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ABSTRACT

Users have tens to hundreds of accounts with web services that store sensitive data, from social

media to tax preparation and e-commerce sites. While users have the right to delete their data

(via e.g., the GDPR or CCPA), more nuanced data controls often don’t exist. For example, a user

might wish to hide and protect their profiles on an e-commerce or dating app when inactive,

and to recover their accounts should they return to the application. However, services often

provide only coarse-grained tools that result in all-or-nothing exposure of users’ private data.

This thesis introduces the notion of disguised data, a reversible state in which sensitive data

is hidden. To demonstrate the feasibility of disguised data, this thesis also presents Edna—the

first system for disguised data—which helps database-backed web applications provide new

privacy features for users, such as removing their data without permanently losing their ac-

counts, anonymizing their old data, and selectively dissociating personal data from public pro-

files. Edna helps developers support these features while maintaining application functionality

and referential integrity in the database via disguising and revealing transformations. Disguis-

ing selectively renders user data inaccessible via encryption, and revealing restores their data

to the application. Edna’s techniques allow transformations to compose in any order, e.g., to

delete a previously anonymized account, or restore an account back to an anonymized state.

With Edna, web applications can enable flexible privacy features with reasonable developer

effort and moderate performance impact on application operation throughput. In the Lobsters

social media application—a 160k LoC web application with >16k users—adding Edna and its

features takes <1k LoC, and decreases throughput 1–7% in the common case. Edna decreases

throughput up to 28% when a heavy user who owns 1% of all application data continuously

disguises and reveals their account.
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Thesis supervisor: Malte Schwarzkopf

Title: Assistant Professor of Computer Science, Brown University
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Chapter 1

Introduction

Users have tens to hundreds of accounts with web services that store sensitive data, from

social media to tax preparation and e-commerce sites [11, 28, 67]. While users have the

right to delete their data (via e.g., the GDPR [27] or CCPA [10]), more nuanced data controls

often don’t exist. For example, a user might wish to hide and protect their profiles on an e-

commerce or dating app when inactive, and to recover their accounts should they return to

use the application. However, services often provide only coarse-grained, blunt tools such as

permanent account deletion that result in all-or-nothing exposure of users’ private data

This thesis introduces the notion of disguised data for flexible data privacy. Disguised data

is a reversible state of data in which sensitive data is selectively hidden. To demonstrate the

feasibility of disguised data, this thesis also presents Edna—the first system for disguised data—

which helps database-backed web applications allow users to remove their data without per-

manently losing their accounts, anonymize their old data, and selectively dissociate personal

data from public profiles. Edna lets developers support these features while maintaining ap-

plication functionality and referential integrity via disguising and revealing transformations.

Disguising selectively renders user data inaccessible via encryption, and revealing enables the

user to restore their data to the application.

This chapter motivates the need for data disguising for flexible privacy; describes the chal-

lenges in disguising and revealing data; introduces our approach to achieve data disguising;

and summarizes the contributions of this thesis.

1.1 Motivation

User today lack fine-grained controls over their personal data stored by web applications. Con-

sider Twitter: after a change in management [17], many users wanted to leave the platform

and try out alternatives (e.g., Mastodon [47]). But each user faced a tricky question: should

13



they keep their Twitter account, or should they delete it? Advice on how to quit Twitter [5, 48]
highlight how keeping an inactive account leaves sensitive information (e.g., private messages)

vulnerable on Twitter’s servers; but deleting the account prevents the user from changing their

mind and coming back, causing them to permanently lose all their followers and content.

Hence, many users left Twitter but kept their accounts [4, 52, 60]. A better solution would let

users temporarily revoke Twitter’s access to their data while having the option to come back.

Similarly, users give dating apps personal data, and frequently deactivate and reactivate

their accounts. This sensitive data should be protected from the application and potential data

breaches [23, 51] when a user deactivates their account, but be readily available when they

choose to return.

Users may also prefer old data, such as past purchases in an online store or their passport

details with a hotel, to be inaccessible to the service after some time of inactivity, and there-

fore protected from leaks or service compromises [56, 69]. Or users may prefer to—explicitly

or automatically—dissociate their identity from old data, such as teenage social media posts

or old reviews on HotCRP [40]. Today, users work around the lack of such support by ex-

plicitly maintaining multiple identities (e.g., Reddit throwaway accounts [55] and Instagram

“finstas” [76]), an inflexible and laborious solution.

Providing this fine-grained privacy functionality can benefit both the service and the user.

It helps the service comply with privacy regulations, reduces its liability for data breaches, and

appeals to privacy-conscious users; meanwhile, the user can rest assured that their privacy is

protected, but can also get their data back and reveal their association with it if they want.

1.2 Disguised Data: A New Abstraction for Flexible Privacy

This desired flexible privacy functionality describes an in-between state of users data in web

applications. The data is not quite gone, because a user can return to the application and

restore their data; but the user data is also not quite there, because some or all of it has been

removed or made inaccessible to the application.

To capture this new state, this thesis introduces the new abstraction of disguised data. Dis-

guised data represents a state of data where (i) some or all of the user’s original sensitive data

is rendered inaccessible to the application; (ii) some data may be replaced with placeholders to

keep the application structure intact (e.g., placeholder parent comments to maintain comment

thread structure); and (iii) the data can be restored with the user’s authorization.

Systems for disguised data move closer to an Internet where users can leave services and

return at any time, where old data on servers is protected by default, and where services provide

users with control over their identifying data visible to the service and other users.

14



1.3 Challenges

Today, disguised data for flexible privacy remains out of reach for users of web applications in

part because getting it right is hard for application developers. In particular, developers face

four main challenges.

First, real applications store their data in databases with complex schemas and support

various forms of data privacy, ownership, and sharing. Simple solutions that might try to

delete all data associated with a user can create orphaned data or break referential integrity

(the invariant that if a table row references another row via a foreign key, the referenced row

must exist). In order to resolve these problems, developers must change the application to

handle these situations and maintain correctness. These solutions also lack support for users

to return. Solving this manually requires a developer to carefully perform application-specific

database changes to remove data, store any data removed to be able to later restore it, and

correctly revert the database changes on restoring.

Second, to manually realize disguised data, developers must reason about interactions be-

tween multiple data-redacting features and how these features compose. For example, imagine

an application that supports both account deletion and anonymizing old data: if a user wants

to delete all their posts after they have been anonymized, a SQL query must somehow deter-

mine which anonymized posts belong to the user in order to remove them. And if the user

later wants to return and restore their posts, the developer must restore the user’s posts as

anonymized, since the anonymization has not yet been revealed.

Third, disguised data should be protected against data breaches, but accessible if the user

chooses to return. A developer thus cannot keep (plaintext) disguised data in the application

database; but also cannot entirely delete the disguised data (as a user could thus never restore

it). The developer also needs to provide user-friendly ways for users to prove their ownership

of the stored data.

Fourth, application databases often undergo global updates such as schema migrations and

data transformations like content reformatting. These updates must also affect any data dis-

guised at the time, but the developer cannot apply them immediately to the disguised data

because it remains inaccessible to the application and developer until revealed. In order to

restore disguised data correctly, the developer must apply updates to disguised data in chrono-

logical order when a user reveals it. For example, a schema migration could transform one row

representing a post into two rows in two tables. If a user requests to reveal a post disguised

prior to the migration, the developer must remember and apply the schema migration update

to the post before restoring it.

15



1.4 Our Approach

To realize disguised data, we present a general system that helps developers specify and apply

two kinds of transformations: disguising transformations, which move the user’s data into a dis-

guised state; and revealing transformations, which restore the original data at a user’s request.

Disguising transformations aim to protect the confidentiality of users’ disguised data (e.g., links

to throwaway accounts or old HotCRP reviews) even if the application is later compromised

(e.g., via a SQL injection or a compromised admin’s account). Only the user can invoke reveal-

ing transformations on their disguised data to authorize the application to restore it.

We demonstrate our approach in Edna, a system that realizes disguising and revealing

transformations for database-backed web applications via a small set of primitives that compose

cleanly. Developers specify the transformations that their application should provide, and Edna

takes care of correctly applying, composing, and optionally reverting them, while maintaining

application functionality and referential integrity.

Edna’s approach faces three challenges. First, Edna needs to present a simple, yet versatile

interface for developers to specify disguising transformations. Edna addresses this challenge

with a restricted programming model centered around three primitives: remove, modify, and

decorrelate (which reassigns data to placeholder users). This model limits the potential for

developer error, and lets Edna derive the correct disguising and revealing operations, while

supporting a wide range of transformations.

Second, to work with existing applications in practice, Edna’s disguising transformations

should require minimal application modifications. To achieve this, Edna introduces pseudo-

principals, anonymous placeholder users that Edna inserts into the database on disguising and

exist solely to own data decorrelated from real users and maintain referential integrity. Pseu-

doprincipals can also act as built-in “throwaway accounts,” as they let the user disown data

after-the-fact, as well as potentially later reassociate with it. To correctly reason about owner-

ship when data may be decorrelated multiple times (e.g., by global anonymization after throw-

aways have been created), Edna maintains an encrypted speaks-for chain of pseudoprincipals

that only the original user can unlock and modify.

Third, Edna needs to have access to the original data for users to be able to reveal their

data and return to the application, but the whole point is to make that data inaccessible to the

service. While Edna could ask users to store their own disguised data, this would be burden-

some. Instead, Edna stores the disguised data on the server in encrypted form as diff records,

and unlocks and restores data to the service only when a user provides their reveal credentials

(e.g., a password or a private key).
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1.5 Contributions

The main contribution of this thesis is the identification and exploration of disguised data for

flexible user data privacy in web applications. As part of this, this thesis contributes:

1. The abstraction of data disguising via disguising and revealing transformations, including

disguise specifications written with a small, composable set of data-anonymizing prim-

itives (remove, modify, and decorrelate to pseudoprincipals), and reveal credentials to

allow users to reveal their data (Ch. 4).

2. A design for Edna that realizes disguised data for web applications, based on techniques

such as diff records, speaks-for chains, and reveal-time update specifications (Ch. 5).

3. A prototype Rust library implementing Edna for MySQL-backed web applications that

implements user data control via disguising and revealing (Ch. 6).

4. Case studies that integrate Edna with three real-world web applications and demonstrate

Edna’s ability to enable composable and reversible transformations (Ch. 7).

5. An evaluation of Edna’s effectiveness and performance, including how Edna contrasts

with and complements related work (Qapla [49] and CryptDB [57]) (Ch. 8).

While disguised data can help developers add more flexible user data controls, the abstrac-

tion and its implementation in Edna have limitations. First, disguised data is a concept scoped

for single applications, and does not tackle the problem of data sharing between services.

Edna also assumes bug-free disguise specifications, and that applications use Edna correctly.

Furthermore, Edna does not aim to protect undisguised data in the database against compro-

mise; combining Edna with an encrypted database can add this protection. Finally, attacks

to identify users from Edna’s metadata (e.g., the size of stored disguised data) or placeholder

data left in the database (e.g., embedded text) are out of scope.

The Edna prototype is open-source at https://github.com/tslilyai/edna.

1.6 Related Publications

This thesis expands upon work previously covered in two peer-reviewed publications:

• Lillian Tsai, Malte Schwarzkopf, and Eddie Kohler. “Privacy Heroes Need Data Disguises”.

In: Proceedings of the Workshop on Hot Topics in Operating Systems. HotOS ’21. Ann Arbor,

Michigan: Association for Computing Machinery, 2021, pages 112–118
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• Lillian Tsai, Hannah Gross, Eddie Kohler, Frans Kaashoek, and Malte Schwarzkopf. “Edna:

Disguising and Revealing User Data in Web Applications”. In: Proceedings of the 29th Sym-

posium on Operating Systems Principles. SOSP ’23. Koblenz, Germany: Association for

Computing Machinery, 2023, pages 434–450
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Chapter 2

Related Work

Edna addresses the problem of disguised data for flexible data privacy in web applications.

Existing systems aim to support data deletion, prevent unauthorized data access, or protect

against database server compromise, which are valuable, but complementary goals.

2.1 Compliance Tools

Compliance tools such as K9db [20] and GDPRizer [1] help correctly extract or delete data

in response to compliance-related requests. These tools include systems to support wholesale

user data extraction or deletion by tracking data ownership by modifying the data layout [20,

65], tracking information flow [42], or changing the storage hardware [37].
Tools like DELF at Meta [16] focus on the related problem of data deletion, letting devel-

opers specify deletion policies via annotations on social graph edges and object types. DELF

ensures correct cascading data deletion, both for compliance-related data deletion requests

and for normal application deletions.

While one of the uses of disguising data is to provide GDPR-compliant account deletion,

disguising also supports more nuanced use cases beyond simple deletion. For example, Edna

allows users to return after deletion, hides old data for inactive users, or hides some but not

all data so the user can continue using the application.

2.2 Policy Enforcement Systems

Policy enforcement systems aim to prevent unauthorized access to data and protect against

leakage via compromised accounts or SQL injections. These systems enforce developer-specified

visibility and access control policies via information flow control [15, 30, 35, 63, 78], autho-
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rized views [8], per-user views [46], or by blocking or rewriting database queries [49, 54, 80].
For example, a policy for a relational database-backed application may allow the session user U

to access account information only if the predicate "WHERE accounts.user_id = U" returns

true; this prevents an attacker who injects a "SELECT * FROM accounts" query from reading

any user accounts other than their own.

Policy-enforcing systems do not help users anonymize data or maintain application integrity

constraints, which is the explicit goal with disguised data. Data disguising systems modify

the database contents of sensitive data—the data under disguise—so the data is no longer

available in the database, and thus unavailable even to the service itself. This is unlike policy

enforcement systems, which can deny access to sensitive data, but still retain it in the database.

2.3 Encrypted Storage Systems

Encrypted storage systems such as CryptDB [57] and Mylar [58] protect against database server

compromise, with some limitations [33]. These systems encrypt data in the database, and en-

sure that only users with access to the right keys can decrypt the data. Applications must handle

keys, and send queries either through trusted proxies that decrypt data [57], or move applica-

tion functionality client-side [58]. Encrypted databases have orthogonal goals to systems for

disguised data: while they protect data at all times against attackers who do not have the keys,

encrypted databases do not help applications protect against data access by the service itself,

or by legitimate, authenticated users. Any user with legitimate access can view the data in an

encrypted database, whereas disguised data is removed from the database and inaccessible to

all users and the application without permission from the data’s owner.

2.4 Other Related Work

Other work has also focused on protecting user data and giving users more control over their

data’s exposure. These systems differ from Edna in the specific problem they aim to solve,

the threat model against which they protect, and how they can be deployed with applications

today.

Some platforms focus on enforcing user-defined policies, instead of the developer-defined

policies that Edna supports. They prove that server-side processing respects user-defined data

policies via cryptographic means [9] or systems security mechanisms [75]. However, this

may restrict feasible application functionality (e.g., to additively homomorphic functions, as in

Zeph [9]), or restrict combining data with different policies, and requires modifying and rede-

ploying existing applications. For example, Riverbed [75] requires applications to run proxies
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on both client and server, allowing the client proxy to attest that the server indeed runs the

correct proxy. Furthermore, users in Riverbed who define different policies cannot easily share

data with random other users at will, and aggregations over many users’ data become difficult.

Systems like Pesos [41], Ironsafe [74], and Ryoan [36] use trusted execution environments

to protect all user data and computation on this data against untrusted storage platforms.

Ryoan also runs data processing applications as sandboxed modules within TEEs, thus protect-

ing user data against untrusted applications in addition to untrusted platforms. By contrast,

Edna protects only disguised data from the application and database server, and trusts devel-

opers to be well-intentioned when writing disguise specifications.

Decentralized platforms such as Solid [62], BSTORE [14], Databox [50], and others [2,

12, 13, 43, 53] put data directly under user control, since users store their own data. But

decentralized platforms burden users with maintaining infrastructure, lack the capacity for

server-side compute, and break today’s ad-based business model. By contrast, Edna leaves the

application data model and business model unchanged, and stores all data, including disguised

data, on the application’s servers.

Devices using iOS [3], Android [3], or CleanOS [68] revoke data access via encryption,

like Edna does. However, these systems operate in settings that store only a single user’s data;

disguised data applies in settings that include multiple users’ data and shared data.

