
UsenetDHT: A Low Overhead Usenet Server

Emil Sit, Frank Dabek and James Robertson
MIT Computer Science and Artificial Intelligence Laboratory

{sit, fdabek, jsr}@csail.mit.edu

Abstract
UsenetDHT is a system that reduces the storage and band-
width resources required to run a Usenet server by spread-
ing the burden of data storage across participants. Usenet-
DHT distributes data using a distributed hash table. The
amount of data that must be stored on each node partici-
pating in UsenetDHT scales inversely with the number of
participating nodes. Each node’s bandwidth requirements
are proportional to the fraction of articles read rather than
to the total number posted.

1 Introduction
Usenet is a large, distributed, messaging service that
serves thousands of sites world wide. Since its introduc-
tion in 1981, the Usenet has been growing exponentially.
The daily size of Usenet postings doubles approximately
every ten months. In early 2004, users created approxi-
mately 1.4 TB of new Usenet data, corresponding to about
4 million articles, per day. Each server that wishes to carry
the full content of Usenet (a “full feed”) must replicate
this amount of data each day, which is more than a 100
Mbps connection can support. To provide many days of
articles for readers becomes an expensive proposition.

UsenetDHT provides a service that is substantially sim-
ilar to Usenet but which reduces aggregate bandwidth and
storage requirements by organizing the storage resources
of servers into a shared distributed hash table (DHT) that
stores all article data. This approach obviates the need for
articles to be replicated to all participating servers. Instead
of storing article data at each server, UsenetDHT stores
article data on a small number of nodes in the DHT. The
DHT distributes articles geographically, and can locate
them quickly. It ensures high availability by re-replicating
as necessary, maintaining the benefits of full replication
without incurring the bandwidth and storage costs.

This research was conducted as part of the IRIS project http://
project-iris.net/, supported by the National Science Founda-
tion under Cooperative Agreement No. ANI-0225660. Emil Sit was
supported by The Cambridge-MIT Institute.

Using this approach, for an n-host system, each host
will be able to offer a full Usenet feed while only storing
2/n as much data as it would have had to using a tra-
ditional system. Instead of using local storage to hold a
large number of articles for a short period of time, Usenet-
DHT allows each server to hold fewer articles but retain
them for longer periods of time.

The bandwidth required to host a Usenet feed using
UsenetDHT is proportional to the percentage of articles
that are read rather than to the total number of articles
posted. Given the current size Usenet and known reader-
ship patterns, we expect this optimization to translate into
a significant reduction in the bandwidth required to host a
full feed.

2 Background

2.1 Usenet
Usenet is a distributed mesh of servers that are connected
in a mostly ad-hoc topology that has evolved since its cre-
ation in 1981. Servers are distributed world-wide and tra-
ditionally serve readers located in the same administrative
realm as the server. Each server peers with its neighbors
in the topology to replicate all articles that are posted to
Usenet.

The servers employ a flood-fill algorithm to ensure that
all articles reach all parties: as a server receives new
articles (either from local posters or from other feeds),
it floods NNTP CHECK messages to all its other peers
who have expressed interest in the newsgroup contain-
ing the article. If the remote peer does not have the
message, the server feeds the new article to the peer
with the TAKETHIS message. Because relationships
are long-lived, one peer may batch articles for another
when the other server is unavailable. RFC977 [10] and
RFC2980 [1] describes the NetNews Transfer Protocol in
more detail.

Articles are organized into a hierarchy of newsgroups.
Upon receiving each article, each peer determines which
newsgroups the article is in (based on meta-data included
in the article) and updates an index for the group. The

1



group indices are sent to news reading software and is
used to summarize and organize displays of messages.

Certain newsgroups are moderated to keep discussions
on-topic and spam-free. Moderation is enforced by requir-
ing a special header — articles posted without this header
are sent to a pre-configured moderation address instead of
being flood-filled as normal.

Special messages called control messages are dis-
tributed through the regular distribution channels but have
special meaning to servers. Control messages can create
or remove newsgroups, and cancel news postings (i.e. re-
move them from local indices and storage).

