
Privacy Heroes Need Data Disguises
Lillian Tsai

MIT CSAIL

Malte Schwarzkopf

Brown University

Eddie Kohler

Harvard University

Abstract
Providing privacy in complex, data-rich applications is hard.

Deleting accounts, anonymizing an account’s contributions,

and other privacy-related actions may require the traver-

sal and transformation of interwoven state in a relational

database. Finding the affected data is already nontrivial, but

privacy actions must additionally balance competing require-

ments, such as preserving data trails for legal reasons or

allowing users to change their mind. We believe a systematic

shared framework for specifying and implementing privacy

transformations could simplify and empower applications.

Our prototype, data disguising, supports fine-grained, nu-
anced, and useful policies that would be cumbersome to

implement manually, including reversible transformations

that can compose.

CCS Concepts
• Security and privacy→ Usability in security and privacy;
• Information systems → Database management system
engines.

ACM Reference Format:
Lillian Tsai, Malte Schwarzkopf, and Eddie Kohler. 2021. Privacy

Heroes Need Data Disguises. In Workshop on Hot Topics in Operat-
ing Systems (HotOS ’21), May 31-June 2, 2021, Ann Arbor, MI, USA.
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3458336.

3465284

1 Introduction
Applications today must support a range of data modifica-

tions to support user privacy. We call these privacy transfor-
mations. Laws like the EU’s General Data Protection Regu-

lation (GDPR) [13] and California’s Consumer Privacy Act

(CCPA) [4] codify transformations corresponding to some

user actions. When a user closes their account, the site

must generally delete “personally identifiable” user data, and

anonymize or delete other user contributions. Prudence and

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

HotOS ’21, May 31-June 2, 2021, Ann Arbor, MI, USA
© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8438-4/21/05.

https://doi.org/10.1145/3458336.3465284

Application
DB

Web Application

Disguising
Tool

Invoke
disguise

Apply
disguise

Application
queries

User Vaults

Disguise
Spec

Figure 1: A data disguising tool takes a developer’s disguise

specification and transforms a web application’s database

contents. Vaults (potentially encrypted and stored on third-

party storage) support reversible privacy transformations.

good practice recommend other transformations. For exam-

ple, a site might scrub or anonymize its older contents to

reduce the impact of a possible later breach, since the legal

consequences and reputational damage of breaches can be

substantial [22, 23, 31, 35, 42]. But though they are impor-

tant and legally required, privacy transformations remain

difficult to implement and are arguably understudied.

In this paper, we propose data disguising, a prototype

framework for specifying, implementing, and reasoning about

privacy transformations. Data disguising supports a broad

range of privacy transformations and separates the appli-

cation of privacy transformations (“data disguises”) from

application code. Developers provide disguise specifications

to an external disguising tool, which computes the neces-

sary database changes and applies them to the application’s

database backend (Figure 1). Applying a disguise transforms

the application data to meet a privacy-oriented goal (e.g.,

deleting users’ identifiers, or decorrelating identifying object

relationships) while preserving application invariants and

utility. It also can integrate new components, such as vaults
(secure storage locations for disguised data), to support more

nuanced policies than most current applications.

A systematic, yet flexible privacy transformation frame-

work such as data disguising could reduce developer burden

and ultimately improve user privacy on the web. However,

realizing it will require solving several research problems.

Real applications may benefit from supporting a wide range

of privacy policies that can apply to the same data. Spec-

ifying those policies is challenging, and the challenge can

growwhen disguises interact—for example, should a disguise

https://doi.org/10.1145/3458336.3465284
https://doi.org/10.1145/3458336.3465284
https://doi.org/10.1145/3458336.3465284

HotOS ’21, May 31-June 2, 2021, Ann Arbor, MI, USA Lillian Tsai, Malte Schwarzkopf, and Eddie Kohler

that deletes data associated with a user also delete formerly-
associated data that has since been anonymized? Static anal-

ysis and other techniques may be required to explain the

consequences of a disguise. Second, the performance impact

of data disguises could be substantial, especially for disguises

that transformmany database rows on a live application data-

base. Though these important challenges remain, our proof-

of-concept data disguising tool, Edna, already demonstrates

the potential of this approach.

2 Challenges of Privacy Transformations
Privacy transformations have two key challenges: the broad

range of possible policy choices for transformations, and

the difficulty of implementing those policies. The first chal-

lenge can be appreciated by surveying current applications’

policies around account deletion. Though many applications

support deletion, some retain data for legal or necessary busi-

ness purposes (e.g., Spotify fraud detection [40], Amazon

orders [17]); some delete public contributions, but keep pri-

vate messages unanonymized and visible to their recipients,

reflecting the shared nature of suchmessages [18, 21]; and yet

others keep public contributions visible but anonymize them,

reattributing the contribution to a placeholder user (e.g.,

GitHub’s “@ghost” [19], Reddit/Lobsters’ “[deleted]” [20,

28]). A system aiming to simplify privacy transformations

must thus support a range of operations, and implement

application-defined policy.