Vanish [29] provides users with self-destructing data and a proof of data deletion using

decentralized infrastructure and cryptographic techniques (with limitations against Sybil at-

tacks [77]). Unlike Edna, Vanish cannot restore deleted data and requires substantial appli-

cation restructuring to deploy (e.g., the application must run a Vanish daemon, be aware of

which objects are “vanishing objects,” and store and access protected data as key-value pairs

instead of objects of other data structures).

Sypse [24] pseudonymizes user data and partitions personally identifying information (PII)

from other data. Instead of partitioning data, Edna modifies the database and stores encrypted

disguised data.

Finally, oblivious object stores like Dory [22], Snoopy [21] and Obladi [19] protect data

and search access patterns against powerful adversaries who can, for example, compromise

the entire cloud software stack and view metadata like network traffic and access patterns.

To provide strong security, these systems rely on complex encryption schemes, oblivious RAM,

hardware enclaves, or other cryptographic techniques. However, oblivious object stores sup-

port only data retrieval and simple queries (e.g., key/value point queries), and expect clients

to perform most computations on data. By contrast, Edna supports arbitrary server-side pro-

cessing of undisguised data, which most applications today require.
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Chapter 3

Edna Overview

This section introduces the concept of disguised data by describing how developers and users

interact with an application that supports data disguising and data revealing.

Edna helps developers realize new options for users to control their data via disguising

transformations and revealing transformations. As Figure 3.1 shows, a developer integrates an

application with Edna by writing disguise specifications and adding hooks to disguise or reveal

data using Edna’s API (§4.2). To use Edna, an application does the following:

(1) The application registers users with a public–private keypair that either the application

or the user’s client generates. Edna stores the public key in its database, while the user

retains the private key for use in future reveal operations.

(2) When the application wants to disguise some data, it invokes Edna with the correspond-

ing developer-provided disguise specification and any necessary parameters (such as a

user ID). Disguise specifications can remove data, modify data (replacing some or all of

its contents with placeholder values), or decorrelate data, replacing links to users with

links to pseudoprincipals (fake users generated as application users with random IDs).

Edna takes the data it removed or replaced and the connections between the user and

any pseudoprincipals it created, encrypts that data with the user’s public key, and stores

the resulting ciphertext—the disguised data—such that it cannot be linked back to the

user without the user’s private key.

(3) When a user wishes to reveal their disguised data, they pass credentials to the application,

which calls into Edna to reveal the data. Credentials are application-specific: users may

either provide their private key or other credentials sufficient for Edna to re-derive the

private key. Edna reads the disguised data and decrypts it, undoing the changes to the

application database that disguising introduced.
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Figure 3.1: Developers write disguise specifications and add hooks to invoke Edna from the
application (green); in normal operation, clients use these hooks in the application to disguise
and reveal their data in the database (blue).

def tag_anon
# instantiate the disguise spec with the provided tag to anonymize
disg_spec = edna.instantiate_spec("tag_anon.json",params[:tag])
# apply the disguising transformation
disg_id = edna.apply_disguise(@user.id,params[:passwd],disg_spec)
# email the disguise ID to the user to allow revealing
SendDisguiseEmail(@user, disg_id)

end

Figure 3.2: The Lobsters developer adds a hook in the UI and code to perform topic-based
anonymization.

3.1 Example: Lobsters Topic Anonymization

We illustrate how Edna’s API and disguise specifications work via a disguising transforma-

tion for Lobsters [44]. Lobsters is a link-sharing and discussion platform with 17.1k users. Its

database schema consists of stories, tags on stories, comments, votes, private messages, user

accounts, and other user-associated metadata. Users create accounts, submit URLs as stories,

and interact with other users and their posted stories via comment threads and votes.

Consider topic-based anonymization, a privacy feature that allows users to hide their in-

terest in a topic (a “tag” in Lobsters) by decorrelating their comments and removing their votes

on stories with that tag. For instance, a Lobsters user Bea who posts about their interests—

Rust, static analysis, and Star Wars—might want to hide associations with Star Wars before
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// Decorrelate comments on stories w/tag {{TAG}}
"comments": [{
"type": "Decorrelate",
"predicate": "tags.tag = {{TAG}}",
"from": "comments JOIN stories ON comments.story_id = stories.id

JOIN taggings ON stories.id = taggings.story_id
JOIN tags ON...",

// decorrelate -specific fields
"group_by": "comments.story_id",
"principal_fk": "comments.user_id" } ],

// Remove votes on stories w/tag {{TAG}}
"votes": [{
"type": "Remove",
"predicate": "tags.tag = {{TAG}}",
"from": "votes JOIN stories...",

}, ... ]

Figure 3.3: Lobsters topic-based anonymization disguise specification (JSON pseudocode),
which decorrelates comments and removes votes on stories with the specific topic tag.

sharing their profile with potential employers. This is currently not possible in Lobsters.

The Lobsters developer can realize topic-based anonymization as a disguising transforma-

tion. First, the developer writes a disguise specification that instructs Edna to decorrelate

comments and remove votes on “Star Wars” stories (Figure 3.3). They also add frontend code

and UI elements that allow authenticated users to trigger the disguising transformation (Fig-

ure 3.2). When Bea wants to anonymize their contributions on content tagged “Star Wars,”

Lobsters invokes Edna with the provided specification.

Later, if Bea asks Lobsters to deanonymize their “Star Wars” contributions, Lobsters invokes

Edna with Bea’s reveal credentials and the disguise ID, and Edna reveals Bea’s associations with

“Star Wars” posts.

3.2 Disguise Specifications

Edna’s goal is for developers to reason only about the high-level semantics of disguising

expressed in the disguise specification. Edna takes care of applying disguise transformations,

composing them with other disguising and revealing transformations, and creating and storing

disguised data.

Disguise specifications tell Edna what application data objects to disguise and how to dis-

guise them. A disguise specification (Figure 3.3) identifies objects to disguise by database table

name and predicate, where a predicate is a SQL WHERE clause. By default, Edna disguises all

objects with a foreign-key relationship to the principal being disguised1, but predicates can

1A principal refers to an application object representing a user (e.g., a row in a users table). This thesis uses
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narrow the transformation’s scope (e.g., to stories with specific tags). For each selected group

of objects, developers choose to remove, modify, or decorrelate them (§4.3).

The example specification in Figure 3.3 decorrelates all comments and removes all votes

on stories with a particular tag, specified by the TAG parameter provided at invocation time.

The specified foreign key (”principal_fk”) for decorrelation of comments tells Edna which

foreign key to the principals table to rewrite. Decorrelation can use pseudoprincipals at differ-

ent granularities. In the extreme, the disguise specification may tell Edna to create a unique

pseudoprincipal for each decorrelated application object. In our example, however, all com-

ments by the same user on the same story decorrelate to the same pseudoprincipal by setting

"group_by": "comments.story_id": for all comments with the same "stories_id" value,

Edna will rewrite "pseudoprincipal_fk" to the same pseudoprincipal identifier. This allows

the application to keep same-story comment threads intact. §4.3 describes the semantics of

disguise specifications in more detail.

3.3 User Reveal Credentials

Edna provides developers and users with the abstraction of reveal credentials, which users pro-

vide to the application to authorize revealing their data. Reveal credentials allow applications

that use Edna to support familiar user authentication workflows when users want to reveal

their disguised data.

Edna supports two forms of reveal credentials that developers can choose from, depending

on application needs: (i) the user’s private key itself; or (ii) the user’s application password or

a recovery token (in case they forget their password), either of which Edna can use to rederive

the private key. In the Lobsters example, Edna rederives the user’s private key using their

password. Password or keypair changes require an application to re-register the user with

Edna, which generates new recovery tokens and re-encrypts the user’s disguised data.

3.4 Global Database Updates

Web application databases often undergo global updates initiated by an admin or developer,

like schema changes or global content changes (e.g., normalizing URLs of all stories). However,

developer updates to the database will fail to apply to any disguised data at the time. A naive

reveal algorithm might incorrectly overwrite these updates. To ensure updates are applied to

“principal” to mean either an application object representing a real application client user, or a pseudoprincipal
(a fake application user).
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revealed data, the developer must inform Edna about the update so Edna can apply the update

to the disguised data when revealing it.

When a database update is performed, the developer writes a corresponding reveal-time

update specification that captures the effects of the operation and invokes Edna’s API with the

update specification (§4.2.5). Edna stores these update specifications in an update replay log

that Edna reads upon reveal in order to apply updates to disguised data before revealing it.

3.5 Guarantees and Threat Model

Edna protects the confidentiality of disguised data between the time when a user disguises their

data and the time when they reveal it. During this period, Edna ensures that the application

can neither learn the contents of disguised data, nor what disguised data corresponds to which

user, even if the application is compromised and an attacker dumps the database contents (e.g.,

via SQL injection). Edna encrypts disguised data, so its confidentiality stems from “crypto

shredding,” an approach based on the fact that ciphertexts are indistinguishable from garbage

data if the key material is unavailable [25, 31, 59, 70].2

We make standard assumptions about the security of cryptographic primitives: attackers

cannot break encryption, and keys stored with clients are safe. If a compromised application

obtains a user’s credentials, either because the user provides them to the application for reveal,

or via external means such as phishing, Edna provides no guarantees about the user’s current

or future disguised data. Edna also expects the application to protect backups created prior to

disguising. External copies of the data (e.g., Internet Archive or screenshots) are out of scope.

While Edna hides the contents of disguised data and relationships between disguised data

and users, it does not hide the existence of disguised data. (An attacker can see if a user has

disguised some data, but cannot see which disguised data corresponds to this user.) An attacker

can also see any data left in the database, such as pseudoprincipal data or embedded text. Edna

puts out of scope attacks that leverage this leftover data and metadata to infer which principal

originally owned which objects.

Edna’s choice of threat model and its limitations stem from Edna’s goal of practicality and

usability by existing applications. For example, decorrelation with pseudoprincipals removes

explicit user-content links, but leaves placeholder information in the database to avoid dangling

references. Similarly, leveraging server-side storage to hold disguised data leaves metadata

available to attackers, but avoids burdening users with data storage management. We believe

a stronger threat model would require greater modification of existing applications.

2Crypto shredding assumes sufficiently random key material; for usability, Edna allows users to either provide
a private key or their password as credentials, which weakens Edna’s guarantees.
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Chapter 4

Disguising and Revealing Semantics

This chapter describes informal high-level semantics that a developer can use to reason about

the resulting state of data after a disguise and reveal, and includes an overview of Edna’s API.

4.1 Disguising and Revealing

Developers can think about disguising transformations as removing and rewriting data in the

application database. The database starts at some original application state, and Edna alters

application data depending on the disguise specification (§4.3). The resulting state is changed

only by another disguise, by revealing the applied disguise, or by normal application updates.

Disguising already-disguised data only decreases the amount of information retained about

the original application data state. If prior disguises have transformed the original data, then

a future disguise has access only to the resulting application database state, and thus can only

further remove aspects of the original data state. Removed data cannot be disguised again.

Disguises may insert pseudoprincipals (anonymous users) into the application database

if the disguise’s specification includes a decorrelation, which rewrites references to point to

an anonymous pseudoprincipal instead of the original principal user. Only data decorrelated

from the same user, by the same disguise, and from the same table may refer to the same

pseudoprincipal. For example, a disguise can decorrelate all stories from topic “Star Wars”

written by Bea to the same pseudoprincipal (§4.4). Two different disguises always produce

disjoint sets of pseudoprincipals.

Edna applies disguises on behalf of either a single user or all users. However, only a user

can reveal a disguise on their data, and must provide a reveal credential to do so.

Revealing a disguise D reverts the data affected by D back to the pre-disguised state, except

in two cases. First, if disguises after D had decorrelated the same data as D, then the data

will refer to the last-unrevealed pseudoprincipal created by any disguise. Only when the user
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reveals all subsequent disguises does the data refer to its original owner prior to D. Second,

if a normal application update or a subsequent disguise has since changed the disguised data

(aside from decorrelations), then the data remains in its updated state and cannot be revealed.

Thus, when multiple disguises apply to the same data, the application data state reflects the

effects of all unrevealed disguises, as well as any disguises that Edna failed to reveal.

Revealed data will also reflect all global database updates (such as schema migrations)

registered by the developer since the time of disguise, applied in chronological order.

Edna without encryption. Some developers may find Edna’s threat model unnecessarily

strong: perhaps they do not worry about data breaches, are exempt from regulations like the

GDPR, or trust their application code to not expose disguised data. Instead, these developers

may want to add disguising and revealing without encryption. Removing encryption does not

change Edna’s disguising and revealing semantics described above. However, because the ap-

plication and Edna can still see plaintext disguised data, a user must now trust the application

to reveal their data only when requested. §4.2.6 describes how removing encryption would

change Edna’s API, and §5.9 describes how it would change Edna’s design.

4.2 API

Developers add disguising and revealing to their application via Edna’s API (Figure 4.1).

This section describes each API function and how developers would use them.

4.2.1 RegisterPrincipal

RegisterPrincipal registers an application user as a principal whose data can be disguised

and revealed. Unique users should be registered only once. Once registered, an undeleted

user’s data can always be disguised and revealed. Users deleted by a disguise do not need to

reregister if revealed.

RegisterPrincipal returns backup reveal credentials that the application should return

to the user client.

Argument Description

u the user’s unique identifier.

pw (Optional) the user’s password (later usable as a reveal credential).

pubkey (Optional) the user’s public key (used to encrypt the user’s disguised data).

privkey (Optional) the user’s private key (later usable as a reveal credential).
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// Registers u for disguising and returns u's reveal credentials
RegisterPrincipal(

u: UID,
pw: Option<Password >,
pubkey: Option<PublicKey >,
privkey: Option<PrivKey >)

-> RevealCredential;

// Disguises data according to the spec, optionally only for user u,
// and optionally over already-disguised data (§5.5)
DisguiseData(

u_opt: Option<UID>,
spec: DisguiseSpec ,
principal_gen: PrincipalGenerator ,
schema: Schema,
disguise_over: Option<RevealCredential >)

-> disguiseID;

// Reveals data disguised by d for u with u's username password.
RevealData(

u: UID,
cred: RevealCredential ,
d: disguiseID ,
pp_ref_policy: PseudoprincipalReferencePolicy ,
allow_partial_row_reveal: bool,
schema: Schema)

-> bool;

// Gets principals that u can speak-for.
CanSpeakFor(u: UID, cred: RevealCredential) -> Vec<UID>;

// Records a reveal-time update spec in the replay log.
RecordUpdate(update_spec: RevealTimeUpdateSpec) -> bool;

Figure 4.1: Edna’s API (Rust-like syntax).

RegisterPrincipal enables a user to disguise and later reveal their data. Edna offers

various options: users can use their password to reveal data, provide their own public–private

keypair, or ask Edna to generate a fresh keypair to disguise and reveal their data.

A user can choose whether they want to use their password as a reveal credential by pro-

viding their password to Edna. If the user does not also provide a public–private keypair, Edna

generates a fresh public–private keypair for the user. Edna saves the (generated or provided)

public key with the user’s identifier u, which Edna uses to later encrypt the user’s disguise data

when the user invokes a disguise, or when a privileged user like an admin applies a global

disguise to all users’ data.

Edna uses the password and (generated or provided) private key to store a password-pro-

tected private key and derive a backup reveal credential (§6.2). Edna returns the private key

and backup reveal credential to the user. Registration allows the user to provide their private
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key, their password, or their backup credential to unlock and reveal their disguised data.

If a user does not care for password-based or backup credentials, they can omit their pass-

word from the call to RegisterPrincipal (as Edna uses the password to derive a password-

protected private key). If they give Edna their public key, then Edna simply stores the public

key to later encrypt their disguised data. Otherwise, if pubkey = None, then Edna generates a

new keypair for the user, saves the public key, and returns the private key as reveal credentials

to the user. In this situation, a user can reveal their disguised data only with their private key.

After registration, Edna forgets the user’s private key and password, if provided.

4.2.2 DisguiseData

DisguiseData removes or rewrites application data according to the provided disguise specifi-

cation spec. The original data is encrypted and stored by Edna; a user must provide credentials

to a RevealData call in order to restore the data.

