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ABSTRACT

Tame is a new event-based system for managing con-
currency in network applications. Code written with
Tame abstractions does not suffer from the “stack-
ripping” problem associated with other event libraries.
Like threaded code, tamed code uses standard control flow,
automatically-managed local variables, and modular inter-
faces between callers and callees. Tame’s implementation
consists of C++ libraries and a source-to-source translator;
no platform-specific support or compiler modifications are
required, and Tame induces little runtime overhead. Expe-
rience with Tame in real-world systems, including a pop-
ular commercial Web site, suggests it is easy to adopt and
deploy.

1 INTRODUCTION

This paper introduces Tame, a system for managing con-
currency in network applications that combines the flex-
ibility and performance of events with the programma-
bility of threads. Tame is yet another design point in a
crowded space, but one that has proven successful in real-
world deployments. The system is, at heart, an event-based
programming library that frees event developers from the
annoyance of “stack ripping” [1]. We have implemented
Tame in C++ using libraries and source-to-source transla-
tion, making Tame deployable without compiler upgrades.

Threads are the more popular strategy for managing
concurrency, but some situations (and programmers) still
call for events [7, 13, 24, 28, 34, 39]. Applications with
exotic concurrency, such as multicast, publish/subscribe,
or TCP-like state machines, might find threads insuffi-
ciently expressive [37]. Certain contexts do not support
threads or blocking [6, 21]. On new platforms, portabil-
ity can favor events, which require only a select call
and no knowledge of hardware-specific stack or register
configuration [11]. Finally, some event-based servers per-
form better and use less memory than threaded competi-
tors [18, 24–26].

But a key advantage of events—a single stack—is also a
liability. Sharing one stack for multiple tasks requires stack
ripping, which plagues the development, maintenance, de-
bugging and profiling of event code [1]. The programmer
must manually split (or “rip”) each function that might
block (due to network communication or disk I/O), as well
as all of its ancestors in the call stack. Ripping a func-
tion obscures its control flow [6] and complicates memory
management.

However, the right abstractions can capture events’ ex-
pressivity while minimizing the headaches of stack rip-
ping [30]. The Tame system introduces powerful abstrac-
tions with implementation techniques suitable for high-
performance system programming. The specific contribu-
tions of the Tame system are:

1. A high-level, type-safe API for event-based program-
ming that frees it from the stack-ripping problem but is
still backwards compatible with legacy event code.

2. A new technique to incorporate threads and events in
the same program.

3. A maintainable and immediately deployable imple-
mentation in C++, using only portable libraries and
source-to-source translation.

4. An automated memory management scheme for events
that does not require garbage collection.

Our experience with Tame has shown the interface suf-
ficient to build and run real systems. Programmers other
than the authors rely on Tame in educational assignments,
research projects [36], and even a high-traffic commercial
Web site [16].

2 RELATED WORK

The research systems most closely related to Tame are
Capriccio [38] and the work of Adya et al. [1]. Capriccio
is a cooperative threading package that exports the POSIX
thread interface but looks like events to the operating sys-
tem: it uses sophisticated stack management to make one
stack appear as many, saving on cycles and memory. How-
ever, the Capriccio system strives to equal events only in
terms of performance and not in terms of expressivity; its
authors note that the thread interface is less flexible than
that of events [37].

Adya et al.’s system is a way to combine event-based
and threaded code in the same address space. The key in-
sight is that a program’s style of stack management (auto-
matic or manual) is orthogonal to its style of task manage-
ment (cooperative or preemptive) and that most literature
on events and threads mistakenly claims they are linked.
As in Adya’s system, a Tame program can be expressed
in a syntax that has readable automatic stack management
(like threads) yet has explicit cooperative task manage-
ment (like events). Tame differs because it extends auto-
matic stack management to all event code, while “hybrid”
event code in Adya’s system still requires manual stack
management. Other systems like SEDA [40] use threads



and events in concert to achieve flexible scheduling and
intraprocess concurrency. Tame is complementary to such
hybrid systems and can be used as an implementation tech-
nique to simplify their event code.

Many other systems attempt to improve threads’ scala-
bility and efficiency. NPTL in Linux [9] and I/O comple-
tion ports in Windows [22] improve the performance of
kernel threads; we compare Tame with NPTL in our eval-
uation. Practical user-level cooperative threading packages
include Gnu PTH, which focuses on portability [12], and
StateThreads, which focuses on performance [31].

Existing practical event libraries fall into several cate-
gories. The most primitive, such as libevent [27], fo-
cus exclusively on abstracting the interface to OS events
(i.e., select vs. poll vs. epoll vs. kqueue), and don’t
simplify the construction of higher-level events, such as
RPC completions. The event libraries integrated with GUI
toolkits, such as Motif, GTK+, and Qt, support higher-
level events, but are of course tuned for GUIs rather
than general systems programming. The type-safe libasync
event library for C++ is the basis of our work [21, 41].

The protothreads C-preprocessor library [11] gives the
illusion of threads with only one stack. Protothreads are
useful in resource-constrained settings such as embedded
devices and sensor networks, but lacking stacks or clo-
sures, they must use global variables to retain state and
therefore are not suited to building composable APIs. The
Tame system shares implementation techniques with pro-
tothreads and similar C coroutine libraries [10, 11], as well
as the porch program checkpointer [29].

The Tame language semantics draw from a rich body
of previous work on parallel programming [32]. Like con-
dition variables [14], Tame’s events allow signaling and
synchronization between different parts of a program, but
unlike condition variables, events do not require locks (or
threads, for that matter). Many parallel programming lan-
guages have constructs similar to Tame’s twait: Occam
has PAR [17], and Pascal-FC has COBEGIN and COEND [8].

Tame also borrows ideas such as closures and func-
tion currying from functional languages like Lisp [33] and
Haskell [15]. Previous work in modeling threads and con-
currency in functional languages, such as Haskell and ML,
has noted a correspondence between continuations and
threads. A user-level thread scheduler essentially chooses
among a set of active continuations; blocking adds the
current continuation to this set and invokes the scheduler.
For instance, Claessen uses monads in Haskell to imple-
ment threading [5]. Li and Zdancewic extend Claessen’s
technique to combine threads and events [20]. Concurrent
ML (CML) uses continuations to build a set of concur-
rency primitives much like those of Tame [30]. Tame and
CML have similar events, Tame’s rendezvous shares
some properties with CML’s choose operator, and Tame’s
twait is analogous to CML’s sync. There are differ-

// Threads
void wait_then_print_threads() {

sleep(10); // blocks this function and all callers
printf("Done!");

}

// Tame primitives
tamed wait_then_print_tame() {

tvars { rendezvous<> r; }

event<> e = mkevent(r); // allocate event on r
timer(10, e); // cause e to be triggered after 10 sec
twait(r); // block until an event on r is triggered

// only blocks this function, not its callers!
printf("Done!");

}

// Tame syntactic sugar
tamed wait_then_print_simple_tame() {

twait { timer(10, mkevent()); }

printf("Done!");

}

Figure 1: Three functions that print Done! after ten seconds. The first
version uses threads; the second Tame version is essentially as readable.

ences in performance and function. CML events are ef-
fectively continuations and preserve the equivalent of an
entire call stack, while Tame events preserve only the top-
level function’s closure, and CML has no direct equivalent
for Tame’s user-supplied event IDs—instead the CML user
must manipulate event objects directly. Tame’s constructs
have similar power but are efficiently implementable in
conventional systems programming languages like C++.