The second challenge arises because privacy transforma-

tions are inherently difficult (they require extensive tracing

of user identities through application data schemas), but

are also secondary to normal application functionality. Mod-

ifying or deleting data must not compromise application

functionality and preserve, for example, referential integrity

of an application’s relational database and other application

invariants. Furthermore, one applicationmay support several

interacting privacy transformations.

The complexity of implementing basic transformations

may have discouraged developers from supporting more nu-

anced policies. This is too bad, because where privacy is

concerned, nuance often benefits users. For example, con-

sider these useful policies that few applications support:

Reversible account deletion. GDPR and related laws

focus on irrevocable account deletion, which permanently

deletes a user’s information when they depart a platform.

Users may be more likely to proactively protect their pri-

vacy if they can return, i.e., if they can reverse their account

deletion. Facilitating easy return is also in the web service’s

commercial interest. A weak form of reversible transforma-

tion might preserve user data in the application’s database;

though this hides the data from external view, it leaves it

at risk to breaches and does not satisfy most legal require-

ments (e.g., GDPR). Stronger forms are possible, however:

the records required to reverse account deletion might be

in offline storage, or even encrypted and passed to the user

themselves or to their authorized third-party cloud storage.

Expiration. Inactive users’ accounts and data can make

a data breach much worse. Data expiration policies could

proactively anonymize or sanitize user contributions for

long-inactive users. Expiration policies should likely be re-

versible to support user return.

Data decay. Gradual loss of fidelity in old data might

strike a balance between the need to preserve historic infor-

mation and its inherent dangers. Gradual data decay policies

could apply increasingly strict privacy transformations over

time, aging out sensitive but outdated user data.

These policies, and especially reversible transformations,

were central to our thinking as we developed the data dis-

guise paradigm. But they come with serious technical chal-

lenges. Once applications support multiple, potentially re-

versible privacy transformations—whichmay be triggered ex-

plicitly by users (e.g., account deletion), or happen automati-

cally and apply across users (e.g., data decay)—applications

must correctly handle different interleaving of transforma-

tions that touch the same data.

3 A Nuanced Policy
To make this more concrete, we describe user scrubbing, a
specific nuanced privacy transformation that the HotCRP pa-

per review application should support. When a user deletes

their account in HotCRP today, the HotCRP code transitively

deletes all of the user’s data, including their reviews. How-

ever, the scientific review process generally requires that the

text of reviews be retained for some time (for reference by

authors and to justify decisions). Preserving reviews while

deleting their owner requires a nuanced policy that combines

anonymization with deletion.

Specifically, user scrubbing for a user Bea should: (1) Delete

Bea’s user account. (2) Delete information that’s only rele-

vant to Bea, such as Bea’s review preferences. (3) Delete Bea’s

contact author relationships to any submissions. (4) Select

or create a set of placeholder users. (5) Modify Bea’s other

retained data, such as reviews, to refer to the placeholder

users instead of Bea, thereby decorrelating the reviews from

Bea’s identity.

After the scrubbing completes, Bea’s review texts are still

in the system, but they are linked to different anonymous

placeholders, making them difficult to reassociate with one

another or with Bea. Placeholder users have suitable default

values; for example, placeholder users should be disabled,

ensuring they have no permissions and cannot log in. This

policy removes Bea’s relationship to submissions, but does

not remove the submissions themselves; a different policy

might go even further and automatically delete a submission

whose last author is scrubbed.

Privacy Heroes Need Data Disguises HotOS ’21, May 31-June 2, 2021, Ann Arbor, MI, USA

contactId: 19
name: Bea
email: bea@uni.edu

contactId: 295
name: Axolotl
email: None

contactId: 1718
name: Fossa
email: None

reviewId: 8
contactId: 19
...

DISGUISE

REVEAL

reviewId: 21
contactId: 19
...

reviewId: 8
contactId: 295
...

reviewId: 21
contactId: 1718
...

Figure 2: HotCRP’s user scrubbing disguise decorrelates

Bea’s reviews from Bea’s identity while maintaining referen-

tial integrity using anonymous placeholders.

disguise_name: "UserScrub",

user_to_disguise: $UID ,

tables:

ContactInfo:

generate_placeholder: [

("name", Random),

("email", Default(None)),

("disabled", Default(true)),

..

],

transformations: [Remove(pred: "contactId" = $UID)]

ReviewPreference:

transformations: [Remove(pred: "contactId" = $UID)]

Review:

transformations: [Decorrelate(

pred: "contactId" = $UID ,

foreign_key: ("contactId", ContactInfo)

)]

Figure 3: Part of a HotCRP user scrubbing disguise specifi-

cation. $UID refers to the user invoking the disguise.