2.2 Server-side Policies

Each Usenet site administrator has complete control over
the other sites that it peers with, what groups it is inter-
ested in carrying and the particular articles in those groups
that it chooses to keep. This flexibility is important as it
allows administrators to utilize local storage capacity in
a manner that best suits the needs of the site. For exam-
ple, commercial Usenet providers will often invest in large
amounts of storage in order to be able to retain articles
over a longer period of time. Some Usenet providers will
choose only to receive articles affiliated with text news-
groups in order to minimize the bandwidth and storage
required. Most servers today will also filter incoming and
outgoing articles with CleanFeed [13] to remove articles
that are considered to be spam.

2.3 Usenet Data Characterization

The size of Usenet is a moving target; many estimates
have shown growth by a factor of two in traffic volume
every 10–12 months. Growth has largely been driven by
increased postings of “binaries” — encoded versions of
digital media, such as pictures, audio files, and movies.
Users are increasingly taking advantage of Usenet as a
distribution mechanism for large multi-media files. In
2001, there was an average of 300 GB of “binary” articles
posted per day, but the volume in early 2004 is already ap-
proaching 2 TB [8]. In contrast, the volume of text articles
has remained relatively stable for the past few years at ap-
proximately 1 GB of new text data, from approximately
400,000 articles [7].

2.4 Distributed Hash Tables

A distributed hash table (DHT) is a peer-to-peer storage
system that offers a simple put and get interface to
client applications for storing and retrieving data. DHTs
are often built out of a robust self-organizing lookup sys-
tem (such as Chord [16] or Tapestry [17]) and a storage
layer (such as DHash [4]).

The lookup layer maintains state information about
nodes and their identifiers while the storage layer auto-
matically handles balancing storage load between the par-
ticipants in the system. The storage layer automatically
rebalances data as nodes join and leave the system. In or-
der to keep data reliably available, DHTs will typically
use replication or erasure codes to store data on geo-
graphically distributed machines. This strategy also al-
lows DHTs to optimize reads by using nearby servers.

3 Architecture
In this section we present the high-level design of Usenet-
DHT, trace through the life of an article after it is posted,
and discuss some tradeoffs of our design.

3.1 Design

The main goal of this system is to reduce the resources
consumed by Usenet servers — specifically, the data
transfer bandwidth and the on-disk storage requirements
for articles — while mostly preserving the major features
of Usenet. UsenetDHT accomplishes this goal by replac-
ing the local article storage at each server with shared stor-
age provided by a DHT. This approach saves storage since
articles are no longer massively replicated; it also saves
bandwidth since servers only download articles that their
clients actually read.

All indexing of articles remains local to servers. In
order to support this, UsenetDHT nodes exchange meta-
data and control-data using the same flood-fill network as
Usenet. In essence, the article bodies are elided from the
news feed between servers. This approach allows cancel-
lation and moderation of articles to work much as they
do now; for example, cancellation simply updates the lo-
cal group index to exclude the canceled article and no
DHT storage needs to be touched. We considered using
application-level broadcast to transmit meta-data. An ef-
ficient broadcast tree would reduce link stress by ensuring
that data is transmitted over each link only once. How-
ever, Section 4 shows that the meta-data streams are rel-
atively small, so the bandwidth reduction does not out-
weigh the complexities introduced by such a system. Fur-
ther, the mesh network system is more robust, so we chose
to leverage the existing infrastructure.

Figure 1 illustrates this design. Dotted-lines in the fig-
ure denote the transfer of meta-data, and solid lines denote
article data. In the UsenetDHT design, each node donates
storage capacity to form a DHT, which acts like virtual
shared disk (right). Articles are stored in the DHT and
fetched as required to satisfy read requests.

Servers will locally cache recently requested docu-
ments to avoid making multiple requests to the DHT for

2



(a) (b)

Figure 1: The design of Usenet (a) and UsenetDHT (b). Usenet servers are connected to form a mesh network and
exchange article data (solid lines) and meta-data such as article announcements and cancellations (dotted lines). Each
Usenet server has enough local storage for all articles and meta-data. UsenetDHT servers are connected by the same
mesh network to exchange meta-data, which is still stored locally. Articles are written to a a large, shared DHT (at
right), with backing storage contributed by the peer servers. The colors associate each participant with the storage they
provide.

the same article. If servers cache locally, caching inside
the DHT will be unnecessary. The main benefit of local
caching is to reduce load on other servers in the system —
if servers cache locally, no server is likely to experience
more than n remote read requests for the DHT blocks cor-
responding to a given article. Each server will need to de-
termine an appropriate cache size that will allow them to
serve their readership efficiently.