DisguiseData returns a unique disguise ID for the applied disguise, which the application

should forward to disguised users in case they wish to later reveal the disguise.1

Argument Description

u_opt
(Optional) The disguising user’s unique identifier if the disguise should

only apply to that user’s data.

spec A disguise specification (§4.3) provided by the developer.

principal_gen
A principal generator provided by the developer that describes how to

create a pseudoprincipal in the application.

schema
A database schema provided by the developer that specifies ownership

links from data tables to user tables via foreign key relationships.

disguise_over

(Optional) Reveal credentials provided by an invoking user (their pass-

word, private key, or backup token) if the disguise should apply to that

user’s already-disguised data.

Together, u_opt, spec, and schema inform Edna how to disguise data. If u_opt is Some(uid),

then only data to disguise with a foreign key to uid is disguised. This allows Edna to apply a

disguise to data of a specific user. If u_opt is None, the disguise applies to all users according

to the specification (§4.3). The disguise specification spec describes how to disguise data by

removing, modifying (replacing some or all of its contents with placeholder values), or decor-

relating, replacing links to users with links to pseudoprincipals. A schema with annotated
1For usability, the developer can abstract the disguise ID as, for example, an embedded parameter of a URL

that the user can click to reveal their disguise.
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foreign key relationships (schema) allows Edna to determine which data refers to which user

so that Edna can then decorrelate user references or filter by u_opt if necessary.

DisguiseDatamay insert pseudoprincipals (anonymous users) into the application database

if the spec includes a decorrelation—a rewriting of a foreign key to point to an anonymous

pseudoprincipal instead of the original principal user (§4.3). When this occurs, Edna uses

principal_gen to generate anonymous pseudoprincipals. The principal generator specifies,

for example, to create a principal with a random identifier, and email address.

Same-table data disguised within the same disguise that originally refers to the same user

may decorrelate and refer to (via a foreign key) the same pseudoprincipal. For example, all

decorrelated stories from topic “Star Wars” written by Bea may decorrelate to the same pseu-

doprincipal (§4.4). However, Edna decorrelates any two rows from two different tables to two

different pseudoprincipals, as well as any two rows referring to different users. Two differ-

ent disguises always produce disjoint sets of pseudoprincipals. This may be too restrictive for

some applications’ purposes: for example, an application may wish to decorrelate a story and

comments on the story made by the author to the same pseudoprincipal. Multi-table pseudo-

principals could be supported in a future Edna prototype with an extended API that can express

groupings of objects from different tables.

When prior disguises have applied, users may wish to disguise data that has already been

decorrelated (§4.5). Edna allows this via an optional reveal credential (disguise_over). If

disguise_over is Some(cred), u_optmust be Some(uid), and DisguiseData will use cred

and uid to disguise decorrelated data.

4.2.3 RevealData

RevealData restores data disguised by the disguise corresponding to the provided ID to the

database. Revealing the same disguise ID multiple times will do nothing after the first reveal.

RevealData returns true if Edna successfully reveals all rows disguised by d, and false

otherwise.

Argument Description

u The revealing user’s unique identifier.

cred
The revealing user’s reveal credentials (their password, private key, or

backup token).

d The identifier for the disguise to reveal.

pp_ref_policy
A pseudoprincipal reference policy provided by the developer

(RECORRELATE, DELETE, or RETAIN).
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allow_partial_

row_reveal

A developer-provided flag specifying whether Edna can restore only

some modified columns of a disguised row.

schema
A database schema provided by the developer that specifies ownership

links from data tables to user tables via foreign key relationships.

Edna identifies and accesses the disguised data to reveal using the user’s identifier u, their

reveal credentials cred, and the disguise identifier d. The developer again provides a schema

with annotated foreign key relationships (schema). This allows Edna to perform checks for

referential integrity prior to reveal (e.g., Edna will not restore removed data that introduces a

dangling reference) and recorrelate data from pseudoprincipals to their original owner.

Edna also requires the developer to specify a pseudoprincipal reference policy pp_ref_policy

because pseudoprincipals may acquire new references from application objects inserted after

the time of disguise—for example, a decorrelated comment might have new responses. To

ensure that revealing a decorrelate operation—which deletes pseudoprincipals—preserves ref-

erential integrity, developers inform Edna how to, during reveal, handle these objects added

after disguising that refer pseudoprincipals of the disguise.

Developers choose between three options for pseudoprincipal-referring objects: (i) change

the object’s reference to point to the original principal (RECORRELATE); (ii) delete the object

(DELETE); or (iii) continue referring to the pseudoprincipal (RETAIN). Figure 4.2 demonstrates

the result of each policy when revealing a story added to Bea’s pseudoprincipal after a decor-

relation disguise. This option applies to all rows to reveal; another choice of API could support

a menu of options, such as per-table checks and fixes (where the developer specifies per-table

policies) or per-inserted-object ones (where the developer makes application modifications to

log all added references to pseudoprincipals).

Edna uses the developer-provided allow_partial_row_reveal flag to determine whether

Edna can partially reveal a row (i.e., restore some modified columns even when unable to reveal

others). Partial row reveals occur because Edna only reveals a modified column if the current

column value of the row in the application database matches the value generated by the modify

operation during the disguise (§4.3). This stops Edna from overwriting application changes to

modified columns.

4.2.4 CanSpeakFor

CanSpeakFor lets an application allow a user u to prove to the application that they have the

authority to speak-for any principal stemming from a (potentially recursive) decorrelation of
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Bea
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Time
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Bea

Figure 4.2: After Bea decorrelates a story (red) to a pseudoprincipal, AnonFox, Bea or the
application may add new stories that reference AnonFox (yellow). When Bea reveals and
recorrelates to AnonFox, developers can choose to RECORRELATE, DELETE, or RETAIN any new
content (i.e., the yellow story) referring to AnonFox.

35



u. The application can then use this authorization to, for example, allow the user to edit their

pseudoprincipals’ data.

CanSpeakFor returns a list of all user IDs of principals that u can speak-for.

Argument Description

u The user’s unique identifier.

cred The user’s reveal credentials (their password, private key, or backup token).

Edna identifies and accesses all of u’s speaks-for records making up u’s speaks-for chain

using the user’s identifier u and their reveal credentials cred.

4.2.5 RecordUpdate

RecordUpdate enables a developer to update disguised data prior to revealing it, in order to

reflect global database changes (e.g., schema migrations) applied since the time of disguise.

Invoking RecordUpdate timestamps and logs a developer-provided update specification—a

data transformation function—to reflect a global update performed on undisguised data. All

updates since the time of disguise will be performed in chronological order on disguised data

prior to revealing it.

RecordUpdate returns true on successful recording in Edna’s log, and false on failure.

Argument Description

update_spec

a reveal-time update specification reflecting the data transformations

performed on table rows. The specification maps a set of table rows to

a set of updated table rows.

Edna expects update_spec to take a user’s disguised data rows and produce updated ver-

sions of disguised data rows. Oftentimes, these updates may be a subroutine of the global

database update. For example, if a developer wants to normalize all URLs in Lobsters stories,

they might first read all stories, then normalize the URL in each story individually, and finally

INSERT...UPDATE the normalized stories. An update specification given to Edna could just

capture the normalization step, producing normalized URL stories for the stories in a user’s

disguised data.

In other situations, no such subroutine of the global update exists because the global up-

date uses queries that apply to entire database tables instead of rows. In these scenarios, the

developer must write a separate update specification for updating disguised data rows. For
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example, Lobsters has a schema migration that adds a column to the users table. The global

update performs an ALTER TABLE query, while the update specification given to Edna receives

user rows without the column as input, and outputs user rows with the column.

Edna supports as update specifications any pure functions without side effects, and which

execute deterministically in their input (placeholder or disguised rows). For all other update

specifications, Edna assumes that any nondeterminism or side effects from performing the

update will maintain application correctness. As a result, Edna’s API cannot support some

types of updates. For example, consider a global update that calculates the current vote count

of a story and adds this value as a column attribute to the story row. This update depends on

vote rows present in the database. If a disguise has removed both a user’s story and its votes,

then upon reveal, Edna will maintain referential integrity by revealing disguised stories before

disguised votes. But when applying the vote count update during reveal of the story, Edna will

find 0 votes because the votes have not yet been restored. Edna supports this update only if

this 0-vote state counts as correct application behavior.

4.2.6 Edna’s API Without Encryption

A subset of Edna’s API suffices to provide the same semantics for disguises without encryp-

tion. Users do not need to register with Edna; applications can use normal user authentication

to authorize revealing; disguising already-disguised data no longer requires a user’s reveal

credentials; and reveal-time updates can be applied immediately to disguised data instead of

logged and applied at reveal time.

4.3 Disguise Specifications

Edna’s API requires a developer to provide a disguise specification when invoking DisguiseData,

which describes the effects of a disguise (and undone by a reveal). As previously shown in Fig-

ure 3.3, each specification operation consists of the disguise operation type, the database table

name, and a SQL WHERE predicate.

A disguise is invoked either automatically by the application, or by a specific user identified

by their user ID (u_opt = Some(uid)). If not invoked by a specific user, the disguise applies

to all data matching the disguise specification’s predicate. If a disguise is user-specific, then

Edna disguises only data that has a foreign key to that user’s identifier and matches the disguise

specification’s predicate. Invoking a disguise with u_opt = Some(uid) thus adds a condition

on a disjunction of "[fk_col] = [uid]" clauses for all foreign keys fk_col to the application’s

principals table. For example, a predicate of WHERE true to disguise all data of a table turns
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into WHERE true AND (author1 = uid OR author2 = uid).

Edna handles each disguise operation type as follows:

REMOVE(table, pred). A remove operation removes the entire row that matches the opera-

tion’s predicate. Developers should take care to handle referential integrity to removed rows, as

Edna will not cascade-delete referencing rows or introduce placeholders. (Developers should

instead use decorrelation to remove principal rows and replace them with pseudoprincipals).

A reveal of a remove operation will reinsert all removed rows, unless reinserting the row

will violate a primary key or uniqueness constraint of the application.

MODIFY(table, column, modification_pol, pred). A modify operation works at per-

column granularity, and requires developers to specify a modification policy for each column

to modify in addition to the table name and predicate. The modification policy informs Edna

how to generate new placeholder values for each column to modify using one of Edna’s value

generation policies. The current prototype supports constants (e.g., "removed"), random values

(e.g., a random email address), and values derived from the prior value (e.g., a redacted phone

number with only area code visible).

Revealing a modify operation restores a row’s column back to its state prior to the disguise

only if the current column value matches the value generated by the modify operation dur-

ing the disguise. This prevents a reveal from overwriting application changes to the column

value since the time of disguise. Some rows may thus end up partially revealed, with only

some modified columns restored back to the original pre-disguise state. Developers can set the

allow_partial_row_reveal flag to false when invoking RevealData to disable partial row

reveals. This will prevent Edna from revealing any column values in a row with at least one

conflicting column value.

DECORRELATE(table, fk_keys, group_by, pred). A decorrelate operation requires de-

velopers to additionally specify which foreign keys for the table rows to rewrite, and a group_by

attribute if rows with the same value for that attribute should refer to the same pseudoprincipal

after decorrelation. A decorrelate operation only applies to rows with foreign key relationships

to the principals table (if specified on other foreign keys, the operation will do nothing). De-

velopers also provide a principal-generation policy (principal_gen) to DisguiseData using

Edna’s value generation policies to tell Edna how to generate a pseudoprincipal row.

If the application invokes DisguiseDatawith u_opt = Some(uid), then Edna only decor-

relates the specified foreign key attributes that refer to uid (for rows that match the predicate).

Otherwise, the disguise applies over all users and Edna decorrelates all specified foreign keys
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for all rows matching the predicate.

For all rows to decorrelate with the same group_by attribute value, Edna rewrites the

foreign keys to decorrelate to the same randomly generated pseudoprincipal. If no group_by

attribute is specified, each row gets a unique pseudoprincipal. Thus, no two disguises share

the same pseudoprincipals, and no two tables share the same pseudoprincipals.

4.4 Example

To illustrate use of Edna’s API and semantics, this example revisits the disguise specification

for Lobsters topic-based anonymization (Figure 3.3). Figure 4.3 illustrates the various steps a

user Bea would take to apply the disguise for two topics, “bears” and “Star Wars”.

(0) Initially, the application starts out with Bea registered as an Edna principal via a call to

RegisterPrincipal with Bea’s password and keypair. Bea owns one story, with topic

“Ewoks”.

(1) Bea invokes the application to decorrelate all “bears” stories from their account:

let d_bears = DisguiseData(

u_opt: Some("Bea"),

spec: topic_anon_spec[Tag="bears"],

principal_gen: global_pp_generator ,

schema: global_schema ,

disguise_over: None)

This causes the application to instantiate the topic-based anonymization disguise specifi-

cation with tag “bears”. Edna rewrites the author foreign key values of “bears” stories—

which include Bea’s “Ewok” story—to refer to generated pseudoprincipal P1.

(2) Bea invokes the application to decorrelate all “Star Wars” stories from their account:

let d_star_wars = DisguiseData(

u_opt: Some("Bea"),

spec: topic_anon_spec[Tag="Star Wars"],

principal_gen: global_pp_generator ,

schema: global_schema ,

disguise_over: Some("bea_password"))

This again causes the application to instantiate the topic-based anonymization disguise

specification with tag “Star Wars”. Bea also provides reveal credentials (e.g., their pass-

word) so that any of their existing disguised stories can be disguised again. Edna rewrites
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(2) Decorrelate Star Wars

(a) Bea’s reveal of “Star Wars” stories keeps
“Ewok” stories still decorrelated under the
“bears” disguise. Only after revealing “bears”
stories does Edna restore ownership back to Bea.

Initial State

Time

(1) Decorrelate Bears

(2) Decorrelate Star Wars

(4) Reveal Star Wars

App DB

Bea

P1

P2

P2

Bea

(3) Reveal Bears

(b) Bea’s reveal of “bears” stories keeps “Ewok”
stories still decorrelated under the “Star Wars”
disguise, which was applied after disguising
“bears”. Only after revealing “Star Wars” stories
does Edna restore ownership back to Bea.

Figure 4.3: If Bea decorrelates an “Ewok” story twice, Edna only recorrelates the story back to Bea once
Bea reveals both disguises, regardless of the reveal order. (a) illustrates an in-order reveal, where Bea
reveals the most recent disguise first. (b) illustrates an out-of-order reveal, where the oldest disguise is
revealed first.
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the author foreign key values of “Star Wars” stories—again including Bea’s “Ewok”’

story—to generated pseudoprincipal P2.

(3) Bea next reveals one of their disguises:

RevealData(

u: "Bea",

cred: "bea_password",

d: d_bears, // or d_star_wars

pp_ref_policy: RECORRELATE ,

allow_partial_row_reveal: true,

schema: global_schema)

After reveal of the “bears” disguise, any unrevealed disguises remain applied to the

“Ewoks” story. This means the story will remain decorrelated to P1 even if the “Star

Wars” disguise decorrelating to P2 is revealed (Figure 4.3a). And if only the “bears” dis-

guise decorrelating to P1 were revealed, but not the “bears” disguise, the data would

remain decorrelated to P2. (Figure 4.3b).

(4) Finally Bea reveals the remaining disguise applied to “Ewok” stories:

RevealData(

u: "Bea",

cred: "bea_password",

d: d_star_wars , // or d_bears

pp_ref_policy: RECORRELATE ,

allow_partial_row_reveal: true,

schema: global_schema)

This restores ownership of the story back to Bea’s account.

4.5 Disguise Composition

As shown in §4.4’s example, multiple disguises can apply to a user’s data. If Bea disguises their

data multiple times, then the application repeatedly invokes DisguiseData on behalf of Bea

(u_opt = Some("Bea")). This causes Edna to disguise only data associated via a foreign key

to Bea’s application principal (§4.2.2). However, this means that Edna will not disguise Bea’s

data that has already been decorrelated to a pseudoprincipal by a prior disguise. If Bea wants to

disguise already-decorrelated data, Edna must have Bea’s reveal credentials (disguise_over

= Some(cred)). This allows Edna to access Bea’s correlations to pseudoprincipals in order to
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disguise their pseudoprincipals’ data. Edna will then treat all of Bea’s pseudoprincipals’ data

as Bea’s, and remove, modify, or create a new pseudoprincipal owner for this data depending

on the disguise specification. §5.5 fleshes out Edna’s design for disguise composition when a

user has already decorrelated some of their data.

Disguise composition may also occur if, for example, an admin globally disguises all users’

data (u_opt = None). In this case, Edna disguises all data satisfying the disguise specification’s

predicates, regardless of which user owns the data, and thus does not need reveal credentials

to discover which pseudoprincipal users to disguise.