3 TAME SEMANTICS

Tame makes easy concurrency problems easy to express in
events (as they were easy to express in threads). Figure 1
shows three implementations of a trivial function; the sec-
ond Tame version is indeed close to the threaded version
in code length and readability. The rest of this section de-
scribes the Tame primitives and syntactic sugar. We also
show through examples how the full power of Tame sim-
plifies the expression of hard concurrency problems, and
how Tame allows users to develop composable solutions
for concurrency problems (harder to express correctly in
threads).

3.1 Overview

Tame introduces four related abstractions for handling
concurrency: events, wait points, rendezvous, and safe lo-
cal variables. They are expressed as software libraries
whenever possible, and as language extensions (via
source-to-source translation) when not.

First, each event object represents a future occurrence,
such as the completion of a network read. When the
expected occurrence actually happens—for instance, a
packet arrives—the programmer triggers the event by call-
ing its trigger method.

The mkevent function allocates an event of type
event<T>, where T is a sequence of zero or more types.



This event’s trigger method has the signature void
trigger(T). Calling trigger(v) marks the event as
having occurred, and passes zero or more results v, which
are called trigger values, to whomever is expecting the
event. For example:

rendezvous<> r; int i = 0;

event<int> e = mkevent(r, i);

e.trigger(100);

assert(i == 100); // assertion will succeed

When triggered, e’s int trigger value is stored in i, whose
type is echoed in e’s type.

The wait point language extension, written twait,
blocks the calling function until one or more events are
triggered. Blocking causes a function to return to its caller,
but the function does not complete: its execution point
and local variables are preserved in memory. When an ex-
pected event occurs, the function “unblocks” and resumes
processing at the wait point. By that time, of course, the
function’s original caller may have returned. Any function
containing a wait point is marked with the tamed keyword,
which informs the caller that the function can block.

The first, and more common, form of wait point is writ-
ten “twait { statements; }”. This executes the statements,
then blocks until all events created by mkevent calls in the
statements have triggered. For example, code like “twait
{ timer(10, mkevent()); }” should be read as “exe-
cute ‘timer(10, mkevent())’, then block until the cre-
ated event has triggered”—or, since timer triggers its
event argument after the given number of seconds has
passed, simply as “block for 10 seconds”. twait{} can
implement many forms of event-driven control flow, in-
cluding serial and parallel RPCs.

The second, more flexible form of wait point ex-
plicitly names a rendezvous object, which specifies the
set of expected events relevant to the wait point. Ev-
ery event object associates with one rendezvous. A
wait point twait(r) unblocks when any one of rendez-
vous r’s events occurs. Unblocking consumes the event
and restarts the blocked function. The first form of wait
point is actually syntactic sugar for the second: code like
“twait { statements; }” expands into something like

{ rendezvous<> __r;

statements; // where mkevent calls create events on __r
while (not all __r events have completed)
twait(__r); }

The twait() form can also return information
about which event occurred. A rendezvous of type
rendezvous<I> accepts events with event IDs of type(s)
I. Event IDs identify events in the same way thread IDs
identify threads, except that event IDs have arbitrary,
programmer-chosen types and values. A twait(r, i)
statement then sets i to the ID(s) of the unblocking event.

Although wait points are analogous to blocking a thread
until a condition variable is notified, blocking in Tame has
a different meaning than in threads. A blocked threaded
function’s caller only resumes when the callee explicitly
returns. In Tame, by contrast, a tamed function’s caller
resumes when the called function either returns or blocks.
To allow its caller to distinguish returning from blocking, a
tamed function will often accept an event argument, which
it triggers when it returns. This trigger signals the func-
tion’s completion. Here is a function that blocks, then re-
turns an integer, in threads and in Tame:

int blockf() { tamed blockf(event<int> done) {

... block ... ... block ...

return 200; done.trigger(200);

} }

i = blockf(); twait { blockf(mkevent(i)); }

In Tame, the caller uses twait to wait for blockf to re-
turn, and so must become tamed itself. Waiting for events
thus trickles up the call stack until a caller doesn’t care
whether its callee returns or blocks. This property is related
to stack ripping, but much simpler, since functions do not
split into pieces. Threaded code avoids any such change
at the cost of blocking the entire call stack whenever a
function blocks. Single-function blocking gives Tame its
event flavor, increases its flexibility, and reduces its over-
head (only the relevant parts of the call stack are saved).
We return to this topic in the next section.

When an event e is triggered, Tame queues a trigger no-
tification for e’s event ID on e’s rendezvous r. This step
also unblocks any function blocked on twait(r). Con-
versely, twait(r) checks for any queued trigger notifica-
tions on r. If one exists, it is dequeued and returned. Other-
wise, the function blocks at that wait point; it will unblock
and recheck the rendezvous once someone triggers a cor-
responding event. The top-level event loop cycles through
unblocked functions, calling them in round-robin order
when unblocking on file descriptor I/O and first-come-
first-served order otherwise. More sophisticated queuing
and scheduling techniques [40] are possible.

Multiple functions cannot simultaneously block on the
same rendezvous. In practice, this restriction isn’t signifi-
cant since most rendezvous are local to a single function.
A Tame program that needs two functions to wait on the
same condition uses two separate events, triggering both
when the condition occurs. Tame-based read locks (see
Section 7.5) are an example of such a pattern.

Finally, safe local variables, a language extension, are
variables whose values are preserved across wait points.
The programmer marks local variables as safe by enclos-
ing them in a tvars {} block, which preserves their values
in a heap-allocated closure. (Function parameters are al-
ways safe.) Unsafe local variables have indeterminate val-
ues after a wait point. The C++ compiler’s uninitialized-



Classes Keywords & Language Extensions Functions & Methods

event<>

• A basic event.

event<T>

• An event with a single trigger value of
type T . This value is set when the event
occurs; an example might be a character
read from a file descriptor. Events may
also have multiple trigger values of types
T1 . . .Tn.

rendezvous<I>

• Represents a set of outstanding events
with event IDs of type I. Callers name a
rendezvous when they block, and unblock
on the triggering of any associated event.

twait(r[,i]);

• A wait point. Block on explicit rendez-
vous r, and optionally set the event ID i
when control resumes.

tamed

• A return type for functions that use twait.

tvars { ... }

• Marks safe local variables.

twait { statements; }

• Wait point syntactic sugar: block on an
implicit rendezvous until all events cre-
ated in statements have triggered.

mkevent(r,i,s);

• Allocate a new event with event ID i.
When triggered, it will awake rendezvous
r and store trigger value in slot s.

mkevent(s);

• Allocate a new event for an implicit
twait{} rendezvous. When triggered,
store trigger value in slot s.

e.trigger(v);

• Trigger event e, with trigger value v.

timer(to,e); wait_on_fd( fd,rw,e);

• Primitive event interface for timeouts and
file descriptor events, respectively.

Figure 2: Tame primitives for event programming in C++.

variable warnings tell a Tame programmer when a local
variable should be made safe.

