¥(5):203—
216, December 1993.

Robert N. M. Watson. Exploiting concurrency vulnetabi
ities in system call wrappers. st USENIX Workshop on
Offensive Technologiegugust 2007.

Emmett Witchel and Mendel Rosenblum. Embra: Fast
and flexible machine simulation. Ikleasurement and
Modeling of Computer Systenmages 68—79, 1996.

