User-Relative Names for Globally Connected Personal Devices

Bryan Ford, Jacob Strauss, Chris Lesniewski-Laas, Sean Rhea, Frans Kaashoek, Robert Morris

Massachusetts Institute of Technology

IPTPS February 28, 2006

Local Device Connectivity: Easy

Want to trade files while waiting for a flight

Remote Connectivity: Hard

Bob's laptop

Remote Connectivity: Hard

Today Alice could:

Bol

- 1. Register for a globally unique DNS name alice576-pda.homeip.net
- 2. Set up dynamic DNS daemon (or MobileIP)
- 3. Tell Bob about Alice's pda's DNS name
- 4. Configure NATs to allow incoming connections
- 5. Repeat each step for each device
- 6. Ignore security concerns
- 7. http://alice576-pda.homeip.net/presentation/

Too many steps

Other approaches

- Local discovery Bonjour
- Bluetooth
- IPv6
 - Large addresses
- Mobile IP
 - Dynamically change IP address, home agent
- HIP
 - Public keys as addresses
- DNSSEC with updates
 - Tell DNS to update IP address
- SDSI
 - User defined names and delegation

Partial solutions requiring more configuration!

Remote Connectivity: Hard

Bob's laptop

Solution: User Information Architecture (UIA)

Talk Outline

- Key Concepts of UIA
- Naming System Design
- Prototype
- Conclusions & Future Work

Four Key Concepts in UIA

- Local Introduction—Remote Access
- Personal Device Clusters
- Ad-Hoc Naming—Social Networks
- Routing via Opportunistic Rendezvous

Local Introduction—Remote Access

- 1. Alice introduces devices at home
 - Each device's key is its EID [HIP, SFS]
 - Exchange keys, assign names
- 2. Alice takes camera on trip
 - Uploads images to desktop at home
 - Have name for peer, can authenticate it

Personal Device Clusters

- Alice gets a new PDA, introduces to camera
 - Exchange keys, assign names
- Devices gossip known names, keys, etc.
 - Desktop learns about PDA from camera
 - And vice-versa
 - Future changes on one device propagate to others
- O(n) not O(n^2) introductions

Ad-Hoc Naming—Social Networks

- Users name their friends' clusters
 - Bob names Alice's devices via suffix ".alice"
 - E.g. "camera.alice", "pda.alice", "desktop.alice"
 - And vice versa: "laptop.bob", "pda.bob"
- Mechanism is still physical introduction

Routing via Opportunistic Rendezvous

- PDAs have moved, both now behind different NATs
 Each reconnect to previous neighbors (if available)
- Use scoped flooding to find each other
 - Leverages stable hosts as rendezvous points (desktop)
 - Use desktop to forward packets or punch holes in NATs
 - Unlike Mobile IP, no need to configure a home agent

Talk Outline

- Key Concepts of UIA
- Naming System Design
- Prototype
- Conclusions & Future Work

Naming Challenges

- Strong Bindings, User Relative
 Analogy: Cell phone address book
- Make each change on only one device
 System automatically propagates to others
- Support Partitioned Operation
 - Resolution doesn't depend on full connectivity

Naming System Outline

- Each device has a public/private key
 - Goal is to map human-readable name to key
- Devices store namespace changes in append-only local log
 - Ex: Alice's PDA has key ID:1234...
 - Ex: merge local namespace with key ID:4321...
- Locally Replicate other devices' logs
 - Resolve Names by consulting own log and local replicas

Example: Alice Introduces Camera and PC

Example: Alice Introduces Camera and PC

After Introduction and Gossip

Result: treat each others namespace as equal

Example 2: Social Network Links

Example 2: Social Network Links

Replicate Neighbor Records

Result: use names with suffix ".bob"

Talk Outline

- Key Concepts of UIA
- Naming System Design
- Prototype
- Conclusions & Future Work

UIA prototype

- Runs on Linux and OS X
- Routing
 - EID is hash of public key
 - Send(message, EID)
 - Message = Recv()
- Naming
 - Merge(other device)
 - Link(friend's device, my name for friend)
 - EID = resolve("name")

UIA prototype

- Supports legacy interfaces
 - Embed EIDs into IPv6 addresses
 - Intercept packets via tun device
 - UIA nicknames as DNS entries
 - Intercept and resolve via local proxy
 - Works with unmodified apache, ssh, firefox

Future Directions

- Scalability vs Robustness tradeoffs
 - How far to gossip?
 - How many devices to find a stable rendezvous?
- Authorization and Access Control
 - Can *.Bob use my printer?
 - Deny packets from devices I cannot name?
- Privacy
 - Separate family names from work names

Summary

- UIA simplifies personal device connectivity
 - Local introduction is root of all trust
 - Names are user-relative
 - Updates entered anywhere -- no master device
 - No NAT wrangling
 - No explicit key management