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Abstract
TAO is a system that optimizes the execution of unit tests
in large software programs and reduces the programmer
wait time from minutes to seconds. TAO is based on two
key ideas: First, TAO focuses on efficiency, unlike past
work that focused on avoiding false negatives. TAO imple-
ments simple and fast function-level dependency tracking
that identifies tests to run on a code change; any false neg-
atives missed by this dependency tracking are caught by
running the entire test suite on a test server once the code
change is committed. Second, to make it easy for pro-
grammers to adopt TAO, it incorporates the dependency
information into the source code repository. This paper
describes an early prototype of TAO and demonstrates
that TAO can reduce unit test execution time in two large
Python software projects by over 96% while incurring
few false negatives.

1 Introduction
After fixing a bug or implementing a new feature in a
software project, programmers typically run unit tests to
check that the individual components of the software con-
tinue to function correctly, before committing their code
changes to the software’s source code repository. Many
open source projects, such as the Twisted networking en-
gine [3] and the Django web application framework [1],
mandate that all unit tests pass before accepting a pro-
grammer’s commits into the source code repository [2].

Because programmers run unit tests interactively, a unit
test suite is generally expected to run within a few seconds.
However, large software projects like Django have unit
test suites with several thousand tests and take tens of
minutes to complete. This significantly increases the wait
time of programmers, making them less productive. It
also raises the likelihood that a programmer does not

run the unit test suite before committing code changes,
increasing the chances of a bug in the committed code.

Therefore, in practice, software projects use several
approaches to reduce running time of unit tests. One
approach is to offload running of unit tests to a test exe-
cution server after the programmer commits the changed
code to the repository; however, unlike in interactive test
execution, it takes longer for the programmer to learn of a
test failure and fix the bug, thereby reducing programmer
productivity. Another approach is to have the program-
mer manually select the tests to run; for example, the
programmer could run the full test suite once and if a test
fails, only rerun that test while fixing the bug that caused
it, and finally rerun the full suite before committing to
the source repository. This approach, however, burdens
the programmer in avoiding unintentional changes tested
by other unit tests, thus making them less productive in
developing large software projects.

Past work has proposed regression test selection (RTS)
techniques [5, 8, 12] to address the limitations of the
above approaches. At a high level, RTS’s goal is to iden-
tify and run the tests whose results may change due to a
source code modification. To identify those tests, RTS
analyzes a software’s source code as well as the past
executions of the software’s test suite, and computes de-
pendencies of each test on the software’s code elements
such as functions, classes, or basic blocks. When a pro-
grammer modifies the source code, RTS identifies the
code elements affected by the modification, and uses its
dependency information to flag the tests whose results
may change and thus need to be rerun.

Though RTS has the potential to reduce unit test ex-
ecution time, it is not used in practice, and we are not
aware of a real-world unit testing framework that employs
RTS. An important reason for this is that existing RTS
techniques focus on avoiding false negatives, and so flag
any test that may be affected by a code change; in practice,
this results in too many false positives. For example, if a
commit adds a new static variable to a Python class, ex-
isting RTS techniques rerun all tests that loaded the class.
However, in practice many of these are false positives
(see §4 and [7]); typically it is sufficient to run a much
smaller set of tests that only executed functions which
were modified to access the new variable.
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We used this observation to design TAO,1 a practical
system to optimize unit test execution. TAO’s key con-
tribution is in making RTS practical by addressing two
challenges. The first challenge is that TAO should be
efficient—the total time to identify and execute the af-
fected tests with TAO should be a fraction of time needed
to run the unit tests without TAO. TAO does this by track-
ing only function-level dependencies, which is fast and
in practice has low false positives. During test execu-
tion, TAO tracks which functions were accessed by each
test; when the programmer modifies the program’s source,
TAO analyzes the diff to determine the functions that were
modified and executes only the tests that accessed those
functions. In return for this efficiency, TAO gives up on
false negatives; as function-level dependency tracking is
not complete, TAO can miss some tests whose results may
change due to the code change (see §2 for examples). In
practice, such false negatives are uncommon (§4), and
to catch them TAO runs the complete test suite on a test
server after every commit; only for these few false nega-
tives does the programmer learn of any failures at a later
time.