To reveal their data back to its original state, a user must reveal all disguises composed atop

the data.

4.6 Shared Data

Many applications support shared data; in Lobsters, for example, messages between users

are owned by both users. Edna’s default semantics for shared data implement an ownership

model inspired by a common treatment of shared data as jointly owned. When a user’s disguise

removes shared data, Edna decorrelates the data from the disguising user, but preserves the

data and its association with other owners. Edna removes the data once all users have disguised

it and all ownership links are to pseudoprincipals. For example, any owner can reveal a shared

message, which restores the message to the database if it does not exist, and recorrelates only

the revealing user; all disguised owners remain decorrelated as pseudoprincipals until they also

choose to reveal the message. Regardless of the reveal order, if all owners reveal the message,

Edna returns the message to its original state.

For each shared data object, each owner has an associated unique pseudoprincipal. If only

some owners have disguised the row, the row will refer to the disguised owners’ unique pseu-

doprincipals’ identifiers instead of the owners’. When a user reveals a shared data row, all users

still disguised remain associated with their unique pseudoprincipal (which can be reused over

multiple remove disguises).

For instance, consider the scenario in Figure 4.4 where Bea and Chris share a Lobsters

message. Edna associates Bea with AnonPig and Chris with AnonFox for this shared message.

(1) When Bea disguises the message, the message is owned by Chris and a pseudoprincipal;

(2) If Chris then disguises the message, Edna removes it.

(3) If Bea reveals the message, this restores the message to the database and recorrelates

only Bea; Chris remains decorrelated as a pseudoprincipal.

(4) When Chris reveals the message, Edna returns the message to its original state.

§5.4 dives deeper in how Edna’s design achieves these shared data semantics.
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Figure 4.4: Edna supports joint ownership semantics, where shared data is not removed until
all users have disguised their accounts. Owners can return in any order, and the message
remains decorrelated from unrevealed owners.
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4.7 Discussion

Disguises. Edna assumes that all desired disguises are captured with the three primitive oper-

ations (remove, modify, and decorrelate). Furthermore, disguising transformations may affect

data processing of application data (e.g., aggregates over the number of users), or application

side effects dependent on application data (e.g., sending notifications). Edna currently expects

the developer to correctly handle these scenarios, and to ensure that any modified aggregations

or placeholder data do not violate application correctness.

As described in §4.1, revealing a disguise fails and data remains disguised if either the

application has since updated the data, or another disguise has since modified or removed

it. In the second case, Edna could successfully reveal the disguise after revealing conflicting

subsequent disguises, if Edna remembers to reveal it again. To do so, an extended Edna could

combine Edna’s support for global database updates and disguised data. When a reveal fails,

Edna could store an update specification for revealing the disguise in an encrypted, per-user

log. Only another reveal by the user of another disguise could decrypt the log, and Edna would

check whether it should also apply any reveal updates in the user’s log. For example, consider

two disguises D0 and D1 applied to user data as follows:

(1) Disguise D0 of user u modifies some data row.

(2) A subsequent disguise D1 removes the same data row.

(3) If u first reveals D0, Edna cannot reveal the data because D1 removed it. Edna would

thus do nothing but encrypt and store an update specification representing the reveal of

D0 in u’s log.

(4) When u later reveals D1, Edna decrypts u’s log, finds the “reveal-D0” update, and applies

the update to reveal D0’s modification of the data prior to restoring it.

API. Edna’s API assumes that:

(1) the application uses a relational database;

(2) rows to disguise have direct foreign key relationships to a users table, where each user

corresponds to a row of that table;

(3) all rows to disguise are owned by (have a foreign-key relationship) to one or more prin-

cipals; and

(4) all rows can be uniquely identified (e.g., via primary key).

Applications that fail to satisfy these assumptions—e.g., because they have complex ownership

chains or use a NoSQL database—could be supported with extensions to Edna’s design. Edna

could use techniques from DELF [16] to support multiple data models; and K9DB’s data own-

ership graph [20] to handle indirect data ownership. If no user owns a data item, Edna could

44



refuse to disguise it and flag the developer to review the disguise specification. Finally, to ad-

dress the unique identification requirement, Edna could add unique IDs for every data object,

so Edna can refind the object when revealing. However, this method requires more invasive

changes to application data.

45



46



Chapter 5

Edna’s Design

This chapter describes the design of Edna and the techniques Edna uses to support disguis-

ing and revealing. We first look at how Edna performs disguising transformations, and then

dive into the details of how Edna reveals disguised data. We then describe more complicated

scenarios possible with Edna, namely disguise composition, shared data, and action as pseu-

doprincipals. This chapter concludes with an analysis of the security of Edna’s design with

respect to the threat model described in §3.5.

5.1 Disguising

When the application invokes DisguiseData to apply a disguising transformation, Edna cre-

ates a unique disguise ID and queries for the data to disguise based on the disguise specification

predicates. To preserve referential integrity, Edna constructs a dependency graph between ta-

bles based on foreign key relations (assuming no circularity), and first performs removes from

tables in topologically-sorted order. Edna then performs decorrelations and modifications in

specification order, potentially generating and storing pseudoprincipals.

Next, to record disguised data, Edna generates diff records that contain (i) the original data

row(s), and (ii) placeholder data rows the disguise inserted or rewrote in the application (e.g.,

pseudoprincipals or the value of any modified columns). All types of diff records also contain

the disguise ID. The original and placeholder rows contained by a diff record vary by disguise

operation as follows:

• Remove diff records contain the removed original row and no placeholder rows.

• Modify diff records contain the unmodified row and the row with the modified value.

• Decorrelate diff records contain the referencing row with the original foreign key value

and—as placeholder data—the referencing row with the placeholder foreign key value

pointing to a pseudoprincipal and the pseudoprincipal’s row.
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Figure 5.1: When Edna applies topic-based anonymization to Bea’s comments on stories tagged
“Star Wars” (red), these comments are decorrelated to pseudoprincipals (“AnonPig”, “Anon-
Fox”). Edna stores encrypted speaks-for records mapping Bea to their pseudoprincipals, and
diff records containing the comments with modified foreign keys.

For each new pseudoprincipal, Edna generates a public–private keypair and an encrypted

speaks-for record, which adds a link to the original principal’s speaks-for chain. A speaks-for

record contains a pair of (original principal, pseudoprincipal) IDs and the pseudoprincipal’s

private key. Edna registers the pseudoprincipal with its public key to enable composition of

disguises (§5.5). Edna then encrypts the diff and speaks-for records with the principal’s key,

and stores them in the database. Finally, Edna returns the disguise ID to the application. A

client can use the disguise ID and the principal’s credentials to reveal the transformation later.

To perform Bea’s topic-based anonymization (Figure 5.1), which allows Bea to hide their

association with a particular category of content, Edna thus:

(1) queries the database to fetch comments and votes by Bea affiliated with “Star Wars”;

(2) creates a pseudoprincipal (e.g., “AnonFox”) for every “Star Wars”-tagged story that Bea

commented on, and inserts it as a new user;

(3) modifies the database by rewriting comment foreign keys to point to the created pseu-

doprincipals, and removing Bea’s votes on those stories;

(4) creates new speaks-for records that map Bea to the created pseudoprincipals and add

links to Bea’s speaks-for chain; diff records containing Bea’s votes on “Star Wars” stories;

and diff records that document Bea’s original ownership of “Star Wars”-tagged comments

and the placeholder pseudoprincipal data;

(5) encrypts the speaks-for and diff records with Bea’s public key and stores them; and

(6) returns a unique disguise ID to the application.
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Figure 5.2: When Edna applies a disguise to P1’s data, diff records and speaks-for records
for P1 are stored at some random index idx in the disguise table, and the encrypted index is
appended to the principal table entry for P1.

Edna adds a disguise table and a principal table to the application database to store prin-

cipals’ disguised data. The disguise table contains per-disguise, per-principal lists of diff and

speaks-for records encrypted with the principal’s public key.

The principal table is indexed by application user ID; each row contains the principal’s

public key, and a list of disguise table indexes encrypted with the public key. To store records for

principal p after some disguise, Edna (i) encrypts the records with p’s public key; (ii) stores the

ciphertext in the disguise table under index idx; (iii) encrypts idx (salted to prevent rainbow

table attacks) with p’s public key; and (iv) appends the encrypted idx to p’s list of encrypted

disguise tables indexes in the principal table. Figure 5.2 shows how Edna adds a new disguise’s

diff records and speaks-for records for P1 to the disguise table at some index idx; idx is itself

encrypted and added to Edna’s principal table for P1.

This allows Edna to store records without needing access to the principal’s private key, and

to do so securely: the principal table adds a layer of indirection from user ID to encrypted

records, so an attacker cannot link principals to their records. At reveal time, Edna can ef-

ficiently find a given user’s disguised data by using decrypted disguise table indexes in the

principal table.
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Reveal(disgID, uid, privkey):
encrypted_disg_table_idxs := principal_table[uid]
decrypted_disg_table_idxs :=
decrypt(encrypted_disg_table_idxs , privkey)

for idx in decrypted_disg_table_idxs:
records = decrypt(disg_table[idx], privkey)
for rec in records:
if rec.disgID == disgID:
// apply rec to application database
// remove rec from disg_table

else if rec.type == SPEAKS_FOR:
// recursively reveal for pseudoprincipal
// generated by another disguise
Reveal(disgID, rec.pp_uid, rec.pp_privkey)

Figure 5.3: Pseudocode for revealing a disguising transformation while application principal
uid exists. Recursive revealing (the else clause) walks the speaks-for chain to reveal composed
records of pseudoprincipals created by other disguising transformations if necessary (§5.5).

Disguising transformations may completely remove a principal from the application database.

When this happens, Edna moves the corresponding list of encrypted disguise table indexes from

the principal table to a deleted principal table indexed opaquely, e.g., by the public key. This

removes the user ID from the database while allowing future reveal operations by the principal

to find their disguise table indexes. Edna also stores a special type of remove diff record that

contains the principal’s ID and the principal’s public key when a disguise removes a princi-

pal. This lets Edna to restore the principal to Edna’s principal table if a user later reveals the

disguise.

5.2 Revealing

When the application invokes RevealData, Edna first locates and decrypts the corresponding

diff and speaks-for records using the disguise ID and the user’s reveal credentials provided as

arguments. To do so, Edna derives the user’s private key from their provided reveal credentials,

and invokes Edna’s reveal procedure (Figure 5.3) with this key. The procedure looks up all

disguise records related to the provided reveal credentials via Edna’s principal and disguise

tables. Edna then applies diff records created for the disgID disguise transformation to the

database, thus restoring the relevant application objects to their pre-disguised state.

To preserve referential integrity, Edna restores disguised data that was removed from tables

in topologically-sorted order (constructing the dependency graph as in §5.1). Edna then reveals

any modifications, and finally performs recorrelations. In general, to reveal a diff record, Edna

removes the placeholder row and inserts the original row (both of which are recorded in the

diff record). However, for efficiency, Edna first checks if a placeholder row in diff records has
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the same identifiers (e.g., a primary key) as an original data row in the diff record, and if so,

updates the relevant columns of the placeholder row instead.

Finally, Edna de-registers any pseudoprincipal who no longer has any associated disguised

data, removing them from the principal table and the application’s users table. Developers

invoke RevealDatawith a pseudoprincipal reference policy to inform Edna how to handle new

pseudoprincipal references prior to removing the pseudoprincipals (§4.2.3). After revealing,

the disguised data is no longer needed, so Edna clears the corresponding disguise records.

In the example, if Bea wants to reveal their “Star Wars” contributions, Lobsters invokes

Edna with the disguise ID and Bea’s password as reveal credentials. Edna uses the password

to reconstruct Bea’s private key and retrieve and decrypt Bea’s records. Edna filters those

records to find those with the requested disguise ID. Edna then restores deleted votes and

Bea’s ownership of decorrelated comments.

5.3 Global Database Updates

Edna’s revealing as described thus far may reveal data that ignores database updates ap-

plied since the time of disguise, such as global transformations to undisguised data or schema

changes. To prevent this, Edna utilizes reveal-time update specifications provided by the de-

veloper via RecordUpdate to apply updates to disguised data prior to revealing it. This en-

sures that revealed data correctly reflects the current state of the database and any implicit

application-level invariants. Prior to revealing the updated data, Edna also performs con-

sistency checks to guarantee adherence to internal database invariants, such as uniqueness

constraints. Here, we describe how developers specify reveal-time updates, how Edna applies

these updates to data to reveal, and Edna’s consistency checks.

5.3.1 Global Data Transformations

In order for revealing to preserve application correctness, Edna must obey global database

updates that transform application data. Consider an example: a moderator edits all posts

to remove swear words, creating an implicit invariant that all posts created prior to the last

moderation pass should contain no swear words. If a user’s disguise removes their posts, then a

moderation pass occurs, and then the user wants to restore their posts, Edna might incorrectly

restore the original post content with swear words present upon reveal. However, Edna could

correctly restore the post if it knew to remove the swear words prior to reveal.

Figure 5.4 demonstrates how Edna applies updates to disguised data using Edna’s replay

log with reveal-time update specifications:
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REMOVE DIFF
<story1, Bea, "explicit text">

stories

<story1, Bea, "explicit text">

Edna's Data

Replay Log

Replay Log

Replay Log

[moderation update spec]

Replay Log

[moderation update spec]

stories

<story1, Bea, "*******">

REMOVE DIFF
<story1, Bea, "explicit text">

Replay Log

[moderation update spec]

REMOVE DIFF
<story1, Bea, "********">

stories

stories

stories

Time

(3) Reveal: Update Diffs with Moderation

(4) Reveal: Restore Diff Data

Initial State

(1) Apply Disguise

(2) Moderate Explicit Words

App DB

Figure 5.4: When the application applies updates like moderations of explicit words, it invokes
Edna to log the corresponding reveal-time update specification. Edna then applies the update
to disguised data in diff records prior to revealing them. Yellow highlights changes to the
application data or Edna’s data.

52



(1) Edna disguises some user data.

(2) The developer invokes RecordUpdate with a reveal-time update specification when per-

forming a global update that must hold over disguised data when it is revealed (e.g.,

moderations). Edna records the update specification in its replay log.

(3) When revealing data, Edna applies, in order, every update specification in the replay

log added since the time of disguise to the disguise’s diff records. Update specifications

map the original data and the placeholder data in diff records to corresponding updated-

original and updated-placeholder data. In this case, the update specification moderates

explicit story text.

(4) After applying all updates to placeholder data, Edna reveals the updated rows in the diff

record like normal.

In the swear words moderation example, Edna queries the replay log, sees the swear words

moderation entry, and then applies the swear words moderation to the removed post data in

the diff record. Only then does Edna restore the post with no swear words.1

5.3.2 Schema Changes
Applications also undergo database updates to migrate their schema in order to reorganize

data or add new application features. When these occur, Edna must know how to manipulate

any disguised data structured in the old database layout to match that of the current database.

At first glance, schema changes might seem like a different class of database update than global

data transformations like content moderation, and thus require a different approach. However,

the technique for global changes (§5.3.1) allows Edna to handle schema changes as well.

Take, for example, a developer of an application with a users table that contains rows with

usernames, addrs, and emails. The developer then chooses to allow users multiple addresses

via a schema change. To do so, they create a new addrs table, with a foreign key to the

users table, and populate addrs using the address data in users. Finally, they remove the

addr column from users. Figure 5.4 illustrates how Edna applies such a schema change to

disguised data upon reveal.

(1) Edna disguises some user data.

(2) The developer invokes RecordUpdate with a reveal-time update specification when per-

forming the schema change; Edna records the update specification its replay log.

1Note that in this example, the diff record contains no placeholder data that replaced the removed post; in
other scenarios such as decorrelation or modification, Edna would apply the logged update to diff placeholder
data as well, in order to find the matching version in the database and remove it.
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REMOVE DIFF
<Bea, addr1,
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PLACEHOLDER
<anonFox, addr2,

email2>
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<anonFox, email2>

addrs

<addr2, anonFox>
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<Bea, addr1, email1>

REMOVE DIFF
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REMOVE DIFF
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App DB Edna's Data

(3) Reveal: Update Diffs with Migration

(4) Reveal: Restore Diff Data

Initial State

(1) Apply Disguise

(2) Migrate Schema

Time

Figure 5.5: The application notifies Edna of a schema change to apply to diff records prior to reveal. The
schema change creates an address table with a foreign key to user rows, and removes the address from
the user rows. This allows users to have multiple addresses. Yellow highlights changes to the application
data or Edna’s data. For simplicity, the figure shows only the placeholder data of a pseudoprincipal row;
in reality, placeholder data exists as part of e.g., a decorrelation diff record.
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(3) When revealing data, Edna applies the schema change update to diff record data, which

maps an original users data row to both a row in users with username uid and a row

in addrs that has a foreign key of uid to users. The update also generates two rows for

any placeholder users data row in a diff record.