Already, this policy is better than policies implemented

in HotCRP or other systems. However, we hope to improve

user experience further by making such policies reversible.
For example, a scrubbed user loses the ability to edit their

reviews; a scrubbed user might decide to temporarily reveal

their identity to HotCRP in order to fix a typo. Furthermore,

it is easy to imagine automatically applying such policies

after some time (e.g., two years after the conference), perhaps

to hide youthful reviewing sins.

4 Our Current Data Disguising Framework
We propose data disguising, a systematic approach to pri-

vacy transformations that separates them from application

code. We believe that data disguising systems will help sup-

port flexible privacy transformations. Data disguising repre-

sents privacy transformations as structured disguises that the
application developer specifies to capture an application’s

privacy policies. Applications invoke an external data dis-

guising tool’s API to apply disguises; the tool interprets the

specification and applies the necessary physical changes to

the database. Data disguising offers mechanisms to handle

interactions between disguises and reversible disguises.

4.1 Disguises: Structured Privacy Transformations

The broad range and application-specific nature of pri-

vacy transformations poses a real implementation challenge.

Most importantly, transformations must maintain the in-

tegrity of the application’s data in storage when applied. For

example, decorrelating users from their reviews could easily

violate referential integrity (i.e., no dangling foreign keys)

unless applied carefully. Data disguises’ structured nature

and automated application seeks to ensure this property.

Data disguises are built on three fundamental transfor-

mation operations—data removal, object content modifica-

tion, and decorrelation by modifying references between

objects—that can capture and structure many desirable pri-

vacy transformations. The application developer writes a

disguise specification for each of the application’s privacy

transformations. This specification consists of predicated

transformation operations on each table, which describe how

to transform objects of that table that satisfy the predicate.

The data disguising tool takes the disguise specification and

turns it into storage operations that appropriately rewrite

affected foreign keys.

Figure 2 illustrates how the tool performs the example

user account deletion disguise for Bea, when given a specifi-

cation like that in Figure 3. When her account is active, Bea’s

profile is associated with her true identity and her reviews.

When Bea deletes her account, her reviews move to privacy-

preserving placeholders, making it seem as if a different user

entered each of Bea’s reviews. This prevents an observer

from correlating these contributions to expose Bea’s identity,

but importantly preserves referential integrity.

4.2 Handling Disguise Interactions

Applications use disguises to achieve specific privacy goals,

but this can be complicated by interactions between different

disguises. Because disguises inherently reduce identifying

information, applying one disguise may change the outcome

of future disguises applied on top of it.

For example, consider two desirable disguises in HotCRP:

GDPR and ConfAnon. GDPR removes a user’s account (§3);

ConfAnon provides user privacy by anonymizing all confer-

ence data. These disguises touch the same data: applying

ConfAnon destroys information that GDPR would remove or

transform if applied to an unmodified database.

In some cases, the disguises compose naturally—e.g., there

is no need to decorrelate data that another disguise removed—

but in others, the tool may need to access the original data

to meet the application’s privacy goals. Data disguising pro-

vides the infrastructure and mechanisms to reveal data to

support of disguise composition; however, automatically de-

tecting when this is needed to achieve application privacy

goals remains an open challenge (§7).

Vaults provide the infrastructure to reveal previously dis-

guised data when necessary. A vault is a storage location not

HotOS ’21, May 31-June 2, 2021, Ann Arbor, MI, USA Lillian Tsai, Malte Schwarzkopf, and Eddie Kohler

accessible to application queries that stores reveal functions
for applied disguises. Applying these functions reveals the

underlying data transformed by a disguise (possibly tem-

porarily). The disguising tool generates the reveal functions

when applying a disguise, using the specification and the

disguised data.

Vaults admit various deployment models that have differ-

ent security and privacy properties. These include storing

vaults in offline storage, which provides a modicum of se-

curity, but makes access by the data disguising tool easy;

or having vaults stored entirely by some third party or lo-

cally by the user, with an API for disguise tool access. The

vault contents might be encrypted, and access might require

explicit approval by the user, who holds the private key.
1

Entries in a vault could also be configured to expire after

some time; making the corresponding disguises irreversible.

The vault deployment model can greatly affect the prac-

ticality of disguise reversal. For example, a reversible GDPR
must store reveal functions in per-user vaults external to the

application storage to be GDPR-compliant. While it is rea-

sonable to imagine accessing a single user’s vault to reverse

GDPR in this model, complete reversal of ConfAnon would

need to retrieve reveal functions from all users’ vaults, an

infeasible task. An alternative might be to provide multi-tier

security: the first tier stores reveal functions of non-GDPR

disguises in a global vault accessible to the disguising tool

and application, while the second tier stores reveal functions

from user-invoked disguises in external, per-user encrypted

vaults. We imagine that exploring different vault designs will

be an important part of data disguising research.