3.2 ArtIcle Lifetime

Consider how an article is posted and eventually read us-
ing UsenetDHT. A newsreader in communication with a
local server posts an article using the standard NNTP pro-
tocol. By design, the reader is unaware that the server is
part of UsenetDHT, instead of a standard server. Upon
receiving the posting, the server stores the article data in
the DHT under the content-hash of an inode-like structure
that points to fixed size chunks of the article [4]. As an
optimization, if the article fits within a single 8KB DHT
block, the body is stored directly in the inode [6]. The use
of a secure hash function such as SHA-1 to produce the
content-hash guarantees that articles will be evenly dis-
tributed through the nodes in the system. It also ensures
that servers can verify the integrity of data received over
the network.

After the block has been successfully stored in the
DHT, the server sends an announcement with the article’s
header information and content-hash to its peers. This in-
formation is sufficient for the peer servers to insert the
article into the appropriate group indices, provide a sum-
mary of the article to readers connecting to the server
and retrieve the contents of the article when necessary.
Each server, upon receiving the article, also shares the an-
nouncement with its other peers. In this manner, the arti-
cle’s existence is eventually flooded to all news servers.

When a reader wishes to read a newsgroup, he requests

a list of new articles from his local news server. As is done
in Usenet, the server responds with a summary of arti-
cles that it has accumulated from its peers. This summary
is used by readers to construct a view of the newsgroup.
When the client requests an article body, the server sends
a get request to the DHT for the content-hash associated
with the article. Once the server obtains the article data it
can be returned to the reader. As with posting, the reader
is not aware that the news server has been modified.

3.3 Tradeoffs
The primary drawback of UsenetDHT is a loss of con-
trol by individual administrators over what data (articles)
are stored on and transit their machines. In a DHT-based
storage system, article data will be evenly spread across
all participating nodes. Similarly, all nodes must partic-
ipate in processing DHT lookups for articles, even those
in groups that they do not wish to carry. This sacrifice is
inherent to the design as presented above.

From a resource standpoint, this drawback is probably
not critical: each server in UsenetDHT need only provide
a fraction of the space required to store a feed. Even if a
traditional server only served a fraction of newsgroups, its
storage requirements are not likely to rise if it participates
in UsenetDHT. In addition, sites can run virtual nodes [4]
to match DHT storage requirements with available capac-
ity: each virtual node allows a physical node to claim re-
sponsibility for an additional fraction of the blocks stored
in the DHT.

Article expiration must also be handled on a system-
wide level. Blocks associated with articles can only be
removed when the article has expired from the indices of
all servers. This global parameter is set out-of-band.

More troubling are issues relating to content filtration.
One common policy that UsenetDHT would like to sup-
port is the ability for servers to decide not to carry par-

3



ticular newsgroups, such as erotic newsgroups. Normally,
such servers would request not to receive articles associ-
ated with unwanted groups from their upstream server. In
UsenetDHT, a fraction of the articles from all groups will
be randomly distributed to all servers. One possible so-
lution may be to make use of recent work that enables
a Chord ring to be organized into subrings such that a
lookup could be targeted at an item’s successor in a given
subset of nodes [11]. Subrings could be used so that stor-
age for content such as adult material would be limited
to a single subring: lookups for articles in adult groups
would be confined within the subring. We have not fully
investigated this solution, but plan to do so in the future.

A different challenge is effectively filtering spam; the
previous solution would not work since spam appears in
all newsgroups. In total, the use of UsenetDHT should
reduce the storage impact of spam since each spam mes-
sage will only be stored once. However, administrators
will still want to reduce the presence of spam in news-
group indices — naively, any node wishing to do this
would have to retrieve every complete article to determine
if it is spam. This approach would lose all the bandwidth
benefits of UsenetDHT. Fortunately, existing techniques
such as spam cancellation can still work in UsenetDHT
— a small number of sites determine what messages are
spam (or are otherwise undesirable) and publish cancel
messages. Other sites process the cancel messages to fil-
ter out spam locally. Sites would continue to filter local
posts to prevent spam from originating locally as well.