(4) Edna then restores and removes the migrated original data and placeholder data respec-

tively, both of which now consist of one users and one addrs row.

5.3.3 Consistency Checks for Internal Invariants

After applying any developer-specified reveal-time updates that occurred since the time of dis-

guising, Edna performs consistency checks on the data to reveal to ensure that revealing will

not violate the database’s integrity. These checks allow revealing only if the revealed data: (i)

will still satisfy uniqueness and primary key constraints; (ii) will not overwrite updates that

occurred while data was disguised; and (iii) will maintain referential integrity.

For (i), Edna checks that removed disguised data is still removed from the database.

For (ii), Edna ensures that modified disguised data is in the same modified state and decor-

related disguised data is still affiliated with the same pseudoprincipal in the database using the

new value stored in the diff record. Edna performs checks at column granularity. For example,

a disguised row can have two modified columns, but at the time of reveal, Edna finds that

only one column value remains at the modified disguised state that Edna expects. The appli-

cation thus must have updated the other column value since the time of the disguise. Edna

will only reveal the one column that matches the value Edna disguised it to, in order to avoid

overwriting application database updates. This results in a partial restoration of the disguised

row. Developers can set argument allow_partial_row_reveals = false when invoking

RevealData, which prevents Edna from revealing some disguised columns of a row, but not

others. With this flag set to false, if the application had changed one disguised column value

since the time of disguise, then Edna will not reveal any disguised column in the row.

To ensure (iii), Edna checks for the existence of all objects referenced by the data to reveal

(e.g., a post referenced by a to-be-revealed comment).

Edna is conservative and will never reveal rows for which checks fail; the affected data re-

mains disguised. For example, if a developer chooses not to register conflicting global database

updates, Edna’s checks may fail, preventing disguised data from being revealed. An extension

to Edna could log encountered conflicts, giving the application a chance to fix them so a later

reveal can pass the checks.
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5.4 Shared Data

Edna supports joint ownership semantics for shared data with a modified removal design. The

first time any owner removes the data, Edna would normally remove the data object. However,

since the other owners have not yet removed the data, Edna must keep the data object around,

but dissociated from the removing owner.

Edna ensures that (i) if any user removes the data, then the data is decorrelated from their

identity; (ii) if all users have removed the data, the data is removed from the database; and (iii)

if any user returns, the data is restored to the database with only revealed users recorrelated.

To support these semantics, Edna creates a partially-removed metadata table. The table is

indexed by a data row’s unique identifier columns (e.g., a primary key id). Each index maps to

a (plaintext) remove diff record for a shared data object. The diff record contains the shared

data row, but where the row has been fully-decorrelated, all foreign keys to owners of the

object have been rewritten to refer to a pseudoprincipal. Entries in the partially-removed table

ensure that all owners agree on which pseudoprincipals will own the shared data as various

owners remove it. This allows owners to reveal in any order, because the revealed data always

contains the same pseudoprincipals for still-disguised owners, no matter who reveals the data

first. Later reveals by other owners can thus find their expected pseudoprincipal and recorrelate

with the shared data.

Figure 5.6 depicts how Edna executes over shared data:

(1) When any owner removes some shared data row, Edna checks the partially-removed

metadata table with the data’s identifiers.

If Edna does not find a matching entry, as in Figure 5.6, then Edna creates a fully-

decorrelated version of the data row (with all foreign keys to owners replaced with ran-

dom pseudoprincipal identifiers). Edna then inserts this into the partially-removed table.

A matching entry must now exist; Edna takes the matching entry and stores a copy of the

entry’s fully-decorrelated diff record for the disguise. As shown in step 3, this information

will let an owner restore the data to the database if all owners have removed, and the

data no longer exists in the database. Importantly, every owner’s diff record of the shared

data will only reference another owner’s pseudoprincipal instead of their true identifier.

Edna then creates the pseudoprincipal that matches the corresponding decorrelated for-

eign key to the owner, and stores diff records recording the pseudoprincipal row and

foreign key rewrite for the owner. Finally, Edna stores a speaks-for record recording

which pseudoprincipal the owner can speak-for. These records allow the owner to recor-

relate with the shared data after the data is restored to the database in a decorrelated
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state (steps 3 and 4).

(2) When the last remaining owner removes the data (all other owners are pseudoprincipals,

i.e., all other owners have removed the data), Edna removes the shared data row from the

application database, and the corresponding entry from Edna’s partially-removed table.

(3) When any owner chooses to return, Edna first restores the fully-decorrelated row to the

database as well as the partially-removed table, using the copy of the fully-decorrelated

diff record in the owner’s disguised data. Edna then rewrites the foreign key for the

pseudoprincipal who currently owns the shared data to recorrelate with the owner, and

removes that pseudoprincipal, revealing the other diff records like normal.

(4) If a subsequent owner reveals the shared data, Edna’s consistency checks will prevent

the reveal of the fully-decorrelated row (inserting the row will cause a duplicate row

in the table). However, Edna will still rewrite the foreign key for that owner’s pseudo-

principal to the original owner, and remove the pseudoprincipal from the database, thus

recorrelating the data to the owner and restoring ownership.

Note that the partially-removed table entry for any shared data object is created only once:

the first time any owner’s disguise removes the shared data object. Future removes after reveals

will reuse the same partially-removed table entry. Edna thus ensures that any user who reveals

and then removes the shared data again decorrelates to the same pseudoprincipal as before.

With this design, Edna can disguise and reveal shared data no matter the order in which

its owners decide to remove or reveal it. If an owner never removes the shared data, they

will continue to be correlated and have access to the data even if other owners remove it (and

become pseudoprincipals); similarly, if an owner never restores the shared data, the data will

remain forever owned by the owner’s pseudoprincipal if other owners choose to restore it.

5.5 Composing Disguising Transformations

Edna supports composition of disguising transformations, which occurs when a transformation

applies to data that Edna has previously disguised in some other way. Reasoning about com-

position of transformations can be broken into reasoning about the composition of primitive

operation pairs, e.g., remove after modify, or remove after decorrelation.

Many pairs result in trivial composition: no operation can be composed after a remove

(the data is gone), and any operation after a modify updates the data as expected. However,

operations after decorrelation result in more complex composition scenarios. For instance,

decorrelation after decorrelation could occur if a user decorrelates some posts, after which an
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Figure 5.6: (1) When Bea removes their message, Edna creates and stores a fully-decorrelated diff
record of the message (modifications are depicted using [owner→pseudoprincipal] notation). Bea’s
disguised data also stores a speaks-for record to AnonPig. (2) When Chris later removes their message,
Edna stores a fully-decorrelated diff record in Chris’ disguised data and a speaks-for record to AnonFox.
Edna also deletes the message from the database, since it has no referencing users. (3) When one
user (e.g., Bea) reveals, Edna restores the fully-decorrelated message and recorrelates Bea with it. (4)
When Chris later reveals, they find the message already restored and simply recorrelate with their
pseudoprincipal, AnonFox.
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administrator decorrelates all posts (e.g., to anonymize all inactive users). In this scenario,

the administrator’s disguising operation applies to pseudoprincipal-owned posts in the same

way as it does to unmodified posts. This creates pseudoprincipals that can speak-for other

pseudoprincipals. This notion of chaining together pseudoprincipals creates Edna’s speaks-for

chains. Edna uses the pseudoprincipal’s registered public key to encrypt pseudoprincipal diff

and speaks-for records, so Edna does not need to know its link to an original principal in order

to encrypt and disguise its data.

Removal or modification after decorrelation also require special handling. For instance, a

Lobsters user might first decorrelate some of their comments and then request to delete all

their comments (e.g., by deleting their account). But the decorrelated comments are no longer

linked to the original user; how can the deletion transformation find them? Edna addresses

this question by accepting optional reveal credentials as part of the disguise operation (the

disguise_over argument of Edna’s DisguiseData API call). Reveal credentials let Edna

recursively decrypt speaks-for records and create a speaks-for chain starting from the disguising

user, represented by speaks-for relationships between pseudoprincipals. Edna can then disguise

all data of all pseudoprincipals included in the speaks-for chain.

With reveal credentials, Edna decrypts the user’s previous diff and speaks-for records. Each

speaks-for record includes the identifier for one of the user’s pseudoprincipal and the pseudo-

principal’s private key, and creates a “link” in the speaks-for chain. A pseudoprincipal’s iden-

tifier allows Edna to find data referencing that pseudoprincipal and apply disguising transfor-

mations on behalf of the this pseudoprincipal as well as the user. A pseudoprincipal’s private

key—its reveal credentials—allows Edna to recursively decrypt its speaks-for records, and dis-

guise any pseudoprincipals of this pseudoprincipal created by multiple decorrelations.

Out-of-Order Reveals. Edna must also handle reveals of transformations in any order. As

before, many scenarios are straightforward: revealing removals is trivial (data can only be

removed and restored once), and revealing modified data simply restores the original (subject

to consistency checks). Handling out-of-order reveals of multiple decorrelations presents the

greatest challenge. Edna’s semantics (§4.1) require that data that is decorrelated multiple times

will not be recorrelated until all disguises are removed. For example, as shown in Figure 5.7

(left-hand side), if Bea separately decorrelates their comments on “bears” and “Star Wars”

posts, then later reveals the “bears” posts, they might want Ewok-related comments (tagged

both “Star Wars” and “bears”) to remain disguised, even though they were initially disguised

under the “bears” transformation. To support this, Edna again uses the speaks-for chain (§5.5)

to find pseudoprincipals stemming from the revealing user. All reveal operations walk the full

speaks-for chain to reveal all necessary records (cf. Figure 5.3).
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Figure 5.7: Edna allows multiple decorrelations to compose, and can reveal them in any order such
that the data remains decorrelated until the user reveals all applied decorrelations. The speaks-for chain
encoded in speaks-for records (shown in blue) allows Edna to handle recorrelation of intermediate
pseudoprincipals. When Bea requests reveal of their “Star Wars” posts (4) after revealing “bears” posts
(3), Edna walks the speaks-for chain backwards from P2 to find the latest principal that can speak-for
P2 and has not yet been recorrelated. Thus, Edna restores ownership back to Bea.

60



Furthermore, if reveal operations perform recorrelations out of order, Edna removes an

intermediate link in the speaks-for chain. To describe how this works, take the example of two

disguises that decorrelate comments on “bears” and “Star Wars” posts respectively (Figure 5.7).

(1) First, the “bears” decorrelation rewrites Ewok posts to pseudoprincipal P1. Bea’s dis-

guised data includes a speaks-for record from Bea to P1 and a diff record recording the

database changes.

(2) Next, a “Star Wars” decorrelation composes on top of the “bears” decorrelation to rewrite

Ewok posts from P1 to pseudoprincipal P2. This creates disguised data for P1, including a

speaks-for record from P1 to P2 and a diff record recording the database changes. At this

point, Edna has speaks-for records originating from Bea that encode a speaks-for chain

from Bea→ P1→ P2.

(3) If Bea first reveals the “bears” anonymization—the first applied disguise—on their data,

Edna finds all accessible speaks-for records given Bea’s reveal credentials (cf. Figure 5.3),

and constructs Bea’s speaks-for chain as a graph of principal-to-principal edges (namely

Bea→ P1→ P2). Edna finds that P1’s “Ewok” posts no longer exist in the database (they

belong to P2 due to the composed “Star Wars” disguise), and thus does not restore “Ewok”

posts to Bea. Edna does still remove pseudoprincipal P1 in the process of restoring “bear”

diff records, and once done, clears all “bear” diff records from its encrypted disguise table.

Importantly, however, Edna still retains the speaks-for record for Bea→ P1, since P1 still

has associated disguised data (namely a speaks-for record to P2 and a diff record).

(4) Now, if Bea reveals the second applied disguise—“Star Wars”—Edna sees that P1’s diff

record has an original row with P1 as owner. However, Edna cannot reveal the diff record

directly and restore the decorrelated posts to P1, as this will fail referential integrity con-

sistency checks. Furthermore, the reveal of “Star Wars” reveals the last disguise applying

to Bea’s posts, so Edna should restore posts to their original, undisguised state (instead

of decorrelated to P1).

Instead of immediately revealing the diff record, Edna walks the speaks-for chain (Bea→
P1 → P2) backwards from P2 to determine the next valid principal in the chain who

speaks-for P2, which in this case is Bea. A valid principal can either be a natural principal

or a pseudoprincipal yet to be recorrelated. If a pseudoprincipal appears as placeholder

data in any diff record of Bea’s disguised data (from any disguise), Edna knows that it

has not yet revealed that pseudoprincipal. Had Edna revealed that pseudoprincipal, then

Edna would have removed its corresponding diff record.
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After determining that Bea is the next valid user in the speaks-for chain to P2, Edna

rewrites the removed “Ewok” row in the diff record so that it references Bea instead of P1,

and then restores the rewritten row to the database. Edna also removes pseudoprincipal

P2. Finally, Edna deletes the diff record for the “Star Wars” disguise, as well as P2 and

P1’s speaks-for records (since both pseudoprincipals have no associated disguised data).

This implicitly truncates the speaks-for chain to just Bea.

Edna enforces the invariant that the chain stops at some principal P only once all pseudoprin-

cipals recursively generated in the chain beyond P have been recorrelated.

5.6 Authenticating as Pseudoprincipals

As described so far, if Bea wanted to modify a decorrelated “Star Wars” comment, they would

have to reveal the comment, edit it using their normal credentials, and then redisguise the com-

ment again. Applications that use Edna can also let users modify decorrelated records without

the reveal step via support from Edna’s CanSpeakFor API call. To support this, an application

accepts reveal credentials along with a modification request, and invokes CanSpeakFor with

the credentials. Edna uses these credentials to validate that the user speaks-for a specific pseu-

doprincipal by walking the speaks-for chain (cf. Figure 5.3). This ensures that the user can

access a speaks-for record linked to the pseudoprincipal. After validating the user’s request,

the application can proceed to update the database with the modification.

5.7 Design Limitations

Shared Data. Edna’s approach for shared data has two main limitations. First, the applica-

tion cannot use foreign keys to its users table as unique identifiers for a table’s rows. Edna

uses unique identifiers to determine which objects to update upon a reveal, and also modi-

fies foreign keys to the users table when decorrelating and recorrelating users from a shared

data object. Thus, if foreign keys to the users table are modified, the unique identifier would

change as well, and Edna would incorrectly reveal shared data. If foreign keys to users ta-

ble act as unique identifiers, one potential solution might introduce a layer of indirection via

a new unique identifier (e.g., an autoincrementing primary key). This could potentially add

performance overheads.

Second, owners of shared data who remove and reveal multiple times decorrelate to the

same pseudoprincipal each time. This may allow observers of the application to determine

62



which pseudoprincipal corresponds to which user (although this falls outside of Edna’s threat

model). To see why Edna requires this limitation, imagine the following counterexample:

(1) Bea and Chris both remove a shared message, so no data is left in the database. Both

Bea and Chris store a diff record of the message mapping Bea to P1, and Chris to P2.

(2) Chris reveals and then removes the message again, leaving no data in the database. Chris

now has a diff record of the message with Chris mapped to a new pseudoprincipal P3.

(3) Now Bea reveals, restoring the message with P1 and P2 to the database.

(4) Chris attempts to reveal the message, but cannot find P3 in the database, and thus fails

to recorrelate with the message.

The failure of Chris’ reveal arises because Chris and Bea disagree on what data—which pseu-

doprincipal references—to insert into the database, should the shared data object no longer

exist. Chris expects it to be P3, but Bea will restore to P2 for Chris. To remedy this, Edna uses

the partially-removed table to ensure that owners agree on the intermediate states of partially

removed data.