Reverting disguises. Reveal functions also help with ex-

plicit disguise reversal (e.g., a returning user): the applica-

tion invokes the disguising tool’s API to revert a previously

applied disguise. This reversal permanently reveals data,

restoring it to the application database. However, other dis-

guisesmay have affected the database contents in the interval

between the original disguising and the explicit reveal. To

ensure that any revealed data still respects other active dis-

guises, the tool keeps a persistent log of all disguises the

application applied, and re-applies disguises from the rele-

vant log interval to the revealed data.

For example, reversal of GDPR must avoid reintroducing

identifiable reviews if ConfAnon has occurred since GDPRwas
applied. The data disguising tool would applying the relevant

ConfAnon anonymization operations to any revealed data

from GDPR’s reversal before making it visible the application.

1
To protect against lost keys, the vault could be threshold encrypted with

a private key secret-shared [39] between the user, the web application,

and a trusted third party (e.g., the EFF), so that the user can authorize the

application and the third party to decrypt.

Application #Object Schema Disguise
Disguise Types LoC LoC

Lobsters-GDPR 19 318 100

HotCRP-GDPR 25 352 142

HotCRP-GDPR+ 25 352 255

HotCRP-ConfAnon 25 352 232

Figure 4: Data disguise specifications for Lobsters and

HotCRP have similar complexity to a relational schema.

Explicit application modifications to disguised data (other

than deletion) are harder to handle; the framework might

prohibit them, or log them to the relevant vaults.

5 Prototype
Our prototype disguising tool, Edna, is written in Rust and

provides data disguising for applications that use relational

databases. Disguises in Edna associate each table in the appli-

cation schema with a set of predicate-transformation pairs.

Predicates are arbitrary SQL WHERE clauses, which Edna uses

to select table rows to transform; a transformation is either

a removal, a decorrelation of a particular foreign key, or a

modification of a particular column. A modification takes

a closure over the original column value that returns the

updated value. For tables that are decorrelated, developers

describe how to find placeholders by providing per-column

closures over the original column value that return the place-

holder column value.

Edna represents vaults as (currently unencrypted) per-

user database tables. Reveal functions stored in vaults use the

original and updated states of objects touched by a reversible

disguise to generate the necessary operations to restore the

original state. Edna also keeps a disguise history table that

logs all disguises performed.

6 Case Studies
To evaluate the ease of writing disguises, we implement dis-

guises for GDPR deletion in Lobsters [27], an open-source

news feed application, and HotCRP [16]. We consider four

disguises: Lobsters-GDPR and HotCRP-GDPR implement the

current account deletion policies in the two applications [24,

28]. HotCRP-GDPR+ specifies a HotCRP account deletion pol-

icy that balances useful data retention with data deletion for

privacy (user scrubbing, §3), and HotCRP-ConfAnon specifies
the conference anonymization disguise for HotCRP.

Developer Effort. We would hope that writing disguises

involves similar labor and difficulty as writing relational

schemas. In particular, a developer should write a disguise

only once, and specify some reasonable number of predi-

cated transformations for each object type. Figure 4 shows

that the disguise specification for our applications is indeed

comparable in size to the applications’ schemas.

Privacy Heroes Need Data Disguises HotOS ’21, May 31-June 2, 2021, Ann Arbor, MI, USA

Performance. Data disguising faces several performance

challenges. As expected, we observe that the number of

queries performed by Edna to fetch and update the rele-

vant to-be-disguised objects grows linearly with the number

of objects. This disguise overhead is unavoidable: these mod-

ifications are crucial to applying the disguise. Edna currently

applies these changes in one large SQL transaction; batching,

parallelization, and asynchronous application could improve

performance. The importance of reducing the cost of disguise

application depends on the rate of disguising, which may

range from rare (as in today’s applications) to quite frequent

(in a privacy-supporting world where users freely disguise

and reveal themselves, or data expires).

Disguise interdependencies can further increase the cost of

disguising: when applying a disguise, Edna not only modifies

objects, but may also read and apply reveal functions from

vaults. In the worst case, Edna might need to read, reverse,

and reapply all previous reversible disguises in their entirety.

We evaluate the estimated cost of vault operations and dis-

guise composition in an experiment with a HotCRP database

with 430 users (30 PC members), 450 papers, and 1400 re-

views. We first invoke Edna with two independent disguises:

two HotCRP-GDPR+ disguises for different users. We then

compare the cost of invoking HotCRP-GDPR+ after having ap-
plied HotCRP-ConfAnon, a conflicting but reversible disguise.
Applying a PCmember’s HotCRP-GDPR+ after having applied
an independent HotCRP-GDPR+ takes 135ms on average. The

same HotCRP-GDPR+ disguise applied after HotCRP-ConfAnon
takes 452ms on average; HotCRP-ConfAnon itself takes about
7,000ms. The added overhead stems from Edna’s temporarily

recorrelation of objects using reveal functions so it can cor-

rectly remove them. While this selective reintroduction of

data from user vaults is not free, it is cheaper than completely

undoing the prior HotCRP-ConfAnon disguise.