Type signatures Events reflect the types of their trig-
ger values, and rendezvous reflect the types of their event
IDs. The compiler catches type mismatches and reports
them as errors. Concretely, rendezvous is a conventional
C++ template type, defined in a library. All events associ-
ated with a rendezvous of type rendezvous<I>must have
event IDs of type I. The mkevent function has type:

event<T1,T2,...> mkevent(rendezvous<I> r, const I &i,

T1 &s1, T2 &s2, ...);

The arguments are a rendezvous, an event ID i, and slot
references s1, s2, . . . that will store trigger values when
the event is later triggered. C++’s template machinery de-
duces the appropriate event ID and slot type(s) from the
arguments, so mkevent can unambiguously accommodate
optional event IDs and arbitrary trigger slot types. The
event::trigger method has type:

void event<T1,T2,...>::trigger(const T1 &v1,

const T2 &v2, ...);

When called, this method assigns the trigger values v1,
v2, . . . to the slots given at allocation time, then un-
blocks the corresponding rendezvous. Wait points have
type twait(rendezvous<I> r, I &i); when the wait
point unblocks, i holds the ID of the unblocking event.

Primitive events Three library functions provide an in-
terface to low-level operating system events: timer(),
wait_on_fd(), and wait_on_signal(). Each function
takes an event<> e and one or more extra parameters.
timer(to,e) triggers e after to seconds have elapsed;
wait_on_fd(fd,rw,e) triggers e once the file descriptor
fd becomes readable or writable (depending on rw); and

wait_on_signal(sig,e) triggers e when signal sig is re-
ceived. The base event loop that understands these func-
tions is implemented in terms of select() or platform-
specific alternatives such as Linux’s epoll or FreeBSD’s
kqueue [19].

Like all programs based on events or cooperative
threads, a tamed program will block entirely if any portion
of it calls a blocking system call (such as open) or takes
a page fault. Tame inherits libasync’s non-blocking sub-
stitutes for blocking calls in the standard library (such as
open and gethostbyname). For tamed programs to per-
form well in concurrent settings, they should use only non-
blocking calls and should not induce swapping.

Figure 2 summarizes Tame’s primitive semantics.

3.2 Control Flow Examples

Common network flow patterns like sequential calls, par-
allel calls, and windowed calls [37] are difficult to express
in standard event libraries but much simplified with Tame.
As a running example, consider a function that resolves
addresses for a set of DNS host names. An initial design
might use the normal blocking resolver:

1 void multidns(dnsname name[], ipaddr a[], int n) {

2 for (int i = 0; i < n; i++)

3 a[i] = gethostbyname(name[i]);

4 }

Of course, this function will block all other computation
until all lookups complete. An efficient server would allow
other progress during the lookup process. The event-based
solution would use a nonblocking resolver, with a signa-
ture such as:

tamed gethost_ev(dnsname name, event<ipaddr> e);

This resolver uses nonblocking I/O when contacting local
and/or remote DNS servers. (Alternately, Tame’s threading
support makes it easy to adapt a blocking resolver for non-
blocking use; see Section 4.) Since gethost_ev’s caller



void multidns_nasty(dnsname name[], ipaddr a[], int n,

event<> done) {

if (n > 0) {

// When lookup succeeds, gethost_ev will call

// "helper(name, a, n, done, RESULT)"

gethost_ev(name[0], wrap(helper, name, a, n, done));

} else // done, alert caller

done.trigger();

}

void helper(dnsname *name, ipaddr *a, int n,

event<> done, ipaddr result) {

*a = result;

multidns_nasty(name+1, a+1, n-1, done);

}

Figure 3: Stack-ripped libasync code for looking up n DNS names with-
out blocking. A simple for loop has expanded into two interacting func-
tions, obscuring control flow; all callers must likewise split.

can regain control before the lookup completes, the lookup
result is returned via a trigger value: once the address
a is known, the resolver calls e.trigger(a). The trig-
ger simultaneously exports the result and unblocks anyone
waiting for it. Here’s how to look up a single name with
gethost_ev:

tvars { ipaddr a; }

twait { gethost_ev(name, mkevent(a)); }

print_addr(a);

Without Tame, adapting multidns to use gethost_ev
is an exercise in stack-ripping frustration; for the gory de-
tails, see Figure 3. Tame, however, makes it simple:

1 tamed multidns_tame(dnsname name[], ipaddr a[],

int n, event<> done) {

2 tvars { int i; }

3 for (i = 0; i < n; i++)

4 twait { gethost_ev(name[i], mkevent(a[i])); }

5 done.trigger();

6 }

multidns_tame keeps all arguments and the local vari-
able i in a closure. Whenever gethost_ev looks up a
name, it triggers the event allocated on line 4. This stores
the address in a[i] and unblocks multidns_tame, af-
ter which the loop continues. Though the code somewhat
resembles threaded code, the semantics are still event-
driven: multidns_tame can return control to its caller be-
fore it completes. Thus, it signals completion via an event,
namely done. Any callers that depend on completion must
use Tame primitives to block on this event, and thus be-
come tamed themselves. The tamed return type then bub-
bles up the call stack, providing the valuable annotation
that multidns_tame and its callers may suspend compu-
tation before completion.
multidns_tame allows a server to use the CPU more

effectively than multidns, since other server computation
can take place as multidns_tame completes. However,
multidns_tame’s lookups still happen in series: lookup i
does not begin until lookup i−1 has completed. The obvi-
ous latency improvement is to perform lookups in parallel.
The tamed code barely changes:

1 tamed multidns_par(dnsname name[], ipaddr a[],

int n, event<> done) {

2 twait {

3 for (int i = 0; i < sz; i++)

4 gethost_ev(name[i], mkevent(a[i]));

5 }

6 done.trigger();

7 }

The only difference between the serial and parallel ver-
sions is the ordering of the for and twait statements (and
that i doesn’t need to be in the closure). Since both ver-
sions have the same signature, the programmer can switch
implementation strategies without changing caller code.
With threads, however, the serial version could use one
thread to do all lookups, while the parallel version would
use as many threads as lookups. Tame preserves events’
flexibility while providing much of threads’ readability.

A generalization of serial and parallel control flow is
windowed or pipelined control flow, in which n calls are
made in total, and at most w ≤ n of them are outstanding
at any time. For serial flow, w = 1; for parallel, w = n. In-
termediate values of w combine the advantages of serial
and parallel execution, allowing some overlapping with-
out blasting the server. With Tame, even windowed control
flow is readable, although the simplified twait{} state-
ment no longer suffices:

1 tamed multidns_win(dnsname name[], ipaddr a[],

int n, event<> done) {

2 tvars { int sent(0), recv(0); rendezvous<> r; }

3 while (recv < n)

4 if (sent < n && sent - recv < WINDOWSIZE) {

5 gethost_ev(name[sent], mkevent(r,a[sent]));

6 sent++;

7 } else {

8 twait(r);

9 recv++;

10 }

11 done.trigger();

12 }

The loop runs until all requests have received responses
(recv == n). On each iteration, the function sends a
new request (lines 5–6) whenever a request remains
(sent < n) and the window has room (sent - recv <
WINDOWSIZE). Otherwise, the function harvests an out-
standing request (lines 8–9). Again, the signature is un-
changed, and the implementation is short and clear. We
have not previously seen efficient windowed control flow
expressed this simply.