Reveal-Time Updates. Reveal-time updates in replay logs only apply to diff records, which

contain the actual data changes, and not to speaks-for records. Edna assumes that the identi-

fiers for principals in speaks-for records that encode the speaks-for chain remain consistent as

the database changes, allowing Edna to use its composition techniques with speaks-for chains

(§5.5) to reveal multiple disguises in any order.

Furthermore, as described in §4.2.5, Edna assumes that any nondeterminism or update side

effects will maintain application correctness. One potential extension would be for developers

to indicate the data dependencies of each update. To handle the unsupported example in

§4.2.5, Edna can use the knowledge that posts depend on votes to restore disguised votes

before posts. However, because votes have a foreign key to posts, this requires Edna to disable

foreign key checks and carefully check for dangling votes that violate referential integrity after

restoring posts. A perhaps more realistic but limited solution might require developers to

schedule periodic updates to fix any rows that have been revealed since the update. However,

this only works for an idempotent update, as it should not incorrectly update already-updated

rows again.
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5.8 Security Discussion

Edna’s design achieves its key goal of keeping disguised data confidential between the time

of disguising and revealing. Some aspects of Edna’s design help make Edna practical and

deployable without major application modifications. In exchange for greater usability, however,

Edna gives up stronger security.

Under Edna’s threat model, Edna achieves:

1. confidentiality of disguised data, via encrypting disguised data using asymmetric encryp-

tion, so only the owning user’s private key can reveal it;

2. confidentiality of which encrypted disguised data belongs to which user, via opaque,

encrypted indexing to reference a user’s disguised data; and

3. reduced linkability between parts of a user’s data, via splitting data ownership among

pseudoprincipals.

Edna provides decorrelation with pseudoprincipals to ease integration with existing applica-

tions, even though pseudoprincipals (and their mere existence) can reveal information to the

attacker. Pseudoprincipals preserve application data and referential integrity, ensuring that

e.g., every post always has an author, or that vote counts on posts remain unchanged, without

requiring the developer to handle special cases of deleted users and orphaned data. However,

this necessarily leaves information in the database: an attacker with database access could see

all application database content and code, and Edna’s disguise, principal, and deleted principal

tables. Thus, an attacker who compromises the database could learn:

1. any undisguised data in the application database;

2. the active principals that have disguised data, via Edna’s principal table;

3. the pseudoprincipals currently registered, from Edna’s principal table and the application

database;

4. the number of deleted principals, via the size of the deleted principal table;

5. the amount of disguised data in Edna; and

6. the disguise specifications, from application code.

Leveraging the application database (as opposed to separate external storage) to store dis-

guised data increases Edna’s practicality because it avoids burdening users with managing their

disguised data. However, this leaves potentially exploitable metadata available to attackers.

An attacker could leverage pseudoprincipal groupings (e.g., a pseudoprincipal owning posts in

both “MIT’18” and “BayArea” topics), undisguised data (e.g., comments signed with the user’s

name), and Edna metadata (e.g., that some anonymous user has more disguised data than

another) to infer the identity of the original owning principal.2

2For efficiency, Edna stores disguised data without breaking it into chunks or adding padding.
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Finally, Edna makes no guarantees for users who actively use disguised data after com-

promise (e.g., by revealing or editing decorrelated data): after an attacker compromises the

application at time t, they can harvest private keys that clients provide after t. However, Edna

always protects users’ disguised data if they remain inactive.

The attacker never has access to a user’s private key unless the user actively provides their

credentials. The attacker also cannot access the private key of any pseudoprincipal because

Edna stores such keys in encrypted speaks-for records. If an application uses password-based

reveal credentials, Edna guarantees security equivalent to that of the user’s password.

5.9 Edna without Encryption

Should developers want to support disguised data in a weaker threat model that does not

require encryption (§4.1), Edna still helps developers maintain referential integrity when dis-

guising (creating pseudoprincipals as placeholder users), compose disguises and reveals in

arbitrary orders, disguise shared data, and apply global updates to disguised data. Further-

more, removal of encryption simplifies several aspects of Edna’s design. This section describes

these aspects and potential alternative designs for disguised data without encryption.

Design Simplifications. If Edna does not encrypt disguised data, it remains accessible to the

application and updates can thus apply immediately to disguised data. Edna therefore would

not need a replay log to help developers apply updates to disguised data. Developers would

still write update specifications corresponding to these updates in order to update disguised

data rows stored in the disguised tables.

Removal of encryption also eliminates the need for registration with a user keypair, user

reveal credentials, encryption and decryption on the disguise and reveal paths, and encrypted

indexes mapping a user to their disguised data. The disguise table would hold plaintext dis-

guised data, and Edna would not need the principal table.

Furthermore, Edna can always disguise already-disguised data, since a user does not need

to provide a reveal credential in order to unlock their already-disguised data. A developer

instead can allow a user to specify whether they wish to disguise their disguised data again

(e.g., to remove their already-anonymized posts) using a boolean.

Alternatives Designs Without Encryption. Instead of moving disguised data into a new

database table for disguised data as Edna does, developers could also choose to implement

disguised data by logically removing it using database flags and predicates (e.g., is_deleted)

because disguised data need not be encrypted. In this case, the developer must ensure that all
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queries for the data include a predicate on the tag, so that application does not return disguised

data. Systems like Qapla [49]—which this thesis compares to Edna in §8.4—can help enforce

these flag-based policies.
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Chapter 6

Implementation

The current Edna prototype consists of ≈ 6k lines of Rust (broken down by component in

Figure 6.1). Edna supports MySQL, and provides an API server that exposes a JSON-HTTP

API that applications can use, if they do not link directly with Edna’s Rust library. Edna’s API

(Figure 4.1) supports principal registration, data disguising and revealing, partial revealing of

speaks-for relationships, and recording global database updates as reveal-time update specifi-

cations.

Component LoC
API 0.5k

disguiser 1.0k
revealer 0.3k
records 2.2k
helpers 2.0k

examples and tests 3.1k

Figure 6.1: Code components of Edna and their respective sizes. Much of the logic for revealing
is embedded in the record implementation (e.g., a diff record struct implements reveal). The
revealer handles the reveal order of diff records and modifications of the speaks-for chain.

6.1 Secure Record Storage

When encrypting diff and speaks-for records, Edna appends a random nonce to the record

plaintext to prevent known-plaintext attacks. It then generates a new public–private keypair

for x25519 elliptic curve key exchange. Using the newly created private key and the principal’s

public key, Edna performs the x25519 elliptic curve Diffie-Hellman ephemeral key exchange

to generate a shared secret. Edna encrypts the record data with the shared secret, and saves

the ciphertext along with the freshly generated public key, which is required to decrypt the
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data given the principal’s private key. This algorithm lacks key anonymity, so an attacker can

determine which records belong to the same principal; this limitation is not fundamental [6].

6.2 Reveal Credentials

Edna supports two forms of reveal credentials: private keys and users’ passwords (plus recovery

tokens in case users forget their passwords). If an application chooses to use user’s passwords,

it provides the password to Edna upon user registration with RegisterPrincipal. Edna uses

a variant of Shamir’s Secret Sharing [66] to generate three shares from the private key, any

two of which can reconstruct the private key. Shares are (x , f (x)mod p) tuples, where f (x) =
privkey+ rand · x and p > privkey is a known prime. One share derives x from the user’s

password using a Password-Based Key Derivation Function (PBKDF) [38]. Edna stores the

resulting f (x) half of the share, allowing Edna to derive one full share from the password.

Edna returns the second full share as a recovery token and stores the third full share. Edna can

combine this third share with the recovery token or a full share derived from the password to

recover the private key.

The PBKDF ensures that Edna cannot guess the password-derived value with dictionary and

rainbow table attacks [79], and that Edna cannot brute force the recovery token.

Password-based secret-sharing is only one possible implementation for backup secrets. Edna

could also support password-based backup secrets by, for example, storing a version of the pri-

vate key encrypted with the user’s password.

6.3 Reveal-Time Update Specifications

Edna’s prototype accepts reveal-time update specifications as Rust functions from database

objects (<table, row> pairs) to a new set of database objects. Edna stores the replay log as

a vector of update specification function pointers with timestamps, and persists the pointers

to disk. This approach requires recompiling Edna to add new update functions; an alternative

approach could put the functions into separate executables (and Edna would store executable

names instead of function pointers). In this alternative, Edna would invoke these executables

upon reveal with serialized input rows, and deserialize the output.

6.4 Batching

For efficiency, Edna batches the deletion of rows from the same table, updates to rows of the

same table from modifications and decorrelation, and the creation of pseudoprincipals upon
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disguise. Edna also batches the deletion of pseudoprincipals during reveal, and the reveal

of same-table diff records. This allows, for example, all updates for database management

operations to be applied to all diff record rows of the same table at the same time; and for all

rows of the same table to be inserted, updated, or removed from the database in a single query.

Batching utilizes MySQL’s INSERT... ON DUPLICATE KEY UPDATE, which allows batch

updating different items to different row values. However, this also introduces potential errors

if an item needs to update its primary key (e.g., the disguise specification instructs Edna to

disguise the user ID with a pseudoprincipal ID, but the user ID column also acts as a primary

key). If Edna detects a change to a primary key, Edna individually updates rows’ primary keys

prior to the batch update, ensuring that rows sent in the INSERT...UPDATE query match those

in the database.

6.5 Concurrency

Edna runs disguising and revealing transformations in transactions, providing serializable iso-

lation to application users. If a query within a transformation fails, the entire transformation

aborts (returning an error to the application). Edna provides an option to run long-running

transformations that touch large amounts of data (e.g., anonymization of all users’ posts) with-

out a transaction, at the expense of clients potentially observing intermediate states.
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Chapter 7

Case Studies

This section evaluates Edna’s ability to add new disguising features to several applications.

We add disguising and revealing transformations based on the motivating examples in §1 to

three applications—Lobsters [44], WebSubmit [64], and HotCRP [40]. §8 evaluates the effort

needed to do so and the resulting performance.

7.1 Lobsters

Lobsters is a Ruby-on-Rails application backed by a MySQL database. Beyond the stories, com-

ments, and tags mentioned in §3.1, Lobsters also contains moderations that mark inappropriate

content as removed. We added three disguising transformations: account deletion with re-

turn; account decay (i.e., automatic dissociation and protection of old data); and topic-specific

throwaway accounts.

Account deletion with return (i) removes the user account; (ii) removes information that’s

only relevant to the individual user, such as their saved stories; (iii) modifies story and com-

ment content to “[deleted content]”; (iv) decorrelates private messages; and (v) decorrelates

votes, stories, comments, and moderations on the user’s data. This preserves application se-

mantics for other users—e.g., vote counts remain consistent even after account deletion, and

other users’ comments remain visible—while protecting the privacy of removed users. Im-

portant information such as moderations on user content remains in the database, and Edna

recorrelates it if the user restores their account. After Edna applies the disguising transforma-

tion, Lobsters emails the user a URL that embeds the disguise ID. The user can visit this URL

and provide their credentials to restore their account.

The account decay transformation protects user data after a period of user inactivity. We

added a cron job that applies account decay to user accounts that have been inactive for over

a year. This (i) removes the user’s account; (ii) removes information only relevant to the user,

71



such as saved stories; (iii) and decorrelates votes, stories, comments, and moderations on the

user’s data by associating them with pseudoprincipals. Lobsters sends the user an email which

informs them that their data has decayed, and includes a URL with an embedded disguise ID

that can reactivate or completely remove the account if credentials are provided.

Finally, topic-based throwaway accounts via topic-based anonymization enable users to

decorrelate their content relating to a particular topic. As per §3.1, this disguises contributions

associated with the specified tag by (i) decorrelating tagged stories and comments associated

with tagged stories, and (ii) removing votes for tagged stories. Again, Lobsters sends the user

an email with links that allow reclaiming or editing these contributions.

With Edna’s support for composing disguising transformations, users can delete accounts

that have been decayed or dissociated into throwaways, and can later reveal them.

Global Database Changes. We implemented three examples of recent global database up-

dates applied by the Lobsters developers in 2023–2024. The first changes the schema and

transforms data contents of stories. It performs URL normalization [7] on the url column of all

rows in the stories table, and then stores the normalized URL text in a new normalized_url

column. The second changes the schema by adding a show_email attribute to the users ta-

ble automatically set to false. The third creates a new story_texts table that stores the

title, description, and story_cache attributes of rows from stories; and removes the

story_cache column from stories. This enables search over story content.

7.2 WebSubmit

We integrated Edna as a Rust library with WebSubmit [64]. WebSubmit is a homework sub-

mission application used at Brown University. Its schema consists of tables for lectures, ques-

tions, answers, and user accounts. Clients create an account, submit homework answers, and

view their submissions; course staff can also view submissions, and add or edit questions and

lectures. The original WebSubmit retains user data indefinitely. We added support for two

disguising transformations: user account removal with return, and instructor-initiated answer

anonymization, which protects data of prior years’ students by decorrelating student answers

for a given course. These transformations allow instructors to retain FERPA-compliant [73]
answers after the class has finished. With Edna, students can delete their accounts or access

and view their answers even after class anonymization, and can always restore their deleted

accounts, including restoring them back to an anonymized state.

72



7.3 HotCRP

HotCRP is a conference management application whose users can be reviewers and/or authors.

HotCRP’s schema contains papers, reviews, comments, tags, and per-user data such as watched

papers and review ratings [40]. HotCRP currently retains past conference data indefinitely and

requires manual requests for account removal [39]. We wrote two disguise specifications for

HotCRP: conference anonymization to protect old conference reviews, and account removal

with return.

Conference anonymization is invoked by Program Committee (PC) chairs after the con-

ference concludes, and decorrelates users from their submissions, reviews, comments, and

per-user data such as watched papers. User accounts remain in the database with no asso-

ciated data. Conference anonymization protects users’ data after the conference; with Edna,

users can come back to view or edit their anonymized reviews and comments.

Account removal with return (i) removes the user’s account; (ii) removes information only

relevant to the user, such as their review preferences; (iii) removes their author relationships

to papers; and (iv) decorrelates the remainder of their data, such as reviews. Decorrelating

a review removes its association with the reviewing user, but importantly retains the review

itself to preserve utility for others (e.g., the PC and the authors of the reviewed paper). With

Edna, users can remove their accounts even after conference anonymization has taken place,

and can always restore their accounts.
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Chapter 8

Evaluation

This chapter seeks to answer six questions:

1. How much developer effort and application modification does Edna require? (§8.1)

2. How expensive are common application operations, as well as disguising and revealing

operations over disguised data with Edna? (§8.2)

3. What overheads does Edna impose, and where do they come from? (§8.3)

4. How does the effort required to implement Edna’s functionality in a related system (Qap-

la [49]), and its performance, compare to using Edna? (§8.4)

5. What is the performance impact of composing Edna’s guarantees with those of encrypted

databases? (§8.5)

6. Which global database updates can Edna support, and with what overheads? (§8.6)

To evaluate Edna’s performance (§8.2), we compare Edna to a manual version of each dis-

guising transformation that directly modifies the database (e.g., via SQL queries that remove

data). Because the manual approach does not store disguised data, it lacks support for reveal-

ing and composition of multiple transformations.

All benchmarks run on a Google Cloud n1-standard-16 instance with 16 CPUs and 60 GB

RAM, running Ubuntu 20.04.5 LTS. Benchmarks run in a closed-loop setting, so throughput

and latency are inverses. The benchmarks use MariaDB 10.5 with the InnoDB storage engine

atop a local SSD.
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8.1 Edna Developer Effort

We evaluate the developer effort required to use Edna by measuring the difficulty of imple-

menting the disguising and revealing transformations in our three case studies. Each case

study required one person-day to implement for a developer familiar with Edna but unfamiliar

with the applications.

A developer supporting these transformations must first add application infrastructure to

allow users to invoke them and notify users when they happen. Developers must add these

even if they implement transformations without Edna. These changes add 179 LoC of Ruby

to Lobsters (out of 160k LoC total), and 312 LoC of Rust to the original WebSubmit (908

LoC). This code implements HTTP endpoints, authorization of anonymous users, and email

notifications.

A developer using Edna also writes disguise specifications and invokes Edna. Lobsters’ dis-

guise specifications are written in 518 LoC, WebSubmit’s in 75 LoC, and HotCRP’s in 357 LoC

(all in JSON). The specification size is proportional to the lines required to specify the database

schema in SQL, as well as how much data each application disguises. Update specifications for

the three Lobsters global database updates take 81 LoC. The global database updates them-

selves require 89 LoC, which a developer must write even without Edna.