The second challenge faced by TAO is bootstrapping
TAO’s dependency analysis and keeping it up-to-date as
the source code evolves: TAO loses its usefulness if a
programmer has to run all unit tests to generate TAO’s
dependency information every time she updates from the
source repository. To solve this problem, TAO augments
a source tree’s repository with a dependency server that
stores the dependency information for each version of the
source tree, much like symbol servers that store debug
symbols for different versions of software packages. TAO
uses dependency information from the dependency server
to determine unit tests to run for a code change. Before
code is committed to the source code repository, TAO
runs the unit tests affected by the code changed by the
commit, generates incremental dependency information
for the affected unit tests, and updates the dependency
server.

We have implemented a prototype of TAO for Python,
and integrated it with PyUnit, the standard unit-testing
framework for Python. This makes it easy for Python
programmers who already use PyUnit to take advantage of
TAO. We evaluated TAO with two large Python software
projects, Django and Twisted, and demonstrate that for
recent source code commits to these projects, TAO runs
unit tests in an average of 0.3% and 3.1% of the time
required to run the unit tests without TAO, suggesting the
TAO’s unit test optimization works well in practice.

In the rest of this paper, §2 describes TAO’s design, §3
describes TAO’s implementation, §4 presents the results of
our preliminary evaluation, §5 summarizes related work,
and §6 concludes.

1TAO stands for Test Analyzer and Optimizer.
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Figure 1: Programmer workflow while using TAO for unit testing. The
dotted lines show the update of the local source tree from the repository
server, and local dependency information from the dependency server.
The shaded boxes illustrate the programmer’s development cycle and
TAO’s optimized execution of unit tests. The dashed lines indicate
committing changes in code and dependency information to the servers,
and the running of the full unit test suite on the test server after every
commit.

2 Design
Figure 1 illustrates the programmer workflow with TAO.

When a programmer clones a local source tree from a
repository server, the dependency information for unit
tests in that version of the source is downloaded by TAO
from the dependency server. After modifying the source,
when the programmer runs unit tests, TAO analyzes the
source modifications to determine the modified functions,
and uses the dependency information to select tests to run.
Finally, when the programmer commits changed source
to the repository server, TAO generates the dependency
information for the new version of the source and uploads
it to the dependency server. The rest of this section de-
scribes TAO’s dependency analysis and management in
more detail.

Dependency tracking. Dependency tracking in TAO
consists of runtime interception and static analysis com-
ponents. When unit tests are run, TAO intercepts every
function executed by each unit test, and constructs a de-
pendency map of functions to unit tests that executed the
functions. Functions are named by a tuple consisting of
the function name, class name, and source file name.

TAO statically analyzes the changed source code to
identify modified functions, as follows. TAO first parses
the source-level diffs of the changed source to determine
the source files and the line numbers in the files that
changed. Then, TAO parses the original and modified ver-
sions of each source file to construct abstract syntax trees.
Finally, it determines the functions in the original and
modified versions that contain the changed line numbers—
these are the modified functions. These functions include
those that were newly added to the code as well those that
were removed. TAO looks up the modified functions in
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1 class A:
2 def foo():
3 pass
4 class B(A):
5 - pass
6 + def foo():
7 + pass
8 B().foo()

(a) Inter-class dependency

1 def foo():
2 - return 1
3 + return 2
4

5 if rand() % 2:
6 foo()

(b) Non-determinism

1 class A:
2 pass
3 class B:
4 pass
5

6 -C = A()
7 +C = B()

(c) Global scope

1 class A:
2 - a = 1
3 + a = 2
4 def foo():
5 A.a
6

7 foo()

(d) Class variables

1 -class A:
2 +class B:
3 def foo():
4 pass
5

6 -A().foo()
7 +B().foo()

(e) Lexical dependency

Figure 2: Examples of dependencies that TAO’s function-level tracking misses. TAO misses (a) because its runtime interception records that A’s
foo was called; whereas its patch analysis reports that B.foo was added, as the patch analysis does not understand that B is a subclass of A. TAO
misses (b) if the result of rand was odd during runtime interception. TAO misses (c), (d), and (e) because it tracks only function execution and not
statements executed in global or class scope.

the dependency map to determine the affected tests and
runs those tests. All new unit tests are run as well.