Whenwe apply a (manual) optimization that avoids unnec-

essarily redoing decorrelation actions that have already been

taken by HotCRP-ConfAnon, the latency for HotCRP-GDPR+
after HotCRP-ConfAnon drops to 118ms. We imagine that we

will be able to use static analysis of the disguise and schema

to automate this optimization in the future.

7 Discussion
Data disguising simplifies implementing privacy transfor-

mations. However, our proposed data disguising framework

still leaves open questions.

For instance, we provide mechanisms for a disguising tool

to handle disguise composition, but do not yet answer how

the disguise specification communicates an application’s pri-

vacy goals and how the tool decides when to utilize vaults

and reveal functions. If only one disguise is ever applied

(e.g., GDPR), the disguise specification’s operations may com-

pletely state the application’s privacy goals (e.g., de-identify

the user). However, with multiple, co-dependent disguises,

the tool may reach an end-state that fails to achieve the

application’s privacy goals if it merely applies the disguise

operations. How to convey the application’s privacy goals

to the disguising tool is a challenging research problem. One

possibility might be to ask developers to write assertions

over the end-state of application data after a disguise has

been applied (e.g., “user no longer has any reviews”). If these

assertions were amenable to static analysis, the tool could,

before applying any disguises, determine which mechanisms

need to be utilized to appropriately apply each disguise. Or

perhaps assertions could be arbitrary predicates over the

end-state, which the tool would check after disguise applica-

tion to ensure the state adheres to the application’s privacy

goals; if these checks fail, the tool would revert the disguise

and try again with a different mechanism until it passes the

checks, or notify the developer of an error.

Furthermore, our framework does not answer how dis-

guises composewith normal application changes to disguised

data. Application updates may alter the scope of a disguise

(i.e., changing the set of objects satisfying a disguise predi-

cate). In addition, data introduced by a reveal function may

lack application updates that occurred since the original dis-

guise. One possible solution is to make such updates them-

selves disguises, and store metadata about them in vaults, but

this would be expensive. Another solution would prohibit

updates to disguised data (which limits the application).

Finally, more research is required to handle updates to the

application schema or disguise specifications in a system that

has already applied disguises. Database schema evolution

research [10] may offer insights into supporting disguises

and disguise reversals after such updates.

Data disguising also has some clear limitations. It assumes

that application objects capture all data that needs transform-

ing; application snapshots, backups, or external data copies

are out of scope, and require e.g., taint tracking techniques.

Data disguising also importantly does not provide privacy

guarantees beyond the specification. Privacy goals are nec-

essarily application-specific, and data disguising is only as

good as the developer-written specification. We imagine that

data analysis tools and heuristics can help developers im-

prove or catch errors in disguise specifications, similar to

e.g., techniques for detecting incorrect deletion [9].

8 Related Work

Two prior systems for personal data deletion are partic-

ularly relevant to data disguising: Sypse [11], which pseu-

donymizes user data and partitions personally identifying

information (PII) from other data, and DELF [9], a framework

for data deletion at Facebook. While Sypse also traverses for-

eign keys, its design is application-oblivious, and leaves the

HotOS ’21, May 31-June 2, 2021, Ann Arbor, MI, USA Lillian Tsai, Malte Schwarzkopf, and Eddie Kohler

specification of what counts as PII as future work. Data dis-

guising provides a way to specify sensitive data and correla-

tions, as well as application-specific transformations. Instead

of constantly maintaining data partitions (as Sypse does),

data disguising adapts the physical database on disguising.

DELF [9] helps developers write correct data deletion code,

and uses annotations on application edge and object types to

specify a deletion policy. DELF focuses only on data deletion,

while data disguising targets broader privacy transforma-

tions, including decorrelation.

Database designs for GDPR compliance [25, 38] track
the owner of data objects and erase them when requested

under the GDPR. They either modify the data layout [38] or

use fine-grained information flow tracking (IFC) to determine

PII propagation and restrict access [25]. Data disguising can

be employed for GDPR compliance, but supports nuanced

privacy transformations beyond deleting PII, and requires

no ownership tracking or fine-grained IFC.

Other systems enforce developer-specified visibility and
access control policies based on general information flow

control approaches [8, 14, 15, 37, 41], authorized views [3]

or per-user views [29], and rewriting database queries [30,

34]. Data disguising transforms the actual data stored.

Privacy-preserving data mining approaches, such as 𝑘-

anonymity, 𝑙-diversity, and differential privacy [1, 12], pro-

vide statistical privacy guarantees. These complement

data disguising: disguise predicates might be based on differ-

ential privacy, for example.

Finally, clean-slate designs for user-centric data owner-
ship paradigms seek to “decentralize” the internet [2, 5–7,

26, 32, 33, 36], granting ultimate control over data to end-

users. These systems are an extreme realization of per-user

vaults: they typically lack the capacity for server-side com-

pute, burden users with long-term data maintenance, and

break the current application revenue model. In contrast,

data disguising helps developers specify and automate pri-

vacy transformations without changing the application data

model or business model.