3.3 Typing and Composability

Tame’s first-class events and rendezvous, and its distinc-
tion between event IDs and trigger values, improve its flex-
ibility, composability, and safety.

First, Tame preserves safe static typing without compro-
mising flexibility by distinguishing event IDs from trig-
ger values. Event IDs are like names. They identify events,
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timer

slot a
ID true
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twait

Figure 4: Relationships between events (boxes) and rendezvous (round
box) for a DNS lookup with timeout.

and are known when the event is registered; all events on
the same rendezvous must have the same event ID type.
Trigger values, on the other hand, are like results: they are
not known until the event actually triggers. Examples in-
clude characters read from a file descriptor, RPC replies,
and so forth. Event IDs and trigger values are related, of
course; when a twait statement returns event ID i, the
programmer knows that event i has triggered, and there-
fore its associated trigger values have been set. In contrast,
several other systems return trigger values as part of an
event object; the twait equivalent returns the object, and
extracting its values requires a dynamic cast. The Tame de-
sign avoids error-prone casts while still letting a single ren-
dezvous handle events with entirely different trigger value
types.

To demonstrate Tame’s composability, we’ll add time-
outs to the following event-based DNS lookup:

tvars { ipaddr a; }

twait { gethost_ev(name, mkevent(a)); }

We want to cancel a lookup and report an error if a name
fails to resolve in ten seconds. The basic implementation
strategy is to wait on two events, the lookup and a ten-
second timer, and check which event happens first.

tvars { ipaddr a; rendezvous<bool> r; bool ok; }

timer(10, mkevent(r, false));

gethost_ev(name, mkevent(r, true, a));

twait(r, ok);

if (!ok) printf("Timeout");

r.cancel();

The event ID false represents timeouts, while true rep-
resents successful lookup. The twait statement sets ok to
the ID of the event that triggers first1, so ok is false if and
only if the lookup timed out. The r.cancel() call cleans
up state associated with the event that did not trigger. Fig-
ure 4 diagrams the relevant objects.

This code is verbose and hard to follow. Supporting
timeouts on every lookup, or on other types of event,
would require adding rendezvous and timer calls across
the program and abandoning the twait{} syntactic sugar.

1In other libraries we have examined, such as CML, the twait func-
tion would return an opaque, system-chosen ID that the programmer
would compare with return values from mkevent. Though this works,
event IDs are far more convenient, particularly when many events are
outstanding.

1 template <typename T> tamed

__add_timeout(event<T> &e_base, event<bool, T> e) {

2 tvars { rendezvous<bool> r; T result; bool rok; }

3 timer(TIMEOUT, mkevent(r, false));

4 e_base = mkevent(r, true, result);

5 twait(r, rok);

6 e.trigger(rok, result);

7 r.cancel();

8 }

9 template <typename T> event<T> add_timeout(event<bool, T> e) {

10 event<T> e_base;

11 __add_timeout(e_base, e);

12 return e_base;

13 }

Private to __add_timeout

e.trigger(rok, result)

event 1

e_base r e

gethost_ev

timer

slot result slots ok, a
ID true

trigger

ID false

trigger

rok;
twait trigger wake

caller

Figure 5: Code and object relationships for a composable timeout event
adapter, and its use in a DNS lookup.

Tame can do better. Its programmers can write an adapter
that can add a cancellation timeout to any event. The
adapter relies on C++’s template support and on Tame’s
first-class events, and resembles adapters from higher-
level thread packages such as CML. Many other event li-
braries could not express this kind of composable abstrac-
tion, which was a main motivator for Tame’s design. The
adapter simplifies the lookup code to:

tvars { ipaddr a; bool ok; }

twait { gethost_ev(name, add_timeout(mkevent(ok, a))); }

if (!ok) printf("Timeout");

The caller generates an event with two trigger slots, one
for the base trigger value and one for a boolean that in-
dicates success or failure. Either a successful lookup or a
timeout will trigger the event. Success will set the boolean
trigger value to true, timeout will set it to false. Thus, after
waiting for the event, callers can examine the boolean to
check for timeout. This pattern works with twait{} state-
ments as well as explicit rendezvous.

Unfortunately, the gethost_ev function requires an
event that takes a single trigger value, namely the IP ad-
dress. It will not supply an extra trigger value unless we
change its signature and implementation, which would
make it specific to our timeout adapter—something we’d
like to avoid. But Tame’s abstractions let us transpar-
ently interpose between gethost_ev and its “caller”. The
adapter will set the extra trigger value.

Figure 5 shows the code and a diagram of the object re-
lationships. The real work takes place in __add_timeout,
which creates two events: e_base, which is returned
(and eventually passed to gethost_ev), and an internal
event passed to the timer function on line 6. The two



created events associate with the rendezvous r local to
__add_timeout. This is the interposition. When the time-
out triggers, or when e_base triggers (due to a successful
DNS lookup), __add_timeout will unblock, set the ok
slot appropriately, and then trigger e. Only this last step
unblocks the caller. The caller observes that ok and a have
been set, but is oblivious to __add_timeout’s interces-
sion; it is as if gethost_ev set ok itself.

It would be trivial to add other types of “timeout”, such
as signal receipt, to add_timeout; its signature would not
change, and neither would its callers. Similarly, one-line
changes could globally track how many events time out.
We’ve added significant additional concurrency semantics
with only local changes: the definition of composability.

3.4 Future Work

Tamed processes do not currently run on more than one
core or CPU. The production Tame-based applications we
know of consist of multiple concurrent processes cooper-
ating to achieve an application goal. OkCupid.com, for in-
stance, uses exclusively multicore and SMP machines. Its
Web front-ends run no fewer than fifty site-specific Tame-
based processes, all of which simultaneously answer Web
requests. When traffic is high, all CPUs (or cores) are in
use. Nevertheless, few changes to Tame would be required
for true simultaneous threading support. Tame already sup-
ports event-based locks to product data structures from un-
wanted interactions (Section 7.5). As in async-mp [41],
multiple kernel threads could draw from a shared pool of
ready tasks, as restricted by Tame’s current atomicity as-
sumption: at most one thread of control can be active in
any given closure at a time. Locks enforced by the kernel,
or any equivalent technique, could ensure this invariant.

Tame does not currently interact well with C++ excep-
tions: an exception raised in a Tamed function might be
caught by the event loop.

Some of Tame’s limitations are not implementation-
dependent but rather consequences of its approach and se-
mantics. As mentioned in Section 3, changing a function
from a regular C++ function to a tamed function involves
signature changes all the way up the call stack. Some de-
velopers might object to this limitation, especially those
who export libraries with fixed interfaces.

4 THREADS

Tame can interoperate with threads when a thread pack-
age is available, suggesting that the Tame abstractions
(wait points, events and rendezvous) apply to both pro-
gramming models. With thread support, Tame simplifies
the transition between threaded and event-style program-
ming, for instance allowing event-based applications to use
threaded software in the C library (e.g. gethostbyname)
and database client libraries (e.g. libmysqlclient [23]).
We have only experimented with cooperative user-level

threading packages, though kernel-level threads that sup-
port SMPs are also compatible with our approach.