Dependency server. TAO requires the dependency map
to determine unit tests to run on a code change. One op-
tion is to generate the dependency map by running all unit
tests whenever the programmer updates the local source
tree from the repository server; however, this defeats the
purpose of TAO’s unit test optimization.

To solve this issue, TAO stores the dependency map on
a dependency server, with a separate version of the depen-
dency map for each version of the source tree. When the
local source tree is updated to a new version, TAO down-
loads the dependency map for that version and uses it for
analysis. Two challenges arise while implementing depen-
dency servers. First, managing a dependency server and
its permissions places extra burden on the repository main-
tainers. To avoid this issue, TAO stores the dependency
map as a file in the source code repository itself; thus,
programmers who have write access to the repository can
also update the dependency map. Second, updating the
entire dependency map on every commit wastes network
bandwidth, as it needs to be downloaded on an update as
well. Instead, TAO generates an incremental dependency
map for each commit, which contains only the map for
the tests that were affected by the committed code change
and were rerun. Periodically, TAO generates a full depen-
dency map on a commit to avoid having to collapse long
chains of incremental dependency maps.

Missing dependencies. TAO’s function-level depen-
dency tracking is not complete and can miss some de-
pendencies of tests on changed code. Figure 2 shows
examples of missing dependencies, which can sometimes
result in TAO not rerunning tests whose outputs may have
changed due to the changed code (i.e., false negatives);
§4 evaluates the frequency of TAO’s false negatives.

3 Implementation
We have implemented a prototype of TAO for PyUnit, the
standard unit testing framework for Python, and the Git

Component Lines of code

Execution tracing 210 lines of Python
Dependency analysis 350 lines of Python
Django test runner 50 lines of Python
Twisted test runner 110 lines of Python

Figure 3: Lines of code of each component of the TAO prototype,
including the incremental test runners for Django and Twisted.

version control system. The implementation is 720 lines
of Python code in total, as shown in Figure 3.

TAO intercepts function calls with settrace, Python’s
system tracing function used to implement Python debug-
gers. The dependency map is stored as a log of functions
executed for each unit test case. Incremental maps are
stored in the same format as well; merging them is simply
a concatenation of the logs, with later entries for a test
overriding the previous entries. The dependency maps are
compressed with Gzip to reduce storage overhead.

TAO’s patch analysis gets a Git diff of the modified
source, identifies the modified Python source files from
the diff, and then uses Python’s standard ast module
to parse those source files into abstract syntax trees and
identify the functions that were modified.

4 Evaluation
Our preliminary evaluation of TAO answers the following
questions:

• For real software, how many functions are modified in
each commit?

• What fraction of unit tests can be skipped for each
commit, and how much execution time is saved as a
result?

• How many missed dependencies and false negatives
does TAO incur?

• What is the overhead of TAO’s dependency tracking?

In our evaluation we used the source code repositories
of Django [1] and Twisted [3], and the patches for the
most recent 100 commits in those projects. By design,
TAO reruns tests affected by a commit to find potential
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Figure 4: The number of modified functions and affected tests cases (Y-axis) for each of the last 100 commits (X-axis) of Django (left) and Twisted
(right), respectively. The total number of functions in Django and Twisted were 13,190 and 23,096, and the total number of test cases were 5,166 and
7,150.

Project Number of Tests Runtime
All RTS TAO All TAO

Django 5,166 759.7 50.8 520.3s 1.7s
Twisted 7,150 1,668.3 28.7 72.1s 2.2s

Figure 5: TAO unit test execution performance. The number of tests
columns show the total number of tests, and the average numbers of
tests executed by an existing RTS technique and TAO for the latest 100
commits in Django and Twisted. The runtime columns show the time to
execute all tests and the average time taken by TAO to execute unit tests
for the latest 100 commits.

bugs; however, it did not catch any bugs because all unit
tests pass for all these commits, likely because developers
diligently followed the checkin policies of these projects
and ensured that all unit tests passed before committing
their code modifications to the repositories. The exper-
iments were run on a computer with a 2.80 GHz Intel
Core i7-860 processor and 8 GB of RAM running Ubuntu
12.10.