Thus, the developer effort required to use Edna—writing Edna specifications, and invok-

ing Edna—requires adding <1k LoC per application (less than 1% of the code of real world

applications like Lobsters), even though these applications were not written with Edna in mind.

8.2 Performance of Edna Operations

Next, we evaluate Edna’s performance using WebSubmit, HotCRP, and Lobsters. We measure

the latency of common operations, disguising transformations, and operations over disguised

data enabled by Edna. These operations over disguised data include account restoration via

RevealData and editing disguised data via CanSpeakFor (§4.2.4). These three applications do

not create new data that reference pseudoprincipals (§4.2.3). Despite this, to fully capture any

overheads, we configure Edna to check for lingering pseudoprincipal references on revealing.

A good result for Edna would show no overhead on common operations, since Edna should

not be invoked on normal application execution paths. Edna’s performance should be com-

petitive with manual disguising, with the caveat that Edna needs to also encrypt and store

disguised data. Finally, Edna should have reasonable latencies for revealing operations sup-

ported only by Edna, which require both database queries and cryptographic operations. For

example, Edna should take only a few seconds for account restoration.
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(a) WebSubmit (2k users, 80 answers/user).
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(b) HotCRP (80 reviewers, 3k total users, 200–300 records/reviewer).
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Figure 8.1: Edna adds no latency overhead to common application operations and modestly in-
creases the latencies of disguising operations compared to a manual implementation that lacks
support for revealing or composition. Bars show medians, error bars are 5th/95th percentile
latencies.
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WebSubmit. We run WebSubmit with a database of 2k users, 20 lectures with four ques-

tions each, and an answer for each question for each user (160k total answers). We measure

end-to-end latency to perform common application operations (which each issue multiple SQL

queries), as well as disguising and revealing operations when possible (revealing operations

are impossible in the baseline). Figure 8.1a shows that common operations have comparable

latencies with and without Edna. Edna adds 9ms to account creation; disguising and revealing

operations also take longer in Edna (13.2–40.0ms), but allow users to reveal their data.

HotCRP. We measure server-side HotCRP operation latencies for Program Committee (PC)

members on a database seeded with 3,080 total users (80 PC members) and 550 papers

with eight reviews, three comments, and four conflicts each (distributed evenly among the

PC). HotCRP supports the same disguising transformations as WebSubmit, but PC users have

more data (200–300 records each), and HotCRP’s disguising transformations mix deletions

and decorrelations across 12 tables.

Figure 8.1b shows higher latencies than in WebSubmit in general, even for the manual base-

line, which reflects the more complex disguising transformations. Edna takes 64.4–79.5ms to

disguise and reveal a PC member’s data, again owing to the cryptographic operations involved.

HotCRP’s account anonymization is admin-applied and runs for all PC members, so its total

latency is proportional to the PC size. With 80 PC members, this transformation takes 6.4s,

which is acceptable for a one-off operation. As before, Edna adds small latency to common

application operations, and 9ms to account creation.

Lobsters. We run Lobsters benchmarks on a database seeded with 16k users, 120k stories,

and 300k comments with votes, comparable to the late-2022 size of production Lobsters [44].
Content is distributed among users in a Zipf-like distribution according to statistics from the

actual Lobsters deployment [34], and 20% of each user’s contributions are associated with the

topic to anonymize. The benchmark measures server-side latency of common operations and

disguising/revealing transformations.

The results are in Figure 8.1c. The median latencies for entire-account removal or decay

are small (9.9–13.8ms for Edna, and 4.6–5.8ms for the baseline), since the median Lobsters

user has little data. Revealing disguised accounts takes 17.1–22.0ms in the median. Highly

active users with lots of data raise the 95th percentile latency to ≈150ms for account removal

and 150ms for account restoration. Topic anonymization touches less data and is faster than

whole-account transformations, taking 4.0ms and 13.5ms for the median user to respectively

disguise and reveal.

Summary. Edna necessarily adds some latency compared to manual, irreversible data

removal, since it encrypts and stores disguised data. However, most disguising transforma-

tions are fast enough to run interactively as part of a web request. Some global disguising
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Figure 8.2: Applying disguising transformations to previously-decorrelated accounts increases
latency linear in the number of pseudoprincipals involved. Hatched lines indicate the propor-
tion of cost attributed to cryptographic operations.

transformations—e.g., HotCRP’s conference anonymization—take several seconds, but an ap-

plication can apply these incrementally in the background, as in Lobsters account decay.

8.2.1 Edna Performance Drill-Down

This section breaks down the cost of Edna’s operations into the cost of database operations

and the cost of cryptographic operations. Edna’s database operations are fast; in our proto-

type, they generally take 0.2–0.3ms but vary depending on the amount of data touched. Edna’s

cryptographic operations are comparatively expensive. PBKDF2 hashing for private key man-

agement incurs a 8ms cost and affects account registration and operations on disguised data

that reconstruct a user’s private key; this accounts for up to 79% of the cost of these operations

when they issue only a few database queries.

Encryption and decryption incur baseline costs of 0.1ms and 0.02ms respectively; their cost

grows linearly with data size. In the common case, disguising or revealing data performs two

cryptographic operations: one to encrypt or decrypt the diff and speaks-for records, and one

to encrypt or decrypt the ID at which they are stored.

Edna also generates a new key for each pseudoprincipal created, which takes 0.2ms. Edna’s

cryptography accounts for up to 35% of the cost of disguising/revealing operations such as ac-

count removal or anonymization; this proportion decreases as the number of database modifi-

cations made by a transformation increases. When the application applies multiple disguising

transformations and disguises the data of pseudoprincipals, this may require several encryp-

tions and decryptions. We evaluate this cost next.
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8.2.2 Composing Disguising Transformations

To understand the overhead of composing transformations in Edna (§5.5), we measure the cost

of composing account removal on top of a prior disguising transformation to anonymize and

decorrelate all users’ data. We consider WebSubmit and HotCRP, and compare three setups:

(i) manual account removal (as before); (ii) account removal and restoration without a prior

anonymization disguising transformation; and (iii) account removal and restoration with a

prior anonymization disguising transformation.

With prior anonymization, a subset of the user’s data has already been decorrelated when

removal occurs, and removal therefore performs per-pseudoprincipal encryptions of disguised

data with pseudoprincipals’ public keys. Restoring the removed, anonymized account must

then individually decrypt pseudoprincipal records and restore them. Hence, disguising and

revealing in the third setup—after a prior anonymization—should take time proportional to

the number of pseudoprincipals created by anonymization.

Figure 8.2 shows the resulting latencies. WebSubmit account removal and restoration la-

tencies increase by ≈1ms per pseudoprincipal (19.4ms and 22.4ms respectively). 50% of this

increased cost comes from the additional, per-pseudoprincipal encryption and decryption of

records, the rest comes from database operations.

HotCRP removal latencies also increase by≈1ms per pseudoprincipal (205.6ms) and restora-

tion latencies increase by ≈2ms per pseudoprincipal (392.0ms). Again, cryptographic op-

erations add ≈0.5ms per pseudoprincipal, and the remaining cost increase comes from per-

pseudoprincipal database queries and updates. Restoration requires additional per-pseudo-

principal queries to e.g., perform consistency checks, resulting in a greater latency increase

than in removal. Compared to accounts in WebSubmit, accounts in HotCRP have more data

and 14–15×more pseudoprincipals after anonymization, which accounts for the larger relative

slowdown and the increased effect of per-pseudoprincipal reveals.

WebSubmit and HotCRP do not create new references to pseudoprincipals after data is

disguised, but if they did, Edna would need to issue additional per-pseudoprincipal queries to

rewrite or remove these references (if configured to do so).

Importantly, disguising latencies stabilize when Edna composes further disguising transfor-

mations: since cost is proportional to the number of pseudoprincipals affected, latency does

not grow further once the application has maximally decorrelated data (to one pseudoprincipal

per record), as done by HotCRP anonymization.
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Component Pre-Delete (MB) Post-Delete (MB)
App Tables 261 290
Disguise Table (Disk) 0 35.1
Deleted Principals Table (Disk) 0 0.4
Principals Table (Disk) 2.6 14.1
User Shares Table (Disk) 8.9 8.9

Figure 8.3: The space usage of the Lobsters-Edna database increases by 87.5MB on disk (and
44MB in memory) after 10% of 16k users remove their accounts with Edna.

8.3 Edna Overheads

Edna adds both space and compute overheads to the application. Edna stores disguised data

and metadata by adding tables to the application DB. Furthermore, Edna may run disguis-

ing and revealing transformations simultaneously with normal application operations, thus

increasing the load on the system and affecting normal application operation throughput. This

section measures both of these overheads.

8.3.1 Space Used By Edna

To understand Edna’s space footprint, we measure the size of all data stored on disk by Edna

before and after 10% of users in Lobsters (1.6k users) remove their accounts. Cryptographic

material adds overhead and each generated pseudoprincipal adds an additional user to the

application database. Edna also stores data for each registered principal (a public key and a

list of opaque indexes) as well as encrypted records.

Figure 8.3 shows the increase in space used by Edna and the application after Edna disguises

10% of Lobsters users. Edna’s storage initially consumes 12 MB, which consists of entries in

the principals table and user shares table from the registration of all 16k users. Edna’s storage

space grows to 58.5 MB after the users remove their accounts, and the application database size

increases from 261 MB to 290 MB (+11%). Edna also caches this data using 44MB in memory.

The space used is primarily proportional to the number of pseudoprincipals produced: each

pseudoprincipal requires storing an application database record, a speaks-for record, and row

in the principal table. In this experiment, Lobsters produces 78.1k pseudoprincipals, which

accounts for the 29MB growth in application database size. Edna removes the public keys for

the 1.6k removed principals—subtracting from the principals table, but adding to the deleted

principals table—and removes the principals’ database data to store as encrypted diff records

in the disguise table, which uses 2.2 MB (0.8% of the original Lobsters database size of 261

MB).
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user with lots of data repeatedly disguising and revealing causes up to 8% drop in throughput
without transactions, and up to 28.3% drop in throughput with transactions. Higher bars are
better.

Edna’s storage thus produce noticeable overheads, but these overheads also mostly lie in

disk storage—a historically cheap medium. §9.1 discusses potential ways to reduce the costs

of Edna’s storage overheads.

8.3.2 Impact On Concurrent Application Use

For Edna to be practical, the throughput and latency of normal application requests by other

users should be largely unaffected by Edna’s disguising and revealing operations, even though

Edna may modify the same tables touched by normal application requests.

This section measures the impact of Edna’s operations on other concurrent requests in Lob-

sters. In the experiment, a set of users make continuous requests to the application that sim-

ulate normal use, while another distinct set of users continuously remove and restore their

accounts. Edna applies disguising transformations sequentially, so only one transformation

happens at a time. We measure the throughput of “normal” users’ application operations, both

without Edna operations (the baseline) and with the application continuously invoking Edna.

The Lobsters workload is based on request distributions in the real Lobsters deployment [34].
Since users’ disguising/revealing costs vary in Lobsters, we measure the impact of (i) ran-

domly chosen users invoking account removal/restoration, and (ii) the user with the most data

continuously removing and restoring their account (an expensive scenario). The results illus-

trate throughput under low load (≈20% CPU load), and high load (≈95% CPU load). Finally,
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we measure settings with and without a transaction for Edna transformations. A good result

for Edna would show little impact on normal operation throughput when concurrent disguising

transformations occur.

Figure 8.4 shows the results. If a random user disguises and reveals their data (the com-

mon case), normal operations are mostly unaffected by concurrent disguising and revealing:

throughput drops ≤4.2% without transactions and ≤7.2% with transactions (at high load).

This shows that Edna’s disguising and revealing transformations have acceptable impact on

other users’ application experience in the common case.

Constantly disguising and revealing the user with the most data (an expensive scenario) has

a larger effect, with throughput reduced by up to 7.7% without transactions and up to 28.3%

with transactions at both low and high load. This scenario disguises and reveals a user owning

1% of all the data in a database of 16k users, and demonstrates the upper bound on Edna’s

performance impacts when Edna runs large disguising and revealing transactions continuously.

Because the queries within disguise and reveal transactions touch 16 tables, all of which are

commonly read by normal application operations, this impact is expected: transactions in Mari-

aDB’s InnoDB storage engine lock any written tables, preventing application operations from

reading them until the transaction has completed. With transactions, the benchmark com-

pletes hundreds more disguising and revealing transformations within the same time period

than when run without transactions. This illustrates how Edna’s transactions, when touching

large amounts of data, can block the execution of normal application operations.

The latency of disguising operations depends on load: on average, disguising and revealing

transformations take <100ms. The expensive user’s account removal and revealing take 2.7

and 5.4 seconds under high load. This is acceptable under the expectation that users leave and

return to a service infrequently. Users may accept a couple seconds wait for account restoration,

and account removal can run in the background so latency has no impact on the disguising user.

8.4 Comparison to Qapla

This section compares Edna’s performance and the effort to use Edna to an implementation of

the same disguising and revealing functionality for WebSubmit using Qapla’s query rewriting

and access control policies. Unlike Edna, Qapla’s goal is not to create abstractions for disguised

data, but rather to enforce developer-specified data access policies. This section explores the

benefits of Edna—a design specifically tailored for disguising and revealing—compared to a

design that modifies an existing system (i.e., Qapla) to support disguised data.
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8.4.1 Effort

Specifying disguising transformations as Qapla policies requires more explicit reasoning about

transformations’ implementations and their compositions. In Qapla, a developer would realize

disguising transformations via metadata flags that they add to the schema (e.g., is_deleted

for removed data) and toggles in application code. They then provision Qapla with a predicate

that checks if this metadata flag is true before returning a row. Qapla’s predicates grow in

complexity with the number of disguising transformations that can compose. For example, an

application supporting both account removal and account anonymization must combine pred-

icates such that removal always takes precedence. Each additional transformation increases

the number of predicates whose combinations the developer must reason about. This contrasts

with Edna because developers working with Edna can add a transformation without thinking

about how this transformation composes with others. Developers must also optimize Qapla

predicates (e.g., reducing joins, adding schema indexes and index hints) to achieve reasonable

performance (§8.4.2).

To modify data, the application developer can use Qapla’s “cell blinding” mode, which dy-

namically changes column values (to fixed values) based on a predicate before returning query

results. The developer must manually implement more complex modifications and decorrela-

tion (i.e., creating pseudoprincipals and rewriting foreign keys).

Realizing WebSubmit transformations in Qapla required 576 lines of C/C++, and 110 lines

of Rust to add pseudoprincipal, modification, and decorrelation support.

Overall, we found that Qapla requires more developer effort than Edna, particularly in writ-

ing composable and performant predicates, and manually implementing modifications and

decorrelations. However, Qapla’s approach does make some things easier. Because data re-

mains in the database, revealing simply requires toggling metadata flags, and data to reveal

can adapt to database changes (e.g., schema updates). But keeping the data in the database

also means that developers cannot use Qapla to achieve GDPR-compliant data removal.

8.4.2 Performance

We measure Qapla’s performance (Figure 8.5) on the WebSubmit operations evaluated in §8.2

(Figure 8.1a). Qapla performs well on operations that require only writes, since Qapla does not

rewrite write queries. Removing and restoring accounts requires only a single metadata flag

update in Qapla, whereas Edna encrypts/decrypts user data and actually deletes it from the

database. However, Qapla rewrites all read queries, so Qapla performs poorly on operations

that require reads, such as listing answers and editing (disguised or undisguised) data. Qapla’s

query rewriting takes ≈1ms, and rewrites SELECT queries in ways that affect performance
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Figure 8.5: Edna achieves competitive performance with a manual baseline and outperforms
Qapla on nearly all common WebSubmit operations (2k users, 80 answers/user). Bars show
medians, error bars are 5th/95th percentile latencies.

(e.g., adding joins to evaluate predicates). Overall, Edna achieves better performance on read

operations.

8.5 Edna+CryptDB

We combine Edna with CryptDB to evaluate the cost of composing Edna’s guarantees with those

of encrypted databases. CryptDB protects undisguised database contents against attackers who

compromise the database server itself (with some limitations [33]), and therefore provides

complementary guarantees to Edna-like protections for disguised data.