Acknowledgments
We thank M. Frans Kaashoek, Shriram Krishnamurthi and

members of the MIT PDOS group for feedback on earlier

version of this paper. This work was supported by NSF

awards CSR-1704172, CSR-1704376, and CSR-2045170, and by

a Google Research Scholar Award. Lillian Tsai is supported

by an NSF GRFP.

References
[1] Charu C. Aggarwal and Philip S. Yu. “A General Survey of

Privacy-Preserving Data Mining Models and Algorithms”.

In: Privacy-Preserving Data Mining: Models and Algorithms.

Edited by Charu C. Aggarwal and Philip S. Yu. Boston, MA:

Springer US, 2008, pages 11–52.

[2] Muneeb Ali, Ryan Shea, Jude Nelson, and Michael J. Freed-

man. Blockstack Technical Whitepaper v1.1. url: http://cs.
brown.edu/courses/csci2390/readings/blockstack-v1.1.pdf

(visited on 06/05/2020).

[3] Kristy Browder and Mary Ann Davidson. “The Virtual Pri-

vate Database in Oracle9iR2”. In: Oracle Technical White
Paper, Oracle Corporation 500.280 (2002).

[4] California Legislature. The California Consumer Privacy Act
of 2018. June 2018. url: https://leginfo.legislature.ca.gov/
faces/billTextClient.xhtml?bill_id=201720180AB375.

[5] Tej Chajed, Jon Gjengset, Jelle van den Hooff, M. Frans

Kaashoek, James Mickens, Robert Morris, and Nickolai Zel-

dovich. “Amber: Decoupling User Data from Web Applica-

tions”. In: Proceedings of the 15th Workshop on Hot Topics in
Operating Systems (HotOS). Kartause Ittingen, Switzerland,
May 2015.

[6] Tej Chajed, Jon Gjengset, M. Frans Kaashoek, JamesMickens,

Robert Morris, and Nickolai Zeldovich. Oort: User-Centric
Cloud Storage with Global Queries. Technical report MIT-

CSAIL-TR-2016-015. MIT CSAIL, 2016.

[7] Ramesh Chandra, Priya Gupta, and Nickolai Zeldovich. “Sep-

arating Web Applications from User Data Storage with

BSTORE”. In: Proceedings of the 2010 USENIX Conference
on Web Application Development (WebApps). Boston, Mas-

sachusetts, USA, 2010.

[8] Adam Chlipala. “Static Checking of Dynamically-Varying

Security Policies in Database-Backed Applications”. In: Pro-
ceedings of the 9th USENIX Symposium on Operating Systems
Design and Implementation (OSDI). Jan. 2010, pages 105–118.

[9] Katriel Cohn-Gordon, Georgios Damaskinos, Divino Neto,

Joshi Cordova, Benoít Reitz, Benjamin Strahs, Daniel Oben-

shain, Paul Pearce, and Ioannis Papagiannis. “DELF: Safe-

guarding deletion correctness in Online Social Networks”. In:

Proceedings of the 29th USENIX Security Symposium (USENIX
Security). Aug. 2020.

[10] Carlo Curino, Hyun Jin Moon, Alin Deutsch, and Carlo Zan-

iolo. “Automating the database schema evolution process”.

In: The VLDB Journal 22.1 (2013), pages 73–98.
[11] Amol Deshpande. “Sypse: Privacy-first Data Management

through Pseudonymization and Partitioning”. In: Proceed-
ings of the 2021 Conference on Innovative Data Systems Re-
search (CIDR). Chaminade, California, USA, Jan. 2021.

[12] Cynthia Dwork. “Differential privacy: A survey of results”.

In: Proceedings of the International Conference on Theory
and Applications of Models of Computation. Springer. 2008,
pages 1–19.

[13] “Regulation (EU) 2016/679 of the European Parliament and

of the Council of 27 April 2016 on the protection of natural

persons with regard to the processing of personal data and

on the free movement of such data, and repealing Directive

95/46/EC (General Data Protection Regulation)”. In: Official
Journal of the European Union L119 (May 2016), pages 1–88.

http://cs.brown.edu/courses/csci2390/readings/blockstack-v1.1.pdf
http://cs.brown.edu/courses/csci2390/readings/blockstack-v1.1.pdf
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180AB375
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180AB375

Privacy Heroes Need Data Disguises HotOS ’21, May 31-June 2, 2021, Ann Arbor, MI, USA

[14] Daniel B. Giffin, Amit Levy, Deian Stefan, David Terei, David

Maziéres, John C. Mitchell, and Alejandro Russo. “Hails: Pro-

tecting Data Privacy in Untrusted Web Applications”. In:

Proceedings of the 10th USENIX Symposium on Operating
Systems Design and Implementation (OSDI). Hollywood, Cal-
ifornia, USA, Oct. 2012, pages 47–60.