4.1 Functions modified in each commit
We analyzed the patches for the last 100 commits in
Django and Twisted to understand the typical number
of functions modified per commit in real-world software.
The results are shown in the top graphs of Figure 4. Out of
a total number of 13,190 and 23,096 functions in Django
and Twisted, respectively, only 50.8 and 18.2 functions
(or 0.3% and 0.07%) were modified on average by each
commit, and 90% of the commits modified less than 10
functions. As unit tests generally test isolated portions of
code, this indicates that the number of affected test cases
would be low as well.

4.2 Reduction in test execution time
For the same 100 commits as in the previous experiment,
we measured the number of test cases executed by TAO
for each commit. The aggregate results are shown in

Figure 5. Django and Twisted have 5,166 and 7,150 unit
test cases and running all the tests takes 520 seconds (8.7
min) and 72 seconds, respectively. On an average, TAO
ran only 50.4 and 28.7 tests per commit (1% and 0.4%
of all tests), and took 1.7 seconds and 2.2 seconds to
run them (0.3% and 3.1% of the total time). This shows
that TAO is very effective in reducing execution time of
unit tests. To compare with existing RTS techniques,
we also implemented an RTS technique that avoids false
negatives by tracking class, module, and global scope,
and measured its performance; on an average it executes
759.7 and 1668.3 tests (14.7% and 23.3% of all tests),
which is significantly more than TAO.

The top plots of Figure 4 show the distribution of num-
ber of tests executed by TAO for each of the 100 com-
mits. The plots show that the number of tests executed is
mostly correlated with the number of modified functions
(i.e., greater number of modified functions results in more
number of tests executed). However, the graphs illustrate
exceptions that fall into two interesting categories. First,
some commits change only a few functions, but affect
many tests; this happens because those commits modify
common functions that are invoked in many tests. For ex-
ample, the WSGIRequest class represents a web request
in Django and is instantiated in 1,094 out of 5,166 unit
tests; a commit that changes the constructor of that class
would therefore require rerunning all those tests. Simi-
larly, in Twisted, the Platform.getType function that
checks the environment affects 1,054 out of 7,150 test
cases.

Second, some commits change a large number of func-
tions but affect only a few tests. This happens when com-
mits contain new features, perform code refactoring, or
code maintenance. For example, in Django, a commit to
support unittest2 modifies 1,375 functions but affects
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Project FN/I FN/N FN/G FN/C FN/L

Django 0/0 0/0 2/ 8 1/ 3 1/23
Twisted 1/2 0/0 1/20 1/17 0/11

Figure 6: False negatives and missed dependencies due to TAO for the
latest 100 commits of Django and Twisted. Each FN/X (where X is
one of I, N, G, C, L, corresponding to the missed dependency types in
Figure 2,) represents the number of commits with false negatives (FN)
and the number of commits with a missed dependency of type X. A
commit can have more than one type of missed dependency and more
than one type of false negative. The total number of false negatives was
3 for both projects.

only 341 out of 5,166 test cases. In Twisted, implement-
ing a SSH command end point modifies 160 functions but
affects only 20 out of 7,150 test cases.

4.3 False negatives
We manually inspected each of the latest 100 commits for
Django and Twisted, and counted the number of commits
with code changes that TAO’s function-level dependency
tracking misses. These missed dependencies fell into the
categories in Figure 2. For each of the missed dependen-
cies, we also manually identified the tests that needed to
be executed to test that dependency. For some commits,
TAO’s function-level dependency tracking may have al-
ready flagged all the tests corresponding to the missed
dependencies because the commit also included function-
level changes. In this case TAO does not have false neg-
atives for that commit; Figure 7 illustrates an example
scenario for this case. However, if TAO’s function-level
algorithm missed flagging any of those tests, we counted
that commit as having a false negative.

