
Unmanaged Internet Protocol
Taming the Edge Network Management Crisis

Bryan Ford
Massachusetts Institute of Technology

Abstract

Though appropriate for core Internet infrastructure, the Inter-
net Protocol is unsuited to routing within and between emerg-
ing ad-hoc edge networks due to its dependence on hierarchi-
cal, administratively assigned addresses. Existing ad-hoc rout-
ing protocols address the management problem but do not scale
to Internet-wide networks. The promise of ubiquitous network
computing cannot be fulfilled until we develop an Unmanaged
Internet Protocol (UIP), a scalable routing protocol that man-
ages itself automatically. UIP must route within and between
constantly changing edge networks potentially containing mil-
lions or billions of nodes, and must still function within edge
networks disconnected from the main Internet, all without im-
posing the administrative burden of hierarchical address assign-
ment. Such a protocol appears challenging but feasible. We
propose an architecture based on self-certifying, cryptographic
node identities and a routing algorithm adapted from distributed
hash tables.

1 Introduction

The promise of ubiquitous computing is that people will
soon routinely own many “smart” networked devices,
some mobile, others perhaps built into their homes and
offices, and all of which they can access and control from
any location so long as appropriate security precautions
are taken. Before we can expect ordinary, non-technical
people to adopt this vision, however, the ad-hoc edge net-
works in which these devices live must be able to manage
themselves. Each device must be able to find and com-
municate with its peers—whether connected directly, in-
directly over a local-area network, or remotely across a
long distance via the Internet—with no special configura-
tion or other technical effort on the part of the user.

The current Internet Protocol is unsuited to this pur-
pose. IPv4 and IPv6, with their accompanying routing,

This research was conducted as part of the IRIS project
(http://project-iris.net/), supported by the National Sci-
ence Foundation under Cooperative Agreement No. ANI-0225660.

Figure 1: Today’s Internetworking Challenges

naming, and management protocols, have evolved around
the requirements of core network infrastructure: corpo-
rate, academic, and government networks deployed and
managed by skilled network administrators. IP’s hierar-
chical address architecture in particular is fundamentally
dependent on skilled network management. Current ad-
hoc networking protocols by themselves are not sufficient
either, because they are only scalable to local-area net-
work sizes of a few hundreds or thousands of nodes.

To achieve ubiquitous network computing, we need an
Unmanaged Internet Protocol, or UIP, that combines the
self-management of ad-hoc networks with the scalability
of IP. As illustrated in Figure 1, achieving this goal in to-
day’s chaotic mix of networking technologies also means
routing traffic automatically and securely through NATs,
and transparently bridging IPv4, IPv6, and other address
domains. We propose an architecture based on scal-
able identity-based routing, or routing based on topology-
independent node identifiers. While more difficult than
routing over topology-dependent addresses such as IP
addresses, there is evidence that scalable identity-based
routing is possible and practical.

This position paper is organized as follows. Section 2
lays out the motivation for UIP and the inadequacies of
current solutions. Section 3 proposes and outlines an
identity-based UIP routing architecture, and Section 4 de-
scribes implementation status and deployment. Section 5
summarizes related work, and Section 6 concludes.

1



2 Motivation for UIP

The original ARPAnet vision was to enable computer
users to communicate and share resources with users of
any other connected computer [18, 28]. This vision has
evolved into the modern Internet Protocol, whose purpose
is to implement any-to-any connectivity between hosts,
whether connected directly or indirectly via paths cross-
ing many administrative domains. While physical and
link-layer technologies such as Ethernet provide low-level
building blocks for communication, and higher-level pro-
tocols enable applications and users to take advantage of
the network, interoperable end-to-end connectivity via IP
remains the Internet’s central focus.

Technical, social, and economic pressures have hin-
dered the achievement of this vision, however. The proto-
cols underlying the Internet were designed by technically
savvy individuals who understand how networks work but
often do not understand how non-technical users work.
As a result many aspects of network operation still require
careful and skilled management. We desire and increas-
ingly expect that everyone should be able to use the Inter-
net and deploy networked devices, and strong economic
incentives exist for businesses to sell Internet-enabled
hardware and Internet-based services to technically un-
sophisticated users. Since businesses seek lowest-cost
paths to profitable solutions, the commercial Internet has
evolved—via a chaotic series of hacks and extensions—
into a system geared toward particular usage patterns that
facilitate business opportunities, often at the expense of
interoperability and general end-to-end connectivity.