[15] Katia Hayati and Martín Abadi. “Language-Based Enforce-

ment of Privacy Policies”. In: International Workshop on
Privacy Enhancing Technologies. Springer. 2004, pages 302–
313.

[16] HotCRP.com. url: https://hotcrp.com (visited on 02/03/2021).

[17] Amazon.com Inc. Amazon.com Privacy Notice. Jan. 2020. url:
https://www.amazon.com/gp/help/customer/display.html?

nodeId=GX7NJQ4ZB8MHFRNJ (visited on 12/17/2020).

[18] Facebook Inc. Data Policy. Aug. 2020. url: https://www.

facebook.com/about/privacy (visited on 12/17/2020).

[19] GitHub Inc. GitHub Privacy Statement. Nov. 2020. url: https:
//docs.github.com/en/free-pro-team@latest/github/site-

policy/github-privacy-statement (visited on 12/17/2020).

[20] Reddit Inc. Reddit Privacy Policy. Sept. 2020. url: https://
www.redditinc .com/policies/privacy- policy (visited on

12/17/2020).

[21] Twitter Inc. Twitter Privacy Policy. June 2020. url: https:

//twitter.com/en/privacy (visited on 12/17/2020).

[22] Mike Isaac and Sheera Frenkel. Facebook Security Breach
Exposes Accounts of 50 Million Users. Sept. 2018. url: https:
//www.nytimes.com/2018/09/28/technology/facebook-

hack-data-breach.html (visited on 12/19/2020).

[23] Rebecca Klar. Twitter becomes first US tech firm fined for
EU privacy law violation. Dec. 2020. url: https : / / thehill .
com/policy/technology/530238-twitter-becomes-first-us-

tech-firm-fined-for-eu-privacy-law-violation (visited on

12/19/2020).

[24] Eddie Kohler. HotCRP.com privacy policy. Aug. 2020. url:
https://hotcrp.com/privacy (visited on 12/07/2020).

[25] Tim Kraska, Michael Stonebraker, Michael Brodie, Sacha

Servan-Schreiber, and Daniel Weitzner. “SchengenDB: A

Data Protection Database Proposal”. In: Heterogeneous Data
Management, Polystores, and Analytics for Healthcare. Edited
by Vijay Gadepally, Timothy Mattson, Michael Stonebraker,

FushengWang, Gang Luo, Yanhui Laing, andAlevtinaDubovit-

skaya. Springer, 2019, pages 24–38.

[26] Maxwell Krohn, Alex Yip, Micah Brodsky, Robert Morris,

and Michael Walfish. “A World Wide Web Without Walls”.

In: Proceedings of the 6th ACM Workshop on Hot Topics in
Networking (HotNets). Atlanta, Georgia, USA, Nov. 2007.

[27] Lobsters. url: https://lobste.rs (visited on 02/03/2021).

[28] Lobsters. Privacy Policy. url: https : / / lobste . rs / privacy
(visited on 12/17/2020).

[29] Alana Marzoev, Lara Timbó Araújo, Malte Schwarzkopf,

Samyukta Yagati, Eddie Kohler, Robert Morris, M. Frans

Kaashoek, and SamMadden. “TowardsMultiverse Databases”.

In: Proceedings of the 17th Workshop on Hot Topics in Operat-
ing Systems (HotOS). 2019, pages 88–95.

[30] Aastha Mehta, Eslam Elnikety, Katura Harvey, Deepak Garg,

and Peter Druschel. “Qapla: Policy Compliance for Database-

Backed Systems”. In: Proceedings of the 26th USENIX Security
Symposium (USENIX Security). Vancouver, British Columbia,

Canada, Aug. 2017, pages 1463–1479.

[31] Eliabeth Montalbano. Data from August Breach of Amazon
Partner Juspay Dumped Online. Jan. 2021. url: https://threa
tpost.com/data-from-august-breach-of-amazon-partner-

juspay-dumped-online/162740 (visited on 01/06/2021).

[32] Richard Mortier, Jianxin Zhao, Jon Crowcroft, Liang Wang,

Qi Li, Hamed Haddadi, Yousef Amar, Andy Crabtree, James

Colley, Tom Lodge, et al. “Personal Data Management with

the Databox: What’s Inside the Box?” In: Proceedings of the
2016 ACM Workshop on Cloud-Assisted Networking. 2016,
pages 49–54.

[33] Shoumik Palkar and Matei Zaharia. “DIY Hosting for Online

Privacy”. In: Proceedings of the 16th ACM Workshop on Hot
Topics in Networks (HotNets). 2017, pages 1–7.

[34] Primal Pappachan, Roberto Yus, SharadMehrotra, and Johann-

Christoph Freytag. Sieve: A Middleware Approach to Scal-
able Access Control for Database Management Systems. 2020.
arXiv: 2004.07498 [cs.DB].