4 Evaluation
We have implemented a prototype UsenetDHT server that
can accept small news feeds, insert articles into the DHash
DHT [4], and make them available to clients. However,
the system has yet to be tested with a full feed. In this
section, we quantify the potential bandwidth and stor-
age requirements of a UsenetDHT server compared to a
Usenet server based on available statistics about the cur-
rent Usenet. We also describe what performance we re-
quire from the underlying DHT. We hope that a future de-
ployment of our implementation running on the PlanetLab
test bed will verify these calculations experimentally.

4.1 Analysis Model

The resource usage of a UsenetDHT server depends on
the behavior of readers; we parameterize our analysis
based on a simplistic model of the input rate to the
system and estimated readership. Let n be the num-
ber of servers in the system. Let a represent the aver-
age number of articles injected into the system per sec-
ond. Correspondingly, let b represent the average num-

Table 1: UsenetDHT reduces the bandwidth and storage
requirements of hosting a Usenet feed in proportion to the
fraction of articles read (r) and the number of servers in
the network (n), respectively. This table compares the cur-
rent transfer and storage requirements per day for a full
Usenet feed in both systems, where b represents the total
number of bytes for articles injected each day. A single
peer is assumed

Total Bytes Transferred Storage
Usenet 2b b

UsenetDHT 2br + 2 · 512a 2b/n + 512a

ber of bytes injected per second. For example, based
on recent statistics from a well-connected news server
(newsfeed.wirehub.nl), a ≈ 77 articles per sec-
ond and b ≈ 21 MB per second. Statistics from other
large news servers are similar. When we examine the stor-
age requirements of a UsenetDHT server it will be conve-
nient to consider data stored per day: we will write a for
the total number of articles injected on average each day
(a = 86400a) and b for total bytes injected per day.

To model the readership patterns of Usenet, we intro-
duce r, the average percentage of unique articles read
per site. Unfortunately, few studies have been done to
measure how many articles are actually read on different
servers. In 1998, Saito et al. observed that roughly 36%
of all incoming articles were read on the server at Com-
paq [15]. Today, because of large traffic volume, many
networks outsource their news service to large, well-
connected providers, such as GigaNews. Byte-transfer
statistics for the month of January 2004 from a small ISP
that outsources news service to GigaNews suggest that the
ISP’s approximately 5000 customers read approximately
1% of the total monthly news. In fact, the trends from
that ISP show that the number of bytes downloaded has
remained relatively constant around 300 GB per month
over the past year. This may mean that r will decrease
over time if the growth of Usenet remains exponential.

For the purposes of this analysis, we will treat these pa-
rameters as constants, though of course, they will change
over time.

4.2 Storage
UsenetDHT reduces system-wide storage by storing arti-
cles once in the DHT instead of copying them to each site.
The storage requirements of a node are proportional to the
amount of data in the system and the replication overhead
of the underlying DHT and inversely proportional to the

4



number of participating servers.
We assume that UsenetDHT is based on a low-overhead

DHT that maintains and replicates data with a replication
factor of 2 using some sort of erasure coding to ensure
high availability. This assumption means that the system
receives 2b bytes of new article data each second. This
load is spread out over all n servers in the system in-
stead of being replicated at all hosts, resulting in an over-
all per-host load that is 2/n times the load of traditional
Usenet. If the number of servers participating in Usenet-
DHT increases and the number of articles posted remains
constant, each server must bear less load. Because each
server must dedicate a factor of n less storage, Usenet-
DHT should allow articles to be retained longer within
the system.

There is also a small incremental cost required for local
indexing. Suppose that each article requires about 512
bytes to store the overview data, which includes article
author, subject, message-id, date, and references headers.
This data adds an additional 512a bytes per day to the cost
of supporting a full feed. In early 2004, this corresponds
to approximately 3.2 GB daily, which is barely 0.1% of
the total data stored daily.

Sites must also provide some storage space for caching
locally read articles. The sizing and effectiveness of this
cache is dependent on the size of the reader population
and the diversity of articles that they retrieve.

The total daily storage requirement for a UsenetDHT
server is 2b/n + C + 512a where C is the size of the
server’s article cache. This differs from the cost of a tradi-
tional Usenet server by roughly a factor of 2/n. A Usenet
server requires b + 512a bytes of storage daily.