2.1 The Edge Network Management Crisis

An unsophisticated user can now buy a computer, connect
it to the Internet, and use it for browsing the Web, reading
E-mail, and shopping on-line. Users who are a bit more
adventurous but still relatively non-technical may set up a
small home network and surf the Web from several com-
puters at once. But consider the following scenario:

1. Joe User is working at home on his laptop. He
has remote shell and database access sessions open,
through his WiFi home network, to his desktop PC
and to a machine at his workplace.

2. Joe’s friend Jim calls and invites him over. Joe puts
his laptop into sleep mode and hops into his car.

3. Joe stops for a bite to eat on the way to Jim’s, and
scribbles some notes on his PDA in the restaurant.

4. Upon returning to his car, Joe tries to synchronize his
PDA with his laptop, but discovers they won’t talk
to each other even though they’re both WiFi-enabled

and are at most a foot apart. Being unfamiliar with
the technical details of IP networks, he doesn’t real-
ize that this is because (a) the WiFi adapters are in
infrastructure rather than ad-hoc mode, and (b) even
if they could communicate at the link layer, neither
machine would be able to get an IP address because
there’s no DHCP [7] server nearby.

5. Joe arrives at Jim’s place, and the two brainstorm
about their project at work. Joe takes out his lap-
top and wakes it up. Since Jim also has an Internet-
connected WiFi home network, Joe hopes to use
Jim’s Internet access and resume his existing appli-
cation sessions to his desktop PCs at home and work.
Again Joe is disappointed. After figuring out that he
has to remove and re-insert his laptop’s WiFi card in
order to get it to recognize Jim’s network at all, Joe’s
application sessions are gone. He does not realize
that moving to a new attachment point changed his
IP address, breaking his existing TCP connections.

6. Joe tries to re-start his application sessions, but finds
that he cannot even locate let alone connect with his
desktop PC at home. He doesn’t realize that this is
because (a) his ISP did not give him a permanent IP
address useable for connecting remotely to his home
network, and (b) even with a permanent IP address,
his desktop PC would still be inaccessible because it
is behind a network address translator [32].

Joe’s naı̈ve expectations of his networked devices are
not fundamentally unreasonable, and all of the problems
above are solvable with current technology. Joe could in
theory: (a) configure his home NAT to assign fixed site-
local IP addresses to his desktop and laptop PCs at home;
(b) configure his NAT to open the appropriate external
ports for remote access and forward incoming connec-
tions on those ports to his desktop PC; (c) register for a
global DNS host name with a Dynamic DNS [36] service
provider; (d) set up his desktop PC to update this DNS
name periodically with the dynamic IP address his ISP
assigns to his home NAT; (e) set up Mobile IP [25] so that
his desktop PC at home will intercept packets destined for
his laptop’s “home” IP address, and tunnel them to his
laptop at its actual connection point while connected else-
where; (f) run daemons on his laptop and PDA that detect
when no infrastructure-mode WiFi access point or DHCP
service is available, and automatically switch into ad-hoc
mode using a routing protocol such as AODV [24].

Only the most dedicated, desperate, or geeky will go to
this trouble, however. To most users, having a “working”
network means being able to get to Google, CNN, and
Amazon.com. Any “ubiquitous” connectivity outside this
commercial client/server straitjacket is fickle, unreliable,
and management-intensive if available at all.

2



2.2 IP Networks Require Management

The scalability and efficiency of the current Inter-
net Protocol relies on Classless Inter-Domain Routing
(CIDR) [26], in which network nodes are assigned ad-
dresses whose hierarchical structure reflects the routing
topology. BGP routers take advantage of the hierarchical
structure of IP addresses, aggregating information about
distant nodes and networks sharing a common address
prefix into a single routing table entry [27].