The key semantic difference between threaded and
event-based operation is how functions return. In event-
based Tame, functions can either return a useful value via
a return statement or block via twait, but not both.
Threaded functions can both block and return a value,
since the caller regains control only when the computation
is done.

With thread support, Tame exposes both event and
thread return semantics. In Tame, a threaded function is
one that calls twait but does not have a tamed return type.
When such a function encounters twait(r), it checks for
queued triggers in r as usual; if none are present, it asks
for a wakeup notification when a trigger arrives in r, and
then yields to another thread. During the yield, the thread-
ing package preserves the function’s entire call stack (in-
cluding all of its callers), while running other, more ready
computations. When the trigger arrives, the blocked thread
awakes at the twait call and can return to its caller.

A trivial example using threads in Tame is a reimple-
mentation of the sleep call:

1 int mysleep(int d) {

2 twait { timer(d, mkevent()); }

3 return d;

4 }

As usual, the call to timer registers an event that will be
triggered after a d second delay. The function then calls
twait on an implicit rendezvous at line 2, yielding its
thread. After d seconds have elapsed, the main thread trig-
gers the event allocated on line 2, waking up mysleep
and advancing control to the return statement on line 3.
Since mysleep is threaded (i.e., does not have a tamed
return value), it returns an actual value to its caller.

Blocking the current thread uses Tame’s existing twait
syntax, but starting a new thread requires a new tfork
function:2

tfork(rendezvous<I> r, I i, threadfunc<V> f, V &v);

The semantics are:

1. Allocate e = mkevent(r, i).

2. Fork a new thread. In the new thread context:
(a) Call f() and store its return value in v.
(b) Trigger event e.
(c) Exit the thread.

When the function f completes, the rendezvous r re-
ceives a trigger with event ID i. This unifies the usually
separate concepts of event “blocking” and joining on a

2threadfunc<R> is an event whose trigger method yields a re-
turn value of type R. Given the function int f(), we can create a
threadfunc<int> from a function pointer to f. From the function int
g(int a), we can create a threadfunc<int> by wrapping g with an
integer argument, as in function currying [15].



thread. Code like the following uses tfork and twait{}
syntactic sugar to call a blocking library function from an
event-based context:

tamed gethost_ev(const char *name,

event<struct hostent *> e) {

tvars { struct hostent *h; }

twait { tfork(wrap(gethostbyname, name), h); }

e.trigger(h);

}

This starts gethostbyname(name) in a new thread, then
blocks in the usual event-driven way until that thread exits.
At that point, the caller is notified via an event trigger of
the struct hostent result.

5 MEMORY MANAGEMENT

Tame hides most details of event memory management
from programmers, protecting them at all costs from wild
writes and catching most memory leaks. For the large ma-
jority of Tame code that uses the twait{} environment,
correct program syntax guarantees correct leakless mem-
ory management. For more advanced programs that use
explicit rendezvous, Tame uses reference counting to en-
force key invariants at runtime. The invariants are:

I1 A function’s closure lives at least until control exits the
function for the last time.

I2 Some of an event’s trigger slots may be safe local
variables, and triggering it assigns values to those vari-
ables. Thus, a function’s closure must live as least until
events created in the function have triggered.

I3 Events associated with a rendezvous r must trigger
exactly once before r is deallocated. The programmer
must uphold I3 by correctly managing rendezvous
lifetime and triggering each event exactly once.

A closure should be deallocated as soon as so doing does
not violate I1 or I2.

Of these invariants, I3 depends the most on program cor-
rectness. Some cases are easy to handle. Tame ignores at-
tempts to trigger an event multiple times (or aborts, de-
pending on runtime options), and forgetting to trigger an
event in a twait{} environment will cause a program
hang and is thus easily observable. The difficult case in-
volves managing the lifetimes of explicit rendezvous.
Consider the function broken:

1 tamed broken(dnsname nm) {

2 tvars { rendezvous<> r; ipaddr res; }

3 gethost_ev(nm, mkevent(r, res));

4 // Whoops: forgot to twait(r)!

5 }

The event created on line 3 uses the trigger slot res, a
safe variable in broken’s closure. The function then exits
without waiting for r or examining res. This is a bug—an
event leak in violation of I3. If Tame deallocated broken’s
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(a) After the event allocation on line 3.
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(b) After control exits broken on line 5.

Figure 6: Memory references for the broken function. Weak references
are shown as dotted lines, and strong references as solid lines. Solid fill
indicates a function exit, and striped fill indicates cancellation.

closure eagerly, right after it exited, then the event’s even-
tual trigger would write its value into the deallocated mem-
ory where the closure used to be.

Tame’s answer is a careful reference-counting scheme;
its runtime keeps track of events and closures with C++
“smart pointer” classes. For example, event<> objects are
actually smart pointers; the event is stored elsewhere, in a
private object only accessible by Tame code. If necessary,
Tame keeps the event around even after the user frees it.
There can be circular references among these three types
of objects—for example, a closure contains a local event,
which names a different closure-local variable as a trigger
slot. Tame uses two different types of reference counts to
break the circularity: strong references, which are conven-
tional reference counts, and weak references, which allow
access to the object only if it hasn’t been deallocated.

In outline, Tame keeps the following reference counts:

R1 Entering a tamed function for the first time adds a
strong reference to the corresponding closure, which is
removed only when the function exits for the last time.
This preserves I1.

R2 Each event created inside a closure holds a strong ref-
erence to that closure, preserving I2. The reference is
dropped once the event is triggered.

R3 A rendezvous and its associated events keep weak
references to each other. The references a rendezvous
keeps to its events allow it to cancel events that did
not trigger before the rendezvous’s deallocation. Can-
celing an event clears its R2 reference; any future trig-
ger attempt on the event will be ignored, preserving
I3. The weak references the other way enable an event
to update its rendezvous upon a trigger.

Figure 6a shows these references in the broken function
following line 3’s event allocation. The most important
problem introduced by this reference counting scheme is
due to R2: an untriggered event can cause a closure leak.



Such a leak can be caught by checking the associated ren-
dezvous upon deallocation for untriggered events. A ren-
dezvous’ deallocation is up to the programmer, but there is
an important and common case in which Tame can inter-
vene. If a rendezvous was declared as a local variable in
some closure, and that closure has exited for the last time,
then no future code will call twait on the rendezvous,
even if the closure cannot be deallocated yet because of
some stray reference. Thus, Tame amends the reference
counting protocol as follows:

R4 Exiting a tamed function for the last time cancels any
rendezvous directly allocated in that function’s clo-
sure. Canceling a rendezvous cancels all events as-
sociated with it. Actual deallocation occurs only when
the closure is deallocated, which might be some time
later.

Figure 6b shows how Tame’s reference counting proto-
col solves broken’s leak. Control exits the function imme-
diately, forcing r’s cancellation by R4. Upon cancellation,
r checks that all of its events have triggered. In this case,
the event allocated on line 3 has not triggered, but Tame
cancels it, clearing its R3, which releases the closure, and
in turn, releases r. Any eventual trigger of the event is
ignored.