4.3 Bandwidth

UsenetDHT servers save bandwidth by not downloading
articles that are never going to be read at their site. Un-
like Usenet, the bandwidth used by a UsenetDHT server is
proportional to readership, not to the volume of the feed
the server carries. In this evaluation, we are only inter-
ested in wide-area data transfer. When comparing Usenet-
DHT’s bandwidth requirements to Usenet, we will not
consider the cost of sending articles to readers for Usenet
servers since these readers are likely to be on the same
network as the server.

Servers must download articles from the DHT to satisfy
requests by local readers. If the average actual fraction of
read articles is r, each server will require roughly rb bytes
per second of downstream bandwidth. In addition, each
node is required to receive the header and DHT informa-
tion for each article, which corresponds to 512a bytes per
second. This header overhead may need to be multiplied

by a small factor, corresponding to the overhead of com-
municating with multiple peers.

A server must also send data it stores in its role as part
of the DHT. As we showed above, each server requests rb
bytes per second from the DHT. This load will be spread
out over all n servers. Correspondingly, each participat-
ing server must send rb/n bytes per second to satisfy read
requests from each other server in the system. Thus, in
aggregate, each site must have rb bytes per second of up-
stream bandwidth. Additionally, each site must have suf-
ficient upstream bandwidth to inject locally-authored arti-
cles into the system.

A Usenet server’s wide-area bandwidth requirements
are equal simply to the size of the feed it serves. In our
notation, a Usenet server is required to read b bytes per
second from the network.

4.4 DHT Performance
The DHT used by UsenetDHT must provide sufficient
read and write performance to support the aggregate load
on the system. Because the news servers themselves will
form the DHT, we expect that the membership of the DHT
will be stable (more stable than, for instance, the mem-
bership of the Gnutella network). A stable membership
makes it easier for the DHT to provide highly reliable stor-
age [2].

Recent DHTs have demonstrated performance scaling
properties that suggest they can meet the demands of
UsenetDHT [5]. An improved version of the DHash DHT
can locate and download an 8K block in approximately
100ms when run on the PlanetLab test bed [14]. The read
latency of the DHT will be visible to end-users when they
request an uncached article: reading a small text article re-
quires the DHT to perform a single block download. The
time required by the DHT to perform the fetch is likely to
be significantly higher than the time to perform a similar
operation on a local server. This delay can be partially
masked by pre-fetching articles in a newsgroup when the
indexing information is requested but before they are ac-
tually read. We believe that the bandwidth and storage
savings of UsenetDHT are worth the delay imposed by
the DHT.

The throughput requirement for a UsenetDHT node is
rb. Thus, a full-feed deployment with r = 0.01 in early
2004 would require that each DHT node provide 200 KB/s
of symmetric bandwidth. A node participating in the
DHash DHT and located at MIT was able to read data at
1 MB/s from the DHT. Such performance should be suffi-
cient to support a full feed for the near future. An exper-
imental deployment of the system will allow us to verify
that DHash is able to meet the performance requirements
of the system.

5



5 Related Work
There have been some other proposals to reduce the re-
source consumption of Usenet. Newscaster [3] exam-
ined using IP multicast to transfer news articles to many
Usenet servers at once. Each news article only has to
travel over backbone links once, as long as no retrans-
missions are needed. In addition, news propagation times
are reduced. However, Newscaster still requires that each
Usenet server maintain its own local replica of all the
newsgroups. Also, each news server still consumes the
full news feed bandwidth across the network links closest
to the server.

NewsCache [9] reduces resource consumption by
caching news articles. It is designed to replace tradi-
tional Usenet servers that are leaf nodes in the news feed
graph, allowing them to only retrieve and store articles
that are requested by readers. In addition to filling the
cache on demand, it can also pre-fetch articles for cer-
tain newsgroups. These features are also available as a
mode of DNews [12], a commercial high-performance
server, which adds the ability to dynamically determine
the groups to pre-fetch. Thus, both NewsCache and
DNews reduce local bandwidth requirements to be pro-
portional to readership as well as more optimally using
local storage. However, they only do this for servers that
are leaf nodes and does not help reduce the requirements
on upstream servers. By comparison, UsenetDHT also re-
duces resource requirements for those servers that are not
leaf nodes. Also, standard caches will continue to work
with UsenetDHT servers.