While this hierarchical address assignment scheme
makes the core Internet infrastructure efficient and scal-
able, it is precisely this address assignment scheme that
makes edge networks brittle and difficult to manage.
Whenever a node moves or its surrounding network is
renumbered, the node’s IP address must change. Stat-
ically configuring and maintaining the IP addresses of
many nodes is challenging even for technically compe-
tent network administrators, leading to organizational re-
sistance against IP address renumbering [5]. Dynamic
address assignment transfers administrative responsibil-
ity from edge nodes to DHCP servers, at the expense of
making edge nodes unable to communicate at all with-
out access to a DHCP server. Workarounds in which
nodes choose their own local IP addresses after failing
to contact a DHCP server [6] are slow, unreliable, and
at best allow nodes to communicate only with immediate
link-neighbors while disconnected from the main Internet.
These issues will persist even into a future IPv6 world in
which there are “enough” IP addresses for everyone and
network address translators do not exist, because the basic
address architecture remains the same in IPv6.

2.3 Ad-Hoc Networks Do Not Scale

Classic distance-vector [15, 11] and link-state [22] rout-
ing protocols, as well as ad-hoc routing variants such as
DSR [14] and AODV [24], require every node to store and
regularly exchange information about every other node in
the network. This linear per-node storage and/or band-
width overhead limits the scalability of these protocols to
a few hundreds or thousands of nodes. While ad-hoc pro-
tocols can be used to route within a particular IP subnet,
this subnet must be centrally allocated and managed in or-
der to be globally routable on the Internet, and all partici-
pating nodes must be assigned to that subnet. Configuring
each node statically is tedious and inconvenient, while us-
ing DHCP again makes the nodes unable to communicate
with each other while out of range of a DHCP server.

To fulfill the promise of ubiquitous networking, an edge
network routing protocol must be self-managing not only
on a local scale, but also on a global scale. We need an
ad-hoc routing protocol that can seamlessly route pack-
ets throughout an Internet-wide federation of ad-hoc edge

Figure 2: UIP in the Internet Protocol Architecture

networks, consisting of potentially millions or billions of
edge nodes that frequently hop from one edge network
to another. This protocol must still provide reliable ad-
hoc routing within edge networks that are temporarily or
permanently disconnected from the Internet. This is the
purpose of Unmanaged Internet Protocol, or UIP.

3 Proposed UIP Architecture

Since IP does an excellent job of routing packets effi-
ciently through the managed core Internet infrastructure,
we intend UIP not to replace IP but to run on top of it, as
a new network layer component (Figure 2). In our pro-
posed architecture, UIP appears to upper-level transport
and application protocols as a new address/protocol fam-
ily, much like IPv6 does now.

3.1 Node Identities

To refer to other UIP nodes, applications use self-
certifying cryptographic identifiers that are stable over
time and independent of network topology. All con-
nections between UIP nodes are privacy- and integrity-
protected by default, as in IPSEC [16]. A node’s UIP
identifier is a hash of the node’s public key, making iden-
tifiers self-certifying, like Moskowitz’s host identities [21]
or SFS pathnames [20]. Cryptographic identities provide
several properties crucial to achieving robust connectivity
in future ubiquitous networking environments:

• Any node can create a globally unique UIP identi-
fier at any time without reference to central authori-
ties. The identifier’s uniqueness depends only on the
strength of the cryptographic hash used to create it.

• A node’s identifier remains valid as long as desired.
Security practice may limit the lifetimes of long-term
keys and node identities to a few years, but since this
is the useful lifetime of most PCs, many nodes may
never have to change identifiers.

3



• Since a node identifier contains no topology informa-
tion, the node can retain its identity when it moves or
the surrounding network topology changes.

• A node can cryptographically prove ownership of an
identifier using the associated private key, preventing
an attacker from stealing its identity.

• A node can have multiple identities simultaneously,
representing distinct services or “virtual hosts” on
one physical machine for example.

• The network layer does not depend on centralized
public key infrastructure (PKI). Higher layers may
use PKI to map convenient names to node identifiers,
but given a node identifier, finding and connecting
securely to that node is fully decentralized.

3.2 UIP Routing

UIP’s primary technical challenge is to forward traffic
from any node to any other in an Internet-scale network,
without the help of hierarchically structured node ad-
dresses. Since UIP node identifiers are unrelated to net-
work topology, they have no locality properties routers
can use to aggregate routing information about distant
nodes. Requiring every node to store and propagate rout-
ing information about every other node in an Internet-
scale network may arguably be viable for a desktop PC
with a high-speed Internet connection, but is definitely
impractical for small, low-power devices such as PDAs.