6 IMPLEMENTATION DETAILS

Tame is implemented as a C++ preprocessor (or source-
to-source translator). The difficulty of parsing C++ is well
known [2]. Tame avoids as much C++ parsing as possi-
ble at the cost of several semantic warts, which could be
avoided with fuller compiler integration.

6.1 Closures

Each tamed function has one closure with a flat names-
pace, restricting C/C++’s scoping. Internally, the Tame
translator writes a new C++ structure for each tamed func-
tion, containing its parameters and its tvars variables.
This structure gets an opaque name, discouraging the pro-
grammer from accessing it directly.

Programmers are free to use arbitrary C++-stack allo-
cation, as long as no wait points come between the decla-
ration and use of stack-allocated variables. When they do,
the underlying C++ compiler generates a warning due to
goto branches in the emitted code (see the next section).

Maintaining Section 5’s R4 requires that each closure
know which rendezvous it directly contains, so it can
cancel them appropriately. This knowledge is unavailable
without fully parsing C++: a closure might contain an ob-
ject of type foo, that contains an object of type bar, that
contains a rendezvous, which will in turn share fate with
the closure. As a first-order heuristic, Tame marks the be-
ginning and the end of the new closure in memory using

simple pointer arithmetic and associates with the closure
all rendezvous that fall between the two fence posts.

6.2 Entry and Exit Translation

The translation of a tamed function adds to the function
one new entry and exit point per twait statement. A trans-
lated twait statement first checks whether a trigger is
pending on the corresponding rendezvous. If so, control
flow continues past the twait function as usual; but if not,
the function records the current wait point, adds a func-
tion pointer for this wait point to the rendezvous, and
returns to its caller. Later, a trigger on an event in the
rendezvous invokes the recorded function pointer, which
forces control to reenter the function and jump directly to
the recorded wait point. The Tame translation shifted the
function’s parameters and safe local variables to a closure
structure, so the function can access these values even after
reentry.

The Tame preprocessor adds an extra “closure pointer”
parameter to each tamed function. The closure pointer
is null when the function is called normally, causing the
translated function body to allocate and initialize a new
closure. The closure pointer is non-null when the function
is reentered at a later wait point. The names of parameters
and safe local variables are changed to opaque identifiers
to hide them from the function body; instead, local vari-
ables with reference types make these names point into the
closure. This strategy reduces the extent to which Tame
must understand C++ name lookup, since the translation
preserves the function implementation’s original names-
pace. Multiple entry points are simulated with a switch
statement at the beginning of the function; each case in
the switch jumps to a different label in the function. There
is one label for the initial function entry and one for each
wait point.

Internally, mkevent is a macro that fetches some spe-
cially named variables (such as the current closure, or the
current implicit rendezvous in the case of a twait envi-
ronment). An input of mkevent(rv, w, t1, t2) gener-
ates a call of the form:

_mkevent(__cls, rv, w, t1, t2);

for some closure __cls. _mkevent heap-allocates a new
event object, packing it with references to all of the sup-
plied arguments. The resulting event object provides one
method, trigger, which takes trigger value parameters
with the types of t1 and t2. All of these operations are
type-safe through use of C++ templates.

Putting these pieces together, the translation of:

1 tamed A::f(int x) {

2 tvars { rendezvous<> r; }

3 a(mkevent(r)); twait(r); b(); }

looks approximately like:



1 void A::f(int __tame_x, A_f_closure *__cls) {

2 if (__cls == 0)

3 __cls = new A__f__closure(this, &A::fn, __tame_x);

4 assert(this == __cls->this_A);

5 int &x = __cls->x;

6 rendezvous<> &r = __cls->r;

7 switch (__cls->entry_point) {

8 case 0: // original entry

9 goto __A__f__entry__0;

10 case 1: // reentry after first twait

11 goto __A__f__entry__1; }

12 __A__f__entry__0:

13 a(_mkevent(__cls,r));

14 if (!r.has_queued_trigger()) {

15 __cls->entry_point = 1;

16 r.set_reenter_closure(__cls);

17 return; }

18 __A__f__entry__1:

19 b();

20 }

Lines 5–6 set up the function body so that references to
x and r refer to closure-resident values. Lines 7–11 direct
traffic as it enters and reenters the function after twait
points. Lines 12–19 are the translation of the user code.
Lines 14–17 are the translation of the twait(r) call from
the original function. If no trigger is queued on r, the trans-
lation bumps the entry point (line 15) and tells the ren-
dezvous to reenter __cls via the method A::fn when a
trigger arrives (line 16). Once that happens, f will jump to
entry point 1 (line 18) and call b().

6.3 Backwards Compatibility

Our implementation of Tame borrows its event loop and
event objects from the libasync event library [21]. The key
compatibility feature is to implement events as libasync
callbacks, allowing legacy functions to interface with
tamed functions, and consequently, legacy projects to in-
crementally switch over to tamed code.

The Tame prototype implements thread support with
the Gnu PTH library [12]. PTH supplies stubs for block-
ing network calls such as select, read and write. Thus
the select call in libasync’s select loop transparently be-
comes a call to PTH’s scheduler. Similarly, blocking net-
work calls in third party libraries like libmysqlclient
drop into the scheduler and later resume when the op-
eration completes. We also had to make libasync call a
modified, Tame-aware select. This select returns early
when another thread in the same process triggers an event
that should wake up the current thread (something that
never happens in single-threaded Tame).

7 EXPERIENCE WITH TAME

Like any other expressive synchronization system, Tame
requires some mental readjustment and ramp-up time. In
most cases, developers need only the twait{} environ-
ment, which is designed to be simple to learn and com-
parable to thread programming. With only this subset of
Tame, programmers become much more productive rela-
tive to vanilla-event coders, and hopefully as productive as
thread programmers.

7.1 Web Server

The latest version of OKWS [18], a lightweight Web server
for dynamic Web content, uses the Tame system. Its most
obvious applications are serial chains of asynchronous
function calls, such as startup sequences that involve IPC
across cooperating processes. These chains are common
in OKWS; Tame lets them occupy a single function body,
making the code easier to read.

A more specialized Tame application is in OKWS’s
templating system, which allows OKWS Web developers
to separate their application logic from the HTML presen-
tation layer. In a manner similar to Flash [24], OKWS uses
blocking helper processes to read templates from the file
system; the main server calls the helper processes asyn-
chronously. However, since templates can be arbitrarily
nested, reading one template may require many helper
calls. The previous version of OKWS, written without
Tame, sacrificed expressiveness for programmability. Web
site developers had to request all template files they would
ever need when their Web service started up, so that a
call to publishing a template in response to a Web request
would not block and force a stack rip. In the new version
of OKWS, publishing a template is an asynchronous op-
eration, and site developers can therefore publish any file
in the htdocs directory, at any time. Tame saves develop-
ers from the stack ripping problem that previously discour-
aged this feature.

7.2 An Event-Based Web Site

OkCupid.com [16] is a dating Web site that uses OKWS as
its Web server. For several years, its programmers wrote
code in the libasync idiom to manage concurrency, but
in early 2006 switched over to Tame to simplify debug-
ging and to improve productivity. Currently seven pro-
grammers, none of whom are the authors, depend on Tame
for maintaining and developing site features. The system
is easy enough to use so that the first programming project
new employees receive is to convert code from the old
event-based system to Tame syntax.

