
A Sybil-proof one-hop DHT

Chris Lesniewski-Laas
MIT CSAIL

Cambridge, MA, USA
ctl@mit.edu

ABSTRACT
Decentralized systems, such as structured overlays, are sub-
ject to the Sybil attack, in which an adversary creates many
false identities to increase its influence. This paper describes
a one-hop distributed hash table which uses the social links
between users to strongly resist the Sybil attack. The social
network is assumed to be fast mixing, meaning that a random
walk in the honest part of the network quickly approaches
the uniform distribution. As in the related SybilLimit sys-
tem [25], with a social network of n honest nodes and m
honest edges, the protocol can tolerate up to o(n/ log n) at-
tack edges (social links from honest nodes to compromised
nodes). The routing tables contain O(

√
m log m) entries per

node and are constructed efficiently by a distributed proto-
col. This is the first sublinear solution to this problem. Pre-
liminary simulation results are presented to demonstrate the
approach’s effectiveness.

1. INTRODUCTION
Decentralized systems on the Internet are vulnerable to

the “Sybil attack”, in which an adversary creates numer-
ous false identities to influence the system’s behavior. [8]
This problem is particularly pernicious when the system is
responsible for routing messages amongst nodes, as in the
Distributed Hash Tables (DHT) [24] which underlie many
peer-to-peer systems, because an attacker can prevent honest
nodes from communicating altogether. [23] If a central au-
thority certifies identities as genuine, then standard replica-
tion techniques can be used to fortify these protocols. [4,19]
However, the cost of universal strong identities may be pro-
hibitive. Instead, recent work [26, 25, 6, 18, 14, 5] proposes
using the weak identity information inherent in a social net-
work to produce a completely decentralized system. If the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SocialNets’08, April 1, 2008, Glasgow, Scotland, UK.
Copyright 2008 ACM ISBN 978-1-60558-124-8/08/04 ...$5.00.

adversary can only convince a small fraction of honest users
to form trusted social links with his Sybil identities, then the
honest users can protect themselves against a Sybil attack.

This paper poses the problem: given a well-connected so-
cial network, can honest nodes reliably and efficiently com-
municate in spite of the adversary’s deception? Section 2
reviews some of the related work on this subject. Section 3
presents the first sublinear protocol which solves the prob-
lem, and then extends this simple protocol into a highly ef-
ficient but more complicated solution. Section 4 gives pre-
liminary simulation results showing the effectiveness of the
approach. The remainder of this introduction expands on the
problem and its implications for decentralized systems.

1.1 The Byzantine Dissidents Problem
Imagine that there is network of dissident free-thinkers

(called honest nodes) in the Byzantine Empire, a nation con-
trolled by a ruthless junta. [12] The dissidents have no of-
ficial leader, since the regime can identify and remove any
such person, but they are connected by a network of indi-
vidual trust relations formed through collaborations and in-
troductions. These social links are assumed to be reflexive
(undirected), and each dissident keeps track of his immedi-
ate friends, so they are always in contact. The social network
is assumed to be well-connected (this requirement will be
made more rigorous in Section 3).

The regime employs a number of spies (Sybil nodes) who
infiltrate the network by gaining the trust of honest nodes.
A link between an honest node and a Sybil node is called
an attack edge. [26,25] Honest nodes cannot distinguish be-
tween attack edges and honest edges, and furthermore, spies
can create an arbitrary number of connections to an arbi-
trary number of other spies (the regime’s Sybil identities).
The “Sybil region” controlled by the regime is indistinguish-
able from the region of honest nodes except that the num-
ber of links between the two regions (the number of attack
edges, g) is smaller than the number of links between any
two similarly-sized subsets of the honest region.