3.2.1 Approaches to Identity-Based Routing

Bellman-Ford and similar routing algorithms find optimal
routes, based on either hop count or some per-link cost
metric. We do not need optimal routing, however: in
practice it suffices to find reasonably efficient routes. The
routes that BGP finds are probably less than optimal al-
ready, due to the difficulty of supporting site multihoming
in the Internet’s hierarchical address model [1], and the
lack of incentive for ISPs to reveal all of their peering re-
lationships in their BGP advertisements.

Route efficiency is usually measured in terms of stretch:
the length of the route discovered by the protocol over the
length of the best possible route. Algorithms now exist
that can route through an N -node network with arbitrary
node labels, using Õ(

√
N) bits of routing table state per

node, and a small constant maximum stretch [4].
In practice, we do not even necessarily demand that

all nodes have sublinear storage requirements. We might
accept a routing protocol that has sublinear overhead on
most nodes, but requires a few nodes present in the net-
work to have Ω(N) storage and/or bandwidth. It is critical
to our ubiquitous networking goals, however, that these

Figure 3: Forwarding via Virtual Links

“supernodes” do not need to be hard-wired as such. Any
node must be able to take on that role dynamically when-
ever supernodes are needed and the surrounding network
is small enough. While Joe’s laptop and PDA are con-
nected to the Internet, for example, their ability to route
to distant edge nodes might depend on a massive central
server somewhere that continuously maintains a complete
map of the Internet. If Joe takes several network devices
with him into the mountains where there is no Internet ac-
cess, however, each device must be able to take on super-
node responsibilities as necessary to direct traffic within
any smaller ad-hoc network he may form. Joe’s laptop and
other small devices never need to map the entire Internet,
but only the smaller edge networks Joe may participate in
while disconnected from the Internet.

3.2.2 Converting DHTs into Routing Algorithms

We are experimenting with a scalable routing protocol
for UIP derived from the Kademlia distributed hash table
(DHT) [19]. This protocol, detailed elsewhere [9], empir-
ically achieves O(log N) storage and maintenance over-
head per node and an average stretch of 2 on simulated
networks. We have not yet formalized the algorithm or
derived theoretical performance properties, however.

DHTs normally implement only indexing and lookup,
relying on underlying protocols to provide connectivity
between all participants. Our protocol extends Kademlia
to function over any topology through the use of recur-
sive source routes, or virtual links. Once any two nodes
have connected and established a “neighbor” relationship,
ether node can use that relationship to build further neigh-
bor relationships recursively, covering longer topological
distances. In Figure 3, for example, node A uses physi-
cal links AB and BC to build a virtual link AC, thereby
establishing a neighbor relationship with C. Node A then
uses virtual link AC to build a recursive virtual link to C’s
physical neighbor D. Node D can now communicate with
node A via its physical link to C and C’s virtual link to
A, without having to know the details of the path between
C and A. Node D might not know about the existence of
node B at all. In this way the routing protocol abstracts
the details of routing at different levels, achieving an ef-

4



fect analogous to IP address aggregation without actually
depending on hierarchically assigned addresses.

A node n sorts its neighbors ni into buckets, according
to the longest common prefix length in bits between n’s
and ni’s identifier. To join the network, n needs a physi-
cal link to some existing node n1. Node n searches n1’s
neighbor table for another node n2 with a longer common
prefix, and builds a virtual link through n1 to n2. This
process continues until n finds the node with the closest
identifier to its own. If a suitable connectivity invariant is
maintained, every node in the resulting structure can find
and build a forwarding path to any other node on demand.

4 Implementation and Deployment

A UIP prototype is under development, which we look
forward to using and evaluating shortly. For portability,
the prototype runs as an application-level daemon, com-
municating with other nodes primarily over UDP. The
daemon can also directly utilize the link layers of some
systems if it has appropriate privileges. Multiple local
applications can share a single UIP daemon, interacting
through a proxy library that exports a standard sockets-
based interface. To simplify initial deployment of UIP, ap-
plications without special privileges can be bundled with
their own UIP daemon, which the application starts auto-
matically if a systemwide daemon is not available.

An immediate benefit of UIP is that it allows applica-
tions to establish secure, peer-to-peer connections through
NAT and firewall barriers without special effort, as long as
there are some widely-accessible UIP nodes on the Inter-
net through which the daemon can forward traffic if nec-
essary. The UIP daemon implements UDP hole punch-
ing [8] as an application-transparent optimization, utiliz-
ing widely-accessible UIP nodes as “introducers” to es-
tablish direct IP-based peer-to-peer communication paths
across many NATs and firewalls. The daemon falls back
to explicit forwarding whenever hole punching fails, en-
suring maximum robustness.