OkCupid.com has found Tame’s parallel dispatch par-
ticularly useful when programming a Web site. When a
user logs into the site, the front-end Web logic requests
data from multiple databases to reconstruct the user’s
preferences and server-resident state. To minimize client-
perceived latency from disk accesses, these queries can
happen in parallel. With just libasync primitives, paral-
lelism was hidden in stack-ripped code and caused bugs.
Tame’s solution is the parallelism inherent in the twait
environment. To call f and g in parallel, then call h once
they both complete, a Tame programmer simply writes:

1 twait { f(mkevent()); g(mkevent()); }

2 twait { h(mkevent()); }



7.3 An NFS Server

A graduate distributed systems class at MIT requires its
students to write a simple Frangipani-inspired [35] file
server that implements the NFS Version 3 protocol [4].
In spring 2006, the students had the option to write their
assignment with the Tame tool. Four out of 22 students
used Tame, most successfully on the source file that im-
plements the file system semantics (about two thousand
lines long). Consider, for example, the CREATE RPC, for
creating a new file on the server. When given this RPC,
the server must acquire a lock, lookup a file handle for the
target directory, read the contents of the directory, write
out new directory contents, then write out the file, and fi-
nally release the lock, all the while checking for various er-
ror conditions. The solutions with legacy libasync involve
code split up over no fewer than five functions, with a
stack rip at every blocking point. Students who used Tame
accomplished the same semantics with just one function.
Quantitatively, the students who used Tame wrote 20%
less code in their source files, and 50% less code in their
header files. Qualitatively, the students had positive com-
ments about the Tame system and semantics, and strongly
preferred writing in the Tame idiom to writing libasync
code directly.

7.4 Debugging

Tame’s preprocessor implements source-code line trans-
lation, so debuggers and compilers point the programmer
to the line of code in the original Tame input file. The
programmer need only examine or debug autogenerated
code when Tame itself has a bug. Programmers can dis-
able line-translation and view human-readable output from
the Tame preprocessor. Relative to a tamed function in the
input file, a tamed function in the output file differs only
in its Tame-generated preamble, at twait points, and at
return statements. The rest of the code is passed through
untouched.

Tame also has debugging advantages over legacy
libasync with unmodified debugging tools. With legacy
libasync, a developer must set a breakpoint at every stack
rip point. With Tame, a logical operation once again fits in-
side a single function body. As a result, a programmer sets
a break point at the suspect function, and can trace execu-
tion until a blocking point (i.e., twait). After the blocking
point, control returns to the same breakpoint at the top of
the same function, and then jumps to the code directly after
the twait statement.

Future work calls for a Tame debugger and profiler. In
both cases, the runtime nesting of closures is Tame’s ana-
logue of the call stack in a threaded program. Slight debug-
ger modifications could allow walking this graph to pro-
duce a “stacktrace”-like feature, and similarly, measuring
closure lifetime can yield a gprof-style output for under-
standing which parts of a program induce latency. Even

under the status quo, programmers can access safe local
variables in debuggers by simply examining the members
of a function’s closure and can walk the closure-chain
manually if desired.

7.5 Locks and Synchronization

Programmers using events or cooperative threading often
falsely convince themselves that they have “synchroniza-
tion for free.” This is not always the case. Global data
on one side of a yield or block point might look differ-
ent on the other side, if another part of the program ma-
nipulated that data in between. With threaded Tame pro-
grams, or threaded programs in general, any function in-
vocation can result in a yield, hiding concurrency assump-
tions deep in the call stack. In practice, a programmer can-
not know automatically know when to protect global data
structures [1]. Event-only Tame programs make concur-
rency assumptions explicit, since they never yield; they
just return to the main event loop (allowing other com-
putations to run) on either side of a twait statement or
environment.

When Tame programs require atomicity guarantees on
either side of a twait (or yield in the case of threads),
they can use a simple lock implementation based on Tame
primitives. A basic lock class exposes the methods:

tamed lock::acquire(event<> done);

void lock::release();

The acquire method checks the lock to see if it’s cur-
rently acquired; if so, it queues the given event, and if
not, it triggers done immediately. The release method
either triggers the head of the event queue, or marks the
lock as available if no events were queued. An example
critical section in Tame now looks like:

1 tamed global_data_accessor() {

2 twait { global_lock->acquire(mkevent()); }

3 ... touch global state, possibly blocking ...

4 global_lock->release();

5 }

We have also built shared read locks with Tame, in which
a writer’s release of a lock can cause all queued readers to
unblock.

8 PERFORMANCE MEASUREMENTS

The Tame implementation introduces potential perfor-
mance costs relative to threaded code and traditional event-
driven software. Unlike cooperative-threaded code, and
more so than traditional event libraries (e.g. libasync),
Tame makes heavy use of heap-allocated data struc-
tures, such as closures and one-time events. Tame also
uses synchronization primitives (namely rendezvous and
events) that are potentially costlier than the lower level
primitives in threading packages or libasync. We investi-
gate the end-to-end cost of Tame relative to a comparable



Capriccio Tame
Throughput (connections/sec) 28,318 28,457
Number of threads 350 1
Physical memory (kB) 6,560 2,156
Virtual memory (kB) 49,517 10,740

Figure 7: Measurements of Knot at maximum throughput. Throughput
is averaged over the whole one-minute run. Memory readings are taken
after the warm-up period, as reported by ps.

high-performance system, and conclude that Tame incurs
no performance penalties and makes better use of memory.

8.1 End-to-End Performance

A logical point of comparison for the Tame system is the
Capriccio thread package [38]. Like Tame, it provides au-
tomatic memory management and cooperative task man-
agement; it is also engineered for high performance. The
Capriccio work focuses its measurements on the simple
“Knot” web server. We compared the performance of the
original Capriccio Knot server with a lightly modified,
tamed version of Knot. In selecting a workload, we fac-
tored out the subtleties of disk I/O and scheduling that
other work has addressed in detail [25] and focused on
memory and CPU use. We ran a SpecWeb-like benchmark
but used only the smallest files in the dataset, making the
workload entirely cacheable and avoiding link saturation.

For all experiments, the server was a 2-CPU 2.33 GHz
Xeon 5140 with 4GB memory, running Ubuntu Linux with
kernel 2.6.17-10, code compiled with GCC version 4.1.2,
optimization level -O2. Because Capriccio does not com-
pile with more recent compilers, it was compiled GCC ver-
sion 3.3.5. Glibc and NPTL were both version 2.4. Though
the machine has four cores, only one was needed in our
experiments (neither Tame nor the other systems tested
use multiple CPUs). Tame supports Linux’s epoll, but its
event loop was configured to use select in our bench-
marks. Capriccio uses the similar poll call in its loop.
We used an array of six clients connected through a giga-
bit switch, each making 200 simultaneous requests to the
server. The servers were given a thirty-second “warm-up”
time in which they pulled all of the necessary files from
disk into cache, and then ran for a one-minute test. The
results are shown in Figure 7.