Edna+CryptDB operates in CryptDB’s threat model 2 (database server and proxy can be

compromised). A developer using Edna+CryptDB deploys the application (and Edna) atop

a proxy that encrypts and decrypts database rows. Queries from Edna and the application

operate unchanged atop the proxy, but to ensure proper access to user data, the application

and Edna must handle user sessions. Edna+CryptDB handles keys in the same way as CryptDB:

Edna+CryptDB encrypts database rows with per-object keys, and object keys are themselves

encrypted with the public keys of the users who can access the object.

Edna+CryptDB exposes an API to log users in and out using their credentials. After a user

logs in, the application gives the proxy their private key, thus allowing decryption of their

accessible objects. Logging out deletes the user’s private key from the proxy and re-encrypts

their object keys, thus preventing the proxy from accessing those objects. Prior to applying

transformations to a user’s data, Edna+CryptDB performs a login to ensure that Edna+CryptDB
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Figure 8.6: Latencies of WebSubmit (2k users, 80 answers/user) operations when implemented
with Edna+CryptDB (adding encrypted database support). Bars show median latency; error
bars are 5th/95th percentile latencies.

has legitimate access to their data. Edna+CryptDB can access a user’s data if the user, an admin,

or someone sharing the data with the user is logged in.

The prototype supports only the CryptDB deterministic encryption scheme (AES-CMC en-

cryption), which limits it to equality comparison predicates. It also does not support joins, a

limitation shared with multi-principal CryptDB.

Performance. We measure the latency of WebSubmit operations like before, and compare

a manual baseline, Edna, and Edna+CryptDB. Edna+CryptDB is necessarily more expensive

than Edna, and a good result for Edna+CryptDB would therefore show moderate overheads

over Edna, and acceptable absolute latencies.

Figure 8.6 shows the results. Normal application operations are 2–3× slower with Edna+
CryptDB than with Edna. The largest overheads occur with operations that access many rows,

such as the admin viewing all answers. Disguising and revealing operations are also 2–6×
slower than with Edna.

These overheads result from the cryptographic operations and additional indirection in

Edna+CryptDB. Edna+CryptDB relies on a MySQL proxy, which adds latency: a no-op version

of this proxy makes operations 1.03-1.5× slower. Cryptographic operations themselves are

cheap (< 0.2ms), but every object inserted, updated, or read also requires lookups to find out

which keys to use, query rewriting to fetch the right encrypted rows, and execution of more

complex queries.

This is particularly expensive when the user owns many keys (e.g., the WebSubmit ad-

min). Admin-applied anonymization incurs the highest overhead (+143.6ms) as it issues many
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Attribute Normalize URL Add Story Texts Add Show Email
Global Update 68 LoC 19 LoC 2 LoC
Update Spec ∅ 54 LoC 27 LoC

Figure 8.7: Schema migrations that change the schema require writing separate reveal-time
update specifications; however, updates like normalizing URLs that transform database table
data can be used as update specifications.

queries to read user data and execute decorrelations. Among the common operations, an ad-

min getting all the answers for a lecture suffers similar overheads (+132.9ms).

Like CryptDB, Edna+CryptDB increases the database size (4–5× for our WebSubmit proto-

type). Edna+CryptDB also stores an encrypted object key and its metadata (1KB per key) for

each user with access to that object.

8.6 Global Database Updates

Adding support for global database updates to disguised data during reveal may both increase

developer effort and affect Edna’s performance. This section answers the following:

1. What categories of global database updates can Edna support, and with how much extra

developer effort? (§8.6.1)

2. What are the performance impacts of invoking Edna’s API to record an update, and to

apply updates during reveal? (§8.6.2)

8.6.1 Supporting Updates

Developers today already write global updates (e.g., Lobsters implements global updates as

Ruby Active Record Migrations [61]). If this code transforms row data (e.g., modifies a col-

umn value), a developer can reuse it as an update specification to Edna. In this case, the

developer need not write any additional code to add update support to disguised data with

Edna. However, in other instances, developers must write an additional reveal-time update

specification for Edna to apply. For example, schema changes (e.g., an ALTER TABLE com-

mand) require writing separate update specifications for Edna, which take as input a set of

rows instead of the table.

The Lobsters case study implements the selected three global updates (§7.1) in Rust in-

stead of Ruby Active Record Migration. Figure 8.7 shows the amount of code required per

operation, as well as the additional code required to add a corresponding reveal-time update

specification to give Edna. The reveal-time update specification to Edna reuses the global URL

normalization update code, since the global update changes rows one by one, and thus requires
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Update Type % Examples Example SQL

Schema Change 75
Create tables
Alter table columns
Add table indexes

ALTER TABLE users ADD COLUMN
show_email

Data Transformation 15 Moderate text
Normalize URLs

UPDATE stories SET url=
NORMALIZE(url)

Unsupported 10 Update cached story
vote count

UPDATE stories SET
vote_count=(SELECT COUNT(*)
FROM votes WHERE votes.story_id
= stories.id)

Figure 8.8: Out of the most recent 20 Lobsters global database updates, the majority (75%)
are schema changes which require developers to write separate update specifications for Edna.
15% are data transformations which can be reused as updates without additional effort, and
10% are unsupported because they rely on data external to the disguised data (values of ex-
ternal tables).

no additional code. However, the two schema changes that respectively add show_email and

add story_texts require the developer to write separate reveal-time updates that operate

on individual rows, taking 54 and 27 LoC respectively. Invoking Edna with the three differ-

ent global database updates for Lobsters required adding one line of code per update that the

application calls when performing the update.

In addition to the updates described and implemented in §7.1, we inspected the 20 most

recent global database updates in Lobsters from the past three years, and classified them as:

1. a data transformation such as URL normalization, which can be reused as an update spec

to Edna;

2. a schema change such as generating tables from other tables (e.g., story_texts from

stories) or altering columns, which requires writing a new update spec for Edna; or

3. an unsupported operation, such as updating the vote_count of comments based on the

number of votes, which relies on data external to the data disguised.

Figure 8.8 shows the distribution of 20 global updates among these three categories. Edna

supports all updates except those that update one table’s row based on another row’s contents.

Rows outside of the row to reveal may have changed since the developer applied the update,

and thus Edna cannot guarantee the correctness of these potentially nondeterministic updates

at the time of reveal. In the investigated Lobsters updates, two updates out of the 20 were

unsupported, and both updated the cached vote_count value of stories or comments. These

types of updates might occur in applications that optimize for performance by denormalizing
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Attribute Normalize URL Add Story Texts Add Show Email
Global Update 5.63s 5.24s 0.082s
Record Update 0.82ms 0.49ms 0.43ms
Update 1 story 0.22ms 0.01ms 0.01ms
Update 1 user <0.01ms <0.01ms 0.01ms
Update other row <0.001ms <0.001ms <0.001ms

Figure 8.9: Applying the various updates adds greater overheads per story than per user or
per other table row, as more updates apply to the stories table. URL normalization is the most
expensive update because initialization of a URL object takes 0.2ms.

their database schema (as the Lobsters developers did); we hypothesize that this category of

update would not exist with a normalized schema. However, these particular updates also

happen to be idempotent for any rows affected, and thus could be reapplied via a cron job

regularly to update revealed data.

Thus, for the large majority of global database updates, users can still reveal their data

disguised prior to these migrations, as if the migration had occurred with their data present in

the database.

8.6.2 Performance of Reveals with Updates

This section looks at how global updates affect application performance, and how logging

reveal-time update specs affects Edna’s reveal performance. Table 8.9 shows the results. Over-

all, the overheads from reveal-time updates increases with the amount of disguised data a user

wants to reveal. Users with little data (e.g., fewer than five stories) experience no visible in-

crease in reveal latency with updates, but users with lots of data can experience a noticeable

effect (e.g., revealing a user with 673 stories, 1971 comments, and 2000 messages takes on

average 4.67s instead of 4.50s, an increase of 3.8%). The rest of this section breaks down these

costs.

Global Update Performance. First, as a baseline, this section looks at the cost of performing

global updates, which applications already incur even without Edna (Table 8.9, line 1).

The global URL normalization update takes 5.63s, the longest of all updates. This matches

the optimized global update execution time of 6s in the deployed Lobsters application, which

normalizes the URLs of all stories in one batch.1 URL normalization modifies all 120k stories.

Adding the show_email attribute to the users table takes 82ms, as it performs only one

query to change the database schema.

1The Lobsters developers first implemented an unoptimized version of URL normalization that normalizes
stories one-by-one—this implementation took 1789s [45].
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Finally, creating and populating the story_texts table and removing a column from the

stories table takes 5.24s. This modifies all 120k stories, and changes the database schema

by adding tables and removing columns.

Record Update. Invoking RecordUpdate to insert a new update specification in Edna’s replay

log takes on average 0.58ms (Table 8.9, line 2), a small amount compared to the time to

perform the update/migration. This includes the time to persist the update (one database

insert query) and add it to Edna’s in-memory update replay log.

Reveal with Updates. Next, we evaluate the latency of reveal operations in Lobsters when

updates corresponding to the implemented three global updates are applied after reveal. Edna

applies update specifications to batches of data to reveal, but the cost of applying updates to

revealed data should still be proportional to the amount of data to reveal.

First, we measure the cost to apply the updates to diff record rows. Updating stories diff

records is the most costly, as both URL normalization and the story_texts updates apply:

this takes 0.2–0.3ms per story (Table 8.9, line 3). Diff records for modified or decorrelated

stories have both placeholder and original rows. Edna applies updates to both placeholder and

original rows, and thus updates take 0.5–0.6ms per storiesmodify or decorrelate diff record.

Initializing a URL normalizer object during the update takes a one-time cost of 0.2ms. Because

Edna applies updates to batches of rows of the same table (§6.4), Edna amortizes the cost of

URL normalizer initialization by creating a URL normalizer object only once per reveal (when

Edna reveals all stories).

Applying all three updates to users diff records incurs < 0.1ms per user: the show_email

update appends a single column to user rows (Table 8.9, line 4).

Although the three implemented updates do not affect other row types, the implementation

of Lobsters’ updates does iterate through all rows to check whether to update them. Each row

iteration takes≈1µs (Table 8.9, line 5). At scale (e.g., for a user with thousands of comments),

this cost can add up to a couple milliseconds over the entire reveal.

Finally, we measure the cost to restore updated rows to the database compared to the cost

to restore rows without updates.2 The cost to restore rows for all tables other than stories

remains the same with or without updates, since the queries to restore the rows are the same.

However, restoring a story now requires additional queries to perform consistency checks and

insert story_texts table rows, which add ≈0.6ms per story.

2Although restoring updated rows is more expensive than restoring the original rows, the application’s global
updates would have incurred the cost of updating these rows had the rows not been disguised at the time. Thus,
Edna moves the cost of updating these rows to reveal time, rather than global updates execution time (although
the cost may be higher because the update is not batched over all table rows).
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8.7 Summary

This evaluation used Edna to add seven disguising transformations to three web applications.

The benchmarks show that the effort required was reasonable, that Edna’s disguising and re-

vealing operations are fast enough to be practical, and that they impose little to moderate

overheads on normal application operation depending on the amount of data being disguised

or revealed.

91



92



Chapter 9

Conclusion

This thesis envisions a world in which web services routinely protect, store, and reveal dis-

guised user data with user permission. To move towards this goal, this thesis presents Edna,

a system that gives users flexible privacy control over their data via data disguising. With

Edna, developers can provide data disguising and revealing transformations that help users

protect inactive accounts, selectively dissociate personal data from public profiles, and remove

a web service’s access to their data without permanently losing their accounts. This thesis

demonstrates that Edna can support disguised data in real-world applications with reasonable

performance.

However, Edna is just the beginning. To truly achieve a world in which web applications

meet flexible privacy demands, several challenges remain unsolved, which we describe here as

future opportunities for research.

9.1 Deploying Disguised Data

Supporting disguised data in web applications that have millions of users, operate with low cost

margins, or distribute their compute and storage across multiple regions requires addressing

several issues.

Disguised Data Storage. With millions of users disguising their data, storage may become

costly for applications. Even though storage is historically cheap, and applications today will-

ingly store and retain user data nearly indefinitely, disguised data may eventually burden the

application (particularly since it cannot be sold or processed). Edna currently retains disguised

data until a user chooses to reveal it, which could be never. To address storage concerns, Edna

could allow applications to set reasonable, coarse-grained time limits (e.g., 10 years) on dis-

guised data, after which Edna will delete it.
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Deriving Value from Disguised Data. Support for disguised data enables users to protect

their privacy and return to the application if they wish—a potentially better solution than

permanent user deletion or decentralized approaches that move all user data out of the appli-

cation. However, with Edna, applications now store disguised data, but cannot derive value

from it, as it remains encrypted and confidential.

Cryptographic techniques such as additive homomorphic secret sharing as done in Zeph [9],
may enable Edna to support limited computation over disguised data (e.g., aggregations) and

allow applications to derive value from the encrypted data. However, such cryptographic ap-

proaches require some initial setup to determine whose data can be aggregated with whose (in

order to split the secrets appropriately) and who should be able to reveal the result. Further-

more, defining groups of users whose data can be combined raises concerns about what these

groups may reveal about their constituents.

Edna in Large-Scale Applications. Many web services, particularly those at scale, run on

machines in multiple regions and datacenters, and replicate and shard their database. While

distributed databases used by these applications (e.g., Spanner [18]) already implement paral-

lel, distributed, and large-scale transactions, Edna’s disguising and revealing transactions may

potentially impose high burdens on distributed databases due to the size and frequency of

these transactions. For example, a disguise might access many database tables spread across

multiple datacenters.

Today, many applications already break down large transactions into smaller pieces (at

the cost of transactional consistency) or run large transactions in batches overnight to reduce

their impact on database performance. Similarly, we can imagine Edna breaking down large

disguise and reveal transactions into multiple, per-table transactions, in order to not lock all

tables at once; or delaying their execution until night and notifying the user once their disguise

or reveal has completed.

9.2 Disguising Beyond Edna: Flexible Access Control

Disguising and revealing in Edna protects disguised data from parties external to the owning

user. However, disguising and revealing can also be useful in more nuanced settings, where

data is protected from different parties with different disguises. In these settings, disguising

and revealing may offer more flexible access control to regulate exposure of user data to web

application insiders.

In collaboration with Hannah Gross [32], we investigated using disguising abstractions to

allow applications to control exposure of user data to insiders. Such an approach could help

organizations whose employees need to query some data, but may not need to see all of it. Our
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work draws on the key observation that company employees do not always need all of the user

information that they can access. Just as Edna allows users to expose their data only while

using the application, perhaps the application can use disguising and revealing to only expose

user data to employees when they actually need and use it.

We envision a world where every employee uses a personalized disguised database that

contains the minimum amount of data they require to normally work. For example, a hotel

customer service representative might only need to be able to look at room occupancy and find

free rooms when not actively helping a customer. When an employee temporarily needs more

data, their disguised database would reveal only the minimum amount of data the employee

needs. For example, if a particular customer needs assistance, the employee currently helping

the customer should be able to temporarily reveal parts of their disguised database to dynam-

ically expose that user’s data. Different employees simultaneously helping different customers

can reveal different disguises to get a partially disguised view of the database individualized

for that employee. As soon as the employee no longer needs the user’s data, the employee’s

access returns back to its original, maximally disguised state.

To achieve this flexible access control, we need a database system that applies disguises and

dynamically reveals them at a per-employee granularity. A strawman solution might attempt

to do so with personalized database views (similar to the proposal in Multiverse DB [46]),
but this would require an enormous number of views (potentially one for each employee, and

for each reveal the employee requests). Furthermore, just as with Edna, disguises cannot

break the database: they would need to handle referential integrity, work even in the presence

of indexes and database views, and work with existing query optimizations without overly

affecting performance. Employees must also have the ability to flexibly perform fine-grained

reveals of their disguised views without compromising security. While Edna’s disguising and

revealing abstractions can help address some of these challenges (e.g., handling referential

integrity with decorrelation), achieving a database system for flexible access control requires

solving many new challenges.

9.3 Final Thoughts

User data increasingly lands in the hands of web services, eroding users’ ability to control the

privacy of their data as they wish. While Edna represents just one step towards improved

user data privacy on the web, this thesis demonstrates that with disguised data, applications

can support flexible privacy features beyond those offered to users today. Edna provides evi-

dence to both web services and regulators that flexible privacy features can be supported with

reasonable effort, and thus can and should be widely implemented and enforced.
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