The regime does not overtly interfere with communication
between immediate friends, but its spies aim to disrupt the
network by spreading misinformation. For example, imag-
ine that the honest node Sergei wants to contact the honest

19

node Tanya (e.g., to get a copy of a learned treatise Tanya
has written), and Sergei does not have a direct social link
with Tanya. (Assume that Sergei can recognize Tanya as
genuine when he reaches her, through, e.g., self-certifying
identities. [15, 16])

Sergei might ask his friend Umberto for help, but if Um-
berto is a spy, he might mislead Sergei. For example, Um-
berto could send Sergei on a wild goose chase via his Sybil
identities Uma, Upton, Ulysses, Ursula, and so on, consum-
ing Sergei’s time without bringing him any closer to Tanya. [23]

As pointed out in [6], Sergei has a simple and correct pro-
tocol to find Tanya: he can ask each of his friends Umberto,
Valerie, Walter, etc., each of whom must ask each of their
friends, and so on until the request floods the entire social
network. This guarantees that any connected pair of honest
nodes will eventually find each other, but costs Ω(n) mes-
sages per query, which may become unsustainable as the
size of the network increases. The aim of Section 3 will be
to present a novel protocol which dramatically reduces this
overhead.

1.2 The Byzantine Dissidents’ relevance
The problem of the Byzantine Dissidents arose from the

study of Sybil attacks against DHTs: a solution is a Sybil-
resistant DHT routing protocol. [6, 23] Since DHTs are a
critical layer of many decentralized or peer-to-peer network
systems, a technique for constructing Sybil-resistant DHTs
is of great importance.

That the above story is about dissidents is not accidental; a
solution is essentially a censorship-resistant system. [21] As
such, this paper’s protocols may be useful as a part of pub-
lication systems for real-life dissidents and whistleblowers.
Since this paper makes no provisions for anonymity, such
features would need to be added using techniques such as
onion routing. [7, 9]

Finally, the “social network” used by the protocol need
not be limited to the connections between human friends. It
could be, instead, a physical network such as the Internet
or a wireless ad-hoc network. In this context, the Byzantine
Dissidents problem may be applicable to the problems of
secure, fault-tolerant, and accountable routing.

2. BACKGROUND
Shortly after the introduction of scalable peer-to-peer sys-

tems based on DHTs, the Sybil attack was recognized as a
serious security challenge. [8, 13, 23, 22] A number of tech-
niques [4,19,22] have been proposed to make DHTs resistant
to a small fraction of Sybil nodes, but all such systems ulti-
mately rely on a certifying authority to perform admission
control and limit the number of Sybil identities. [8, 20, 3]

Several researchers [14,18,6,5] proposed using social net-
work information to fortify peer-to-peer systems against the
Sybil attack. The bootstrap graph model [6] introduced a
correctness criterion for secure routing using a social net-

work and presented preliminary progress towards that goal,
but left a robust and efficient protocol as an open problem.

Recently, the SybilGuard and SybilLimit systems [26,25]
have shown how to use a fast mixing social network as a de-
fense against the Sybil attack in general decentralized sys-
tems. Using SybilLimit, an honest node can certify other
players as “probably honest”, accepting no more than O(log n)
dishonest Sybil identities per attack edge. (Each certification
costs O(

√
m) bandwidth, where m is the number of edges

between honest nodes.) For example, SybilLimit’s vetting
procedure can be used to check that at least one of a set of
storage replicas is likely to be honest.

Applying SybilLimit naively to the Byzantine Dissidents
problem yields a protocol which costs O(n2

√
m) bandwidth

to protect against a maximum of o(n/ log n) attack edges.1

Unfortunately, this is more costly than the simple flooding
protocol described above. However, the next section shows
how to adapt the underlying techniques developed for Sybil-
Limit to produce an efficient protocol for the Byzantine Dis-
sidents problem.

3. PROTOCOLS

3.1 System model
The system model is the same as in SybilLimit [25], sum-

marized briefly here. The social network has m undirected
edges connecting all n honest nodes. The entire graph is not
stored at any one machine, but each node knows its imme-
diate neighbors in the social network. Honest nodes are as-
sumed to have unforgeable locally-generated public/private
key pairs, and all nodes know their immediate friends’ public
keys (through, e.g., a physical rendezvous). When an hon-
est node searches for another honest node, it can distinguish
the target from an imposter through this public key, a self-
certifying identifier, or some other out-of-band means.

The mixing time, w, is a measure of the connectivity of the
social network: highly connected networks have low mixing
time. It is the number of steps a random walk from an ar-
bitrary node must take before approximating the stationary
distribution of the network. In other words, a random walk
of at least w steps will end at an (approximately uniformly)
random edge in the network. Honest nodes are assumed to
know a rough upper bound on w. The social network is said
to be fast mixing if w = O(log n); real-life social networks
are likely to be fast mixing. [25]

All Sybil nodes are controlled by a Byzantine adversary,
who can create arbitrary edges between Sybil nodes. (An
“honest” node whose software’s integrity has been compro-
mised by the adversary is considered a Sybil node.) Sybil
nodes may deviate from the protocol by failing to respond to
requests, delaying responses, or responding with bad data.
1As a reminder, the asymptotic notationO(f(n)) means “grows no
faster than f(n)”, o(f(n)) means “grows more slowly than f(n)”,
Ω(f(n)) means “grows at least as fast as f(n)”, and Θ(f(n))
means “grows at the same rate as f(n)”.

20

Bound Description Explicitly known?
n none # honest nodes implicit
m Ω(n), O(n2) # honest edges implicit
w O(log n) mixing time rough upper bound
g o(n/ log n) # attack edges implicit
r Θ(

√
m log m) finger table size estimated by

per node protocol

Figure 1: Numeric parameter reference

The adversary can observe messages between honest nodes,
but cannot modify them or block communication entirely.

There are g attack edges between Sybil nodes and honest
nodes. The honest nodes do not know g. If the social network
is fast mixing, then a random walk of length w will cross
an attack edge with escape probability O(g log n

n). [25] This
paper assumes g is bounded by o(n/ log n). This limits the
escape probability to o(1), and ensures that the random walk
stays within the honest region with substantial probability
1 − o(1).2 If g is greater than the bound o(n/ log n), then
the protocols cannot provide strong guarantees, although the
preliminary simulations in Section 4 suggest that the method
is robust to a much larger fraction of attack edges.

3.2 A simple sublinear protocol
The protocol consists of two phases. In the first phase,

nodes exchange messages to construct local routing tables
of size r = Θ(

√
m log m). (The reason for this value will

be explained below.) In the second phase, nodes use the con-
structed tables to search for other nodes.

Each honest node starts with its social links and a rough
upper bound on w. To construct routing tables, each node
initiates r independent random walks of length w, recording
the final node in each walk as a “finger” in its routing table.3

Since each walk’s escape probability is bounded by o(1), at
least Ω(r) of the finger table entries will be honest.

By the fast mixing property, the last edges traversed by
a node’s random walks are a nearly-uniform sample of the
honest region’s edges. Thus, each node appears in other nodes’
finger tables with frequency proportional to its degree.

Routing is simple: to perform a search, a node s broad-
casts the target t’s identifier to all of s’s fingers u1, . . . , ur.
(See Figure 3.) At least Ω(r) of the fingers ui are honest, and
at least one of the honest ui has the target t as a finger. This
ui can forward the request onward to t, or return t’s address
to s.

More specifically, for any honest ui, the target is in ui’s
finger table with probability at least Ω(r)/m. Therefore, the
2For a small fraction ε of honest nodes which are near a concen-
tration of attack edges, this guarantee does not hold. See [25] for
details.
3Note that this step can be computed by communicating only be-
tween neighbors (see [25] for details). Thus, for a node of degree
d, the number of messages is only O(dw) = O(d logn), while the
number of bits transmitted is still Θ(r) = Θ(

√
m logm).

Identifier IP address
SHA1(PK1) 18.26.4.9
SHA1(PK2) 208.77.188.166

...
...

SHA1(PKr) 130.209.34.12

Figure 2: Example finger table

T

U
r fingers

all honest
nodes (whp)

S

Figure 3: Routing from s to t via s’s finger u

probability that none of the honest ui have the target as a
finger is bounded by

pfail =
(

1− Ω(r)
m

)Ω(r)

= O

((
1− log m

r

)r)
= O(e− log m) = O

(
1
m

)
This explains the

√
log m factor in r: with high probability,

some finger will have the target node in its own finger table.
If r were instead Θ(

√
m), the protocol would only provide

a constant probability of finding the target node.

3.3 On estimating w and r

The parameters n, m, w, g, and r are defined from a “God’s-
eye view” of the social network; since real nodes cannot dis-
tinguish Sybil nodes from honest nodes, they cannot know
their precise values. However, to run the above protocol,
each node needs only a rough upper bound on the mixing
time w and a rough lower bound on the required table size r.

Too small an estimate of w will prevent random walks
from reaching the stationary distribution; a larger value will
cause more walks to escape from the honest region. Since
w = O(log n), it suffices to choose a w in the right ballpark
for the number of honest nodes in the social network: if there
are roughly 106 nodes, then w should be approximately 20.
If the number of honest nodes is entirely uncertain, there’s
nothing wrong with running multiple instances of the proto-
col for every value of w up to, e.g., 30, supporting networks
of up to billions of nodes. This need not require extra band-
width, since the prefixes of a random walk of length w are
themselves random walks of length 1, 2, . . . , w − 1.

Too small an estimate of r will cause lookups to fail. In
the SybilLimit [25] system, overestimating r would lead to

21

admitting too many Sybil nodes.4 However, this paper’s pro-
tocols need only a lower bound on r: overestimating r can-
not harm correctness, since it only increases the likelihood
that two honest nodes share a finger. Therefore, nodes sim-
ply continuously increase their table size r until the majority
of routing requests succeed.

To check whether the table is sufficiently large yet, a node
may sample Ω(log n) random nodes by taking random walks
of length w. If fewer than some fixed fraction of the sam-
pled nodes are already reachable through the routing proto-
col, the table is not yet large enough, and the estimate of r
must be increased (e.g., by doubling it).5 Once r is at least
Ω(
√

m log m), all searches for random honest nodes will
succeed with high probability (although an o(1) fraction of
the sampled walks will cross an attack edge and thus can be
forced by the adversary to fail).

3.4 Reducing lookup to O(1) messages
The simple routing protocol above requires O(

√
m log m)

messages per lookup; while this is the first sublinear so-
lution to the Byzantine Dissidents problem, it is still not
ideal. A somewhat more complex protocol based on one-hop
DHTs [10, 11] can reduce this overhead dramatically.

As in Chord and other DHTs, each node u generates a
random ID H(u) on the unit circle [0, 1) by applying a hash
function to its public key. (Assume that the adversary can-
not influence his Sybil nodes’ random IDs; this assumption
will be relaxed later.) As before, in the first phase, each node
initiates r random walks and collects the final nodes into a
finger table (sorted by ID).

In the second phase, each node u constructs a successor
table consisting of the Θ

(
n log n

r

)
= O(r) nodes immedi-

ately following H(u). This table is similar to Chord’s suc-
cessor table, but is differently constructed. Chord maintains
its successor tables by a stabilization protocol amongst the
successor sets on the ring, which is subject to manipulation
by malicious successors. Instead, the node u sends a query
to each of its fingers v, requesting v’s k = Θ(log m) fin-
gers immediately following H(u).6 Sending these requests
to fingers is better than to successors because a substantial
fraction of u’s fingers are guaranteed to be honest; there is
no such guarantee about u’s successors.

The argument for correctness of the successor table con-
struction is similar to the argument for correctness of the
simpler protocol of Section 3.2. At least Ω(r) of u’s fingers
are honest, and these honest fingers collectively know all of
4SybilLimit’s solution is a subtle sampling-based protocol which
each honest node uses to estimate r.
5The sampled nodes may themselves be added to the routing table
as fingers, reducing the overhead of the sampling protocol.
6Naively, this addition seems to increase the routing table’s size by
a logarithmic factor k. However, note that an average edge is known
byO(logm) honest fingers: therefore, the sets returned by the hon-
est fingers should be redundant by a logarithmic factor. Dishonest
fingers may contrive to return many unique successor IDs, but this
imbalance is easily detected and the extra successors discarded.

u’s honest successors. (Indeed, they collectively know the
entire set of honest nodes.) Moreover, consider one of u’s
successors w, and an honest finger v which knows w. The
distance between H(w) and H(u) on the ring is less than
O

(
log n

r

)
. Since v’s r fingers are uniformly distributed on

the ring, it’s very unlikely that more than k = Θ(log m) fall
in this O

(
log n

r

)
ID range, so v will tell u about w. There-

fore, with high probability, the node u will learn about all of
its nearest Θ

(
n log n

r

)
honest successors.

Using the finger and successor tables, routing now pro-
ceeds typically for a one-hop DHT. Given the target node’s
identifierH(t), the requester s chooses the finger withH(v)
immediately preceding H(t) and sends the request H(t) to
the finger v. With high probability, the number of identifiers
between H(t) and H(v) is less than n log n

r . Thus, if the fin-
ger v is honest, it will have the target node in its successor
table and can forward the request onwards (or return t’s ad-
dress to s).

If the finger is dishonest, it may return a failure result to
s, or simply refuse to forward the request. However, the re-
quester can simply continue on to try the next nearest prede-
cessor toH(t) in its finger table. Since only an o(1) fraction
of the fingers are dishonest, the expected number of tries to
find the target is constant, and thus the message complexity
of the lookup protocol is O(1).

The maximum number of tries needed to reach the target
will be O(log n), with high probability. In a situation where
it’s impossible for s to detect failure, or if O(log n) maxi-
mum latency is too long, s can simply send the request si-
multaneously via all O(log n) predecessor fingers. At least
one of them will be honest and able to forward the message
to the target.

3.5 Finger table balancing protocol
The structured protocol above assumes that the adversary

cannot influence its nodes’ random IDs. However, in reality,
a fixed hash function over private keys does not provide this
property: an adversary can repeatedly generate new private
keys until he gets one that hashes into a particular range.

The adversary may attempt to isolate an individual node
by generating many Sybil IDs near the victim’s ID, caus-
ing its true predecessors to fill up their successor tables, and
forcing any node searching for the target to try many bad
fingers before finding a good one. [23,22] This situation can
be detected by honest nodes as suspicious, since highly clus-
tered IDs are very unlikely to happen by chance. However, it
is challenging to distinguish the dishonest fingers in a clus-
ter, which should be discarded, from the honest fingers being
attacked.

The key is to balance each node’s finger tables so that the
fingers’ IDs are evenly spaced around the unit circle. Chord
balances load by assigning each node k = Θ(log n) virtual
IDs generated by independent hash functions H1, . . . ,Hk,
and then running the routing protocol over the virtual IDs. [24]

22

However, simply adding virtual IDs doesn’t solve the prob-
lem: an adversary can eclipse a targeted node by generating
Sybil IDs near all of the targeted node’s virtual IDs.

The proposed solution is inspired by cuckoo hashing [17],
and is similar to a scheme in [2]. Briefly, each node is given
k = Θ(log n) virtual IDs, and abnormally clustered vir-
tual IDs are discarded from the finger table until it is evenly
spaced. With high probability, each honest finger will retain
at least one virtual ID.

More specifically, let Hi be a family of k hash functions,
such that it is computationally infeasible for the adversary
to find inputs x and y such that Hi(x) is near Hi(y) for all
Hi. (In this context, “near” means the distance on the unit
circle is less than 1/r.) A node’s k virtual identities (vIDs)
are defined to beHi(PKu), where PKu is the node’s public
key (or hash thereof). ByHi’s definition, it is difficult for the
adversary to compute a public key whose vIDs collide with
all of another node’s vIDs.

After a node has done r random walks and collected the
virtual identities of its r fingers, it balances its finger table by
pruning clustered vIDs. For each pair of fingers with vIDs
closer than Θ(1/rk), the node picks the finger with more re-
maining vIDs and discards that vID. Very few pairs of hon-
est fingers will be pruned: if one imagines dividing the unit
circle into bins of size Θ(1/rk), this procedure is essentially
the same as cuckoo hashing. [17] Thus, the most full bin will
only contain O(log log nk) honest vIDs.

The adversary may contrive to cause an honest finger to
be discarded by choosing many vIDs near the target finger’s
vIDs. However, the pruning priority rule prevents this attack.
Consider an honest finger with only one vID remaining: that
finger will always win against an adversary’s vID, unless the
adversary’s vID collides with the honest finger on allHi.

Since vIDs can be computed from public keys on-the-fly
using the hash family Hi, in theory this modification does
not increase the finger table size. However, fast access to the
table will require it to be sorted by vID, and so the k