6 Conclusion and Future Work
UsenetDHT has the potential to reduce the bandwidth
and storage requirements of providing access to Usenet
by storing article data in a DHT. UsenetDHT’s band-
width savings depend heavily on readership patterns, but
UsenetDHT provides storage savings that scale with the
number of participants. A planned deployment on Planet-
Lab will help to quantify the benefits of UsenetDHT.

Acknowledgments
We would like to thank Richard Clayton for his assistance
in gathering statistics about Usenet’s recent growth and
status, and the anonymous reviewers and the members of
the PDOS research group for their helpful comments.

References
[1] BARBER, S. Common NNTP extensions. RFC 2980, Network

Working Group, Oct. 2000.

[2] BLAKE, C., AND RODRIGUES, R. High availability, scalable stor-
age, dynamic peer networks: Pick two. In Proc. of the 9th Work-
shop on Hot Topics in Operating Systems (May 2003).

[3] BORMANN, C. The Newscaster experiment: Distributing Usenet
news via many-to-more multicast. http://citeseer.nj.
nec.com/251970.html.

[4] DABEK, F., KAASHOEK, M. F., KARGER, D., MORRIS, R., AND

STOICA, I. Wide-area cooperative storage with CFS. In Proc. of
the 18th ACM Symposium on Operating Systems Principles (Oct.
2001).

[5] DABEK, F., SIT, E., LI, J., ROBERTSON, J., KAASHOEK, M. F.,
AND MORRIS, R. Designing a DHT for low latency and high
throughput. In Proc. of the 1st Symposium on Networked System
Design and Implementation (Mar. 2003).

[6] GANGER, G. R., AND KAASHOEK, M. F. Embedded inodes
and explicit grouping: exploiting disk bandwidth for small files.
In Proc. of the 1997 USENIX Annual Technical Conference (Jan.
1997), pp. 1–17.

[7] GRADWELL.COM. Diablo statistics for news-peer.gradwell.net.
http://news-peer.gradwell.net/. Accessed 12 Febru-
ary 2004.

[8] GRIMM, B. Diablo statistics for newsfeed.wirehub.nl (all
feeders). http://informatie.wirehub.net/news/
allfeeders/. Accessed 12 February 2004.

[9] GSCHWIND, T., AND HAUSWIRTH, M. NewsCache: A high-
performance cache implementation for Usenet news. In Proc.
of the 1999 USENIX Annual Technical Conference (June 1999),
pp. 213–224.

[10] KANTOR, B., AND LAPSLEY, P. Network news transfer protocol.
RFC 977, Network Working Group, Feb. 1986.

[11] KARGER, D., AND RUHL, M. Diminished Chord: A protocol for
heterogeneous subgroup formation in peer-to-peer networks. In
Proc. of the 3rd International Workshop on Peer-to-Peer Systems
(Feb. 2004).

[12] NETWIN. DNews: Unix/Windows Usenet news server soft-
ware. http://netwinsite.com/dnews.htm. Accessed
9 November 2003.

[13] NIXON, J., AND D’ITRI, M. Cleanfeed: Spam filter for Usenet
news servers. http://www.exit109.com/˜jeremy/
news/cleanfeed/. Accessed on 15 February 2004.

[14] PlanetLab. http://www.planet-lab.org.

[15] SAITO, Y., MOGUL, J. C., AND VERGHESE, B. A Usenet per-
formance study. http://www.research.digital.com/
wrl/projects/newsbench/usenet.ps, Nov. 1998.

[16] STOICA, I., MORRIS, R., KARGER, D., KAASHOEK, M. F., AND

BALAKRISHNAN, H. Chord: A scalable peer-to-peer lookup ser-
vice for Internet applications. In Proc. of the ACM SIGCOMM
(Aug. 2001). An extended version appears in ACM/IEEE Trans.
on Networking.

[17] ZHAO, B. Y., HUANG, L., STRIBLING, J., RHEA, S. C., JOSEPH,
A. D., AND KUBIATOWICZ, J. D. Tapestry: A resilient global-
scale overlay for service deployment. IEEE Journal on Selected
Areas in Communications 22, 1 (Jan. 2004).

6