[35] Nicole Perlroth, Amie Tsang, and Addam Satariano.Marriott
Hacking Exposes Data of Up to 500 Million Guests. Dec. 2018.
url: https : / /www.nytimes . com/2018/11/30/business /

marriott-data-breach.html (visited on 12/19/2020).

[36] Andrei Vlad Sambra, EssamMansour, Sandro Hawke,Maged

Zereba, Nicola Greco, Abdurrahman Ghanem, Dmitri Za-

gidulin, Ashraf Aboulnaga, and Tim Berners-Lee. Solid: a
platform for decentralized social applications based on linked
data. Technical report. MIT CSAIL & Qatar Computing Re-

search Institute, 2016.

[37] David Schultz and Barbara Liskov. “IFDB: Decentralized

Information Flow Control for Databases”. In: Proceedings
of the 8th ACM European Conference on Computer Systems
(EuroSys). 2013, pages 43–56.

[38] Malte Schwarzkopf, Eddie Kohler, M. Frans Kaashoek, and

Robert Morris. “GDPR Compliance by Construction”. In:

Heterogeneous Data Management, Polystores, and Analytics
for Healthcare. Edited by Vijay Gadepally, Timothy Mattson,

Michael Stonebraker, Fusheng Wang, Gang Luo, Yanhui

Laing, and Alevtina Dubovitskaya. Springer, 2019, pages 39–

53.

[39] Adi Shamir. “How to Share a Secret”. In: Communications of
the ACM 22.11 (Nov. 1979), pages 612–613.

[40] Spotify. Spotify Privacy Policy. Jan. 2020. url: https://www.
spotify.com/us/legal/privacy-policy (visited on 12/17/2020).

[41] Jean Yang, Kuat Yessenov, and Armando Solar-Lezama. “A

Language for Automatically Enforcing Privacy Policies”. In:

ACM SIGPLAN Notices 47.1 (2012), pages 85–96.
[42] Raymond Zhong. Quora, the Q. and A. Site, Says Data Breach

Affected 100 Million Users. Dec. 2018. url: https : / /www.

nytimes.com/2018/12/04/technology/quora-hack-data-

breach.html (visited on 12/19/2020).

https://hotcrp.com
https://www.amazon.com/gp/help/customer/display.html?nodeId=GX7NJQ4ZB8MHFRNJ
https://www.amazon.com/gp/help/customer/display.html?nodeId=GX7NJQ4ZB8MHFRNJ
https://www.facebook.com/about/privacy
https://www.facebook.com/about/privacy
https://docs.github.com/en/free-pro-team@latest/github/site-policy/github-privacy-statement
https://docs.github.com/en/free-pro-team@latest/github/site-policy/github-privacy-statement
https://docs.github.com/en/free-pro-team@latest/github/site-policy/github-privacy-statement
https://www.redditinc.com/policies/privacy-policy
https://www.redditinc.com/policies/privacy-policy
https://twitter.com/en/privacy
https://twitter.com/en/privacy
https://www.nytimes.com/2018/09/28/technology/facebook-hack-data-breach.html
https://www.nytimes.com/2018/09/28/technology/facebook-hack-data-breach.html
https://www.nytimes.com/2018/09/28/technology/facebook-hack-data-breach.html
https://thehill.com/policy/technology/530238-twitter-becomes-first-us-tech-firm-fined-for-eu-privacy-law-violation
https://thehill.com/policy/technology/530238-twitter-becomes-first-us-tech-firm-fined-for-eu-privacy-law-violation
https://thehill.com/policy/technology/530238-twitter-becomes-first-us-tech-firm-fined-for-eu-privacy-law-violation
https://hotcrp.com/privacy
https://lobste.rs
https://lobste.rs/privacy
https://threatpost.com/data-from-august-breach-of-amazon-partner-juspay-dumped-online/162740
https://threatpost.com/data-from-august-breach-of-amazon-partner-juspay-dumped-online/162740
https://threatpost.com/data-from-august-breach-of-amazon-partner-juspay-dumped-online/162740
https://arxiv.org/abs/2004.07498
https://www.nytimes.com/2018/11/30/business/marriott-data-breach.html
https://www.nytimes.com/2018/11/30/business/marriott-data-breach.html
https://www.spotify.com/us/legal/privacy-policy
https://www.spotify.com/us/legal/privacy-policy
https://www.nytimes.com/2018/12/04/technology/quora-hack-data-breach.html
https://www.nytimes.com/2018/12/04/technology/quora-hack-data-breach.html
https://www.nytimes.com/2018/12/04/technology/quora-hack-data-breach.html

	Abstract
	1 Introduction
	2 Challenges of Privacy Transformations
	3 A Nuanced Policy
	4 Our Current Data Disguising Framework
	4.1 Disguises: Structured Privacy Transformations
	4.2 Handling Disguise Interactions

	5 Prototype
	6 Case Studies
	7 Discussion
	8 Related Work