The high level outcome is that under this workload,
the Capriccio and Tame versions of Knot achieve the
same throughput, but Tame Knot uses one-third the phys-
ical memory, and one-fifth the virtual memory. We note
that neither Knot server in this scenario ever blocks: both
servers use 100% of available CPU, even when idle. A
version of the Tame server that blocks when there is no
work to be done achieves a surprising 4,000 fewer con-
nections per second on our benchmark machine. Another
important optimization was to avoid dropping into the se-
lect loop when outstanding connection attempts could be
accepted [3]. Microbenchmarks in Section 8.2 show the

Operation Min Median Mean
Simple function call 63 63 66
Simple function call 182 196 196

with int allocation
Tame call (nullfn()) 399 455 463
wrap() 217 224 231
gettimeofday() 2618 2660 2781

Figure 8: Cost of system calls and libasync and Tame primitive opera-
tions, measured in cycles.

select loop is expensive relative to other Tame primitives.
Optimizing Capriccio Knot’s performance required

manual tuning. The size of the thread pool must be suf-
ficiently large (about 350 threads) before Capriccio Knot
can achieve maximal throughput. Threads’ stack sizes
must also be set correctly—stacks that are too small
risk overflow, while stacks that are too big waste virtual
memory—but the default 128 kB per stack sufficed for
these experiments. Capriccio can automate these parame-
ter settings, but the Knot server in the Capriccio release
does not use automatic stack sizing, and manual thread
settings were more stable in our tests. Further work could
bring Capriccio’s memory usage more in line with Tame’s,
but we note that Tame achieves its memory usage automat-
ically without changes to the base compiler.

Memory allocation in Tame Knot happens mainly on the
heap, in the form of event and closure allocations. In our
test cases, we noted 12 closure allocations and 12.6 event
allocations per connection served. We experimented with
“recycling” events of common types (such as event<>s)
rather than allocating and freeing them each time. Such
optimizations had little impact on performance, suggesting
Linux’s malloc automatically optimizes Tame’s memory
access pattern.

8.2 Microbenchmarks

We performed microbenchmarks to get a better sense for
how Tame was spending its cycles in the web benchmark,
and to provide baseline statistics for other applications. A
first cost of Tame relative to thread programming is closure
allocation. We measured closure costs with the most basic
tamed function that uses a closure:

1 static tamed nullfn()

2 { tvars { int i(0); } i++; }

For comparison, we also measure a trivial function, a
function that performs a small heap allocation, libasync’s
closure-approximating function (i.e., wrap), and a trivial
system call (gettimeofday). In each case, an experiment
consisted of executing the primitive 10,000 times, brack-
eted by cycle counter checks. We ran each experiment 10
times and report averaged results over the 10 experiments,
and the median results over all 100,000 calls. In all cases,
the standard deviation over the 10 experiments was within
5% of the mean. Figure 8 summarizes our results: entering



a tamed function is about 2.2 times the cost of a simple
function with heap allocation, and 1.8 times the cost of a
wrap invocation.

A second function, benchfn, measures Tame overhead
when managing control flow:

1 static tamed benchfn (int niter, event<> done) {

2 tvars { int i; }

3 for (i = 0; i < niter; i++)

4 twait { timer(0, mkevent()); }

5 done.trigger();

6 }

Line 4 of benchfn is performing Tame’s version of a
thread fork and join. A call to mkevent and later twait
is required to launch a potentially blocking network op-
eration, and to harvest its result. Unlike a libasync ver-
sion of benchfn, the tamed version must manage closures,
an implicit rendezvous, and jumping into and out of the
function once per iteration. We compare three versions of
benchfn: with an implicit rendezvous, with an explicit
rendezvous, and with only libasync features.

We ran all versions with niter=100, and repeated the
experiment one thousand times. The results are presented
in Figure 9. All experiments spend a majority of cycles in
the core select loop. The benchfn that uses an implicit
rendezvous is only slightly more expensive, perform-
ing within 2% of the native libasync code. Tame’s low-
level implementation special-cases the implicit rendez-
vous, reducing memory allocations and virtual method
calls along the critical path. Hence, the benchfn version
that uses an explicit rendezvous runs about 6% slower
still. We also experimented with replacing libasync’s na-
tive scheduler with that of the PTH thread library, as is
required when running Tame with thread support.

Based on these benchmarks, we can estimate how Tame
Knot’s CPU time is spent. Tame Knot uses 81,877 cycles
for each request. Assuming the microbenchmark results
hold, and given Tame Knot’s use of 12.6 events and 12 clo-
sure allocations per request, roughly 7.6% of these cycles
are spent on event management and 6.8% on closure man-
agement, with the remainder going towards system calls
and application-level processing.

Figure 9 also gives similar benchmarks for a version of
benchfn written in pure thread abstractions,

1 static void noop() { pthread_exit(NULL); }

2 void benchfn_thr(int niter) {

3 for (int i = 0; i < niter; i++) {

4 pthread_t t;

5 pthread_create(&t, NULL, noop, NULL);

6 pthread_join(t, NULL);

7 }

8 }

and a version using Tame’s thread wrappers:

1 static void noop_tame() {}

Function Cycles In Core Outside
benchfn without Tame 5,251 4,906 344
benchfn with twait{} 5,331 4,840 491

with PTH core loop 6,010 5,476 534
benchfn with twait(r); 5,642 4,887 755

with PTH core loop 6,565 5,678 887
benchfn_thr in PTH 37,540 - -

in NPTL 28,803 - -
in Capriccio 7,892 - -

benchfn_tame_thr 64,957 - -

Figure 9: Results from running the benchfn code in 1,000 experiments,
with niter=100. Costs shown are the average cycles per iteration, aver-
aged over all experiments. These costs are broken down into cycles spent
in the core event loop, and time spent outside.

2 void benchfn_tame_thr(int niter) {

3 for (int i = 0; i < niter; i++)

4 twait { tfork(wrap(noop_tame)); }

5 }

A thread allocation and join is five to seven times as ex-
pensive as an event allocation and join in Tame when us-
ing standard Linux libraries like PTH and NPTL. Tame’s
thread wrappers added additional overhead relative to na-
tive PTH since they require locks and condition variables.
Capriccio is much faster and competitive with Tame. Tra-
ditionally, threaded programs allocate threads not quite
as cavalierly as benchfn_thr; they might use thread-
pooling techniques to accomplish more than one operation
per thread. However, examples like those in Sections 3.2
and 3.3 and those in real-world Web site programming
(Section 7.2) benefit greatly from repeated thread creation
and destruction. Tame primitives are certainly fast enough
to support this.

In sum, Tame’s primitive operations are marginally
more expensive than libasync’s and roughly equivalent to
those of a good thread package. The observed costs are
cheap relative to real workloads in network applications.

9 SUMMARY

Tame confers much of the readability advantage of threads
while preserving the flexibility of events, and modern
thread packages have good performance: the clichéd
performance/readability distinction between events and
threads no longer holds. Programmers should choose the
abstraction that best meets their needs. We argue that event
programming with Tame is a good fit for networked and
distributed systems. The Tame system has found adoption
in real event-based systems, and the results are encourag-
ing: fewer lines of code, simplified memory management,
and simplified code maintenance. Our hope is that Tame
can solve the software maintenance problems that plague
current event-based systems, while making events palat-
able to a wider audience of developers.
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