5 Related Work

UIP is a fusion of ideas from many projects. Like Re-
silient Overlay Networks [3], UIP introduces a routing
layer above IP that can route around discontinuities and
failures in the Internet, but UIP seeks to be scalable and
self-managing as well as resilient. Ad-hoc routing proto-
cols such as DSR [14] address the management problem
at the local level but are not scalable to Internet-wide ad-
hoc networks. Landmark [34] and AODV [24] offer scal-
ability under localized traffic patterns, but not under the
global traffic patterns of the Internet.

UIP node identities are similar to those of Moskowitz’s
proposed Host Identity Protocol [21], but UIP uses iden-
tities for routing as well as authentication. The Inter-
net Indirection Infrastructure (i3) [33] provides location-
independent host identities, multicast and anycast com-
munication, and NAT traversal, but does not implement a
general-purpose routing protocol that can function inde-
pendently from the Internet.

Many Internet host mobility solutions have been pro-
posed. Higher-level naming systems can provide appli-
cations independence from their host’s IP address [36, 2,
30], at the cost of tying applications to a particular naming
scheme and making it difficult to maintain connections
as the host moves [31]. Mobile IP [25] allows a mobile
host to roam without breaking outstanding TCP connec-
tions or UDP bindings, but requires each mobile host to
have a stable “home” IP address through which packets
are tunneled. A similar illusion of a static IP address can
be achieved with IP multicast [23, 12].

Work on peer-to-peer connectivity through firewalls
and NATs [13] has led to various special-purpose proto-
cols [17, 29, 35]. UDP hole punching [8] allows peer-to-
peer connectivity through many NATs, but not all, with-
out the use of explicit proxy protocols. Name-based rout-
ing [10] offers more general bridging of IP address do-
mains, but its ties to the management-heavy domain name
system make it unsuitable for ad-hoc networks.

6 Conclusion

Ubiquitous network computing will require an ad-hoc
routing protocol that can not only route autonomously
within small edge networks of hundreds or thousands of
nodes, but can seamlessly route among a large Internet-
connected federation of edge networks. The traditional
solution to scalability, hierarchical address assignment, is
unsuited to edge networks due to its management costs.
Scalable identity-based routing protocols appear feasi-
ble and represent a promising research direction, though
many practical technical problems remain unsolved. Be-
sides providing a key building block for ubiquitous net-
work computing, scalable identity-based routing may also
help address the more immediate problems of Internet
host mobility, NAT traversal, and bridging between IPv4,
IPv6, and other address domains.

Acknowledgments

I wish to thank my advisor Frans Kaashoek, my col-
leagues Dave Andersen and Chris Lesniewski-Laas, Prof.
David Karger, and the HotNets reviewers for many help-
ful comments and suggestions.

5



References
[1] J. Abley, B. Black, and V. Gill. Goals for IPv6 site-

multihoming architectures, August 2003. RFC 3582.

[2] William Adjie-Winoto et al. The design and implementa-
tion of an intentional naming system. In 17th ACM Sympo-
sium on Operating System Principles, Kiawah Island, SC,
December 1999.

[3] David G. Andersen et al. Resilient overlay networks. In
18th ACM Symposium on Operating Systems Principles,
Banff, Canada, October 2001.

[4] Marta Arias et al. Compact routing with name indepen-
dence. In 15th ACM Symposium on Parallelism in Algo-
rithms and Architectures, San Diego, CA, June 2003.

[5] B. Carpenter, J. Crowcroft, and Y. Rekhter. IPv4 address
behaviour today, February 1997. RFC 2101.

[6] Microsoft Corporation. Plug and play networking with Mi-
crosoft automatic private IP addressing, March 1998.

[7] R. Droms. Dynamic host configuration protocol, March
1997. RFC 2131.

[8] Bryan Ford. Peer-to-peer (P2P) communication
across middleboxes, October 2003. Internet Draft
draft-ford-midcom-p2p-01.txt (Work in
Progress).

[9] Bryan Ford. Scalable Internet routing on topology-
independent node identities. Technical Report MIT-LCS-
TR-926, MIT Laboratory for Computer Science, 2003.
Forthcoming.

[10] M. Gritter and D. R. Cheriton. An architecture for content
routing support in the Internet. In Usenix Symposium on
Internet Technologies and Systems, March 2001.

[11] C. Hedrick. Routing information protocol, June 1988. RFC
1058.

[12] Ahmed Helmy. A multicast-based protocol for IP mobility
support. In Networked Group Communication, pages 49–
58, 2000.

[13] M. Holdrege and P. Srisuresh. Protocol complications with
the IP network address translator, January 2001. RFC
3027.

[14] David B. Johnson. Routing in ad hoc networks of mobile
hosts. In IEEE Workshop on Mobile Computing Systems
and Applications, pages 158–163, December 1994.

[15] L. R. Ford Jr. and D. R. Fulkerson. Flows in Networks.
Princeton University Press, Princeton N.J., 1962.

[16] S. Kent and R. Atkinson. Security architecture for the In-
ternet Protocol, November 1998. RFC 2401.

[17] M. Leech et al. SOCKS protocol version 5, March 1996.
RFC 1928.

[18] J.C.R. Licklider. The computer as a communication de-
vice. Science and Technology, April 1968.

[19] Petar Maymounkov and David Mazières. Kademlia: A
peer-to-peer information system based on the XOR met-
ric. In 1st International Workshop on Peer-to-Peer Sys-
tems, March 2002.

[20] David Mazières, Michael Kaminsky, M. Frans Kaashoek,
and Emmett Witchel. Separating key management from
file system security. In 17th ACM Symposium on Oper-
ating Systems Principles, Kiawah Island, South Carolina,
December 1999.

[21] R. Moskowitz and P. Nikander. Host identity protocol ar-
chitecture, April 2003. Internet-Draft (Work in Progress).

[22] J. Moy. OSPF version 2, July 1991. RFC 1247.

[23] Jayanth Mysore and Vaduvur Bharghavan. A new
multicasting-based architecture for Internet host mobility.
In Third ACM/IEEE International Conference on Mobile
Computing and Networking, pages 161–172, 1997.

[24] Charles E. Perkins and Elizabeth M. Belding-Royer. Ad
hoc on-demand distance vector routing. In 2nd IEEE
Workshop on Mobile Computing Systems and Applica-
tions, pages 90–100, New Orleans, LA, February 1999.

[25] C. Perkins, Editor. IP mobility support for IPv4, August
2002. RFC 3344.

[26] Y. Rekhter and T. Li (editors). An architecture for IP ad-
dress allocation with CIDR, September 1993. RFC 1518.

[27] Y. Rekhter and T. Li (editors). A border gateway protocol
4 (BGP-4), March 1995. RFC 1771.

[28] Lawrence G. Roberts and Barry D. Wessler. Computer net-
work development to achieve resource sharing. In Spring
Joint Computer Conference, Atlantic City, New Jersey,
May 1970.

[29] J. Rosenberg, J. Weinberger, C. Huitema, and R. Mahy.
STUN - simple traversal of user datagram protocol (UDP)
through network address translators (NATs), March 2003.
RFC 3489.

[30] Alex C. Snoeren and Hari Balakrishnan. An end-to-end
approach to host mobility. In Sixth ACM/IEEE Interna-
tional Conference on Mobile Computing and Networking,
August 2000.

[31] Alex C. Snoeren, Hari Balakrishnan, and M. Frans
Kaashoek. Reconsidering Internet mobility. In 8th Work-
shop on Hot Topics in Operating Systems, May 2001.

[32] P. Srisuresh and K. Egevang. Traditional IP network ad-
dress translator (Traditional NAT), January 2001. RFC
3022.

[33] Ion Stoica et al. Internet indirection infrastructure. In ACM
SIGCOMM, 2002.

[34] Paul Francis Tsuchiya. The Landmark hierarchy: A new
hierarchy for routing in very large networks. In ACM SIG-
COMM, pages 35–42, Stanford, CA, August 1988.

[35] UPnP Forum. Internet gateway device (IGD) standard-
ized device control protocol V 1.0, November 2001.
http://www.upnp.org/.

[36] P. Vixie, Editor, S. Thomson, Y. Rekhter, and J. Bound.
Dynamic updates in the domain name system (DNS UP-
DATE), April 1997. RFC 2136.

6