Figure 6 shows the results of this experiment. Although
the total number of commits with missed dependencies is
about 25%, only 3 commits out of 100 in either project
had any false negatives. For the remaining 97 commits,
the result of execution of all tests is the same as that
of TAO’s optimized test execution on the programmers’
computers; so, TAO’s test execution suffices to catch bugs
in 97% of the commits. Combined with the more than
96% reduction in unit test execution time, this shows that
TAO in practice strikes a good balance between optimizing
test execution time and the number of commits with false
negatives.

4.4 Performance overhead
To measure the overhead of TAO’s dependency tracking,
we ran the unit tests of Django and Twisted, with and with-
out TAO, and measured the running time and the size of
the compressed dependency maps. The results are shown
in Figure 8. TAO’s dependency tracking adds an overhead
of 60% and 117% for Twisted and Django, respectively;
this high overhead is due to Python’s settrace debug
function being slow. Implementing TAO’s dependency
tracking in the Python runtime should significantly reduce

1 class DecimalField(IntegerField):
2 default_error_messages = {
3 ...
4 - ’max_digits’: _(msg)
5 + ’max_digits’: ungettext_lazy(msg)
6 ...
7

8 def __init__(...):
9 ...

10 - raise ValidationError(oldmsg)
11 + raise ValidationError(newmsg)

Figure 7: Simplified snippet of the Django commit be9ae693 that
illustrates why missed dependencies typically do not result in false
negatives for TAO. In addition to a missed class variable dependency,
the commit also includes a change to the __init__ function; the tests
flagged by this function-level dependency on the __init__ function
are a superset of the tests affected by the change to the class variable.

Project Runtime Storage
no TAO TAO Full Incremental

Django 520.3s 1,129.1s 9.9MB 270KB
Twisted 72.1s 115.6s 1.3MB 280KB

Figure 8: TAO overhead during execution of Django and Twisted unit
tests. The runtime columns show total times taken to run all the unit
tests without TAO and with TAO. The storage columns show the size of
TAO’s compressed full dependency maps and the average size of TAO’s
compressed incremental dependency maps for each commit.

this overhead. More importantly, the significant reduction
in the number of executed tests dwarfs this high overhead,
with the bottom line result that the overall execution time
of unit tests is still a small fraction of the time taken to
execute all the tests.

TAO’s dependency information occupies 10MB and
1.3MB for Django and Twisted unit tests, respectively.
This corresponds to 2KB and 0.18 KB per test. For the
tests that TAO reruns for the recent 100 commits, the
average size of incremental dependency maps is less than
300KB per commit, for both Django and Twisted.

5 Related work
The existing work closest to TAO is research on regression
test selection [4, 5, 8, 12]. TAO’s contributions are in
making RTS practical by exploiting the insight that simple
and fast function-level dependency tracking works well
in practice; and in making it easy for programmers to
adopt TAO as part of their workflow by integrating with
PyUnit and including dependency information as part of
each commit.

Other methods have been proposed to reduce unit test
execution time: for example, Khalek et al. [9] show that
eliminating common setup phases of unit tests in Java can
speed up test execution. However, Khalek et al. require
the programmer to define undo methods for all operations
in a unit test, which places a significant burden on the pro-
grammer that TAO avoids with its automatic dependency
tracking.
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Past work has also used dependency tracking for ap-
plications other than test optimization: Poirot [10] and
TaintCheck [11] have used dependency analysis and taint
tracking for intrusion recovery, and TaintDroid [6] has
used taint tracking for privacy monitoring. TAO shows
that dependency tracking can be applied to optimize unit
test execution.

6 Summary
TAO helps programmers run unit tests faster by running
only the tests that may be affected by the programmers’
source code modifications. TAO does this by tracking
during test execution the functions executed by each test;
analyzing changed code to determine the modified func-
tions; and combining this information to determine the
affected tests. To bootstrap dependency information with-
out needing the programmer to run all the unit tests, TAO
stores this information along with the source code repos-
itory. An initial prototype of TAO reruns an average of
less than 1% of the unit tests for each commit in two large
Python software projects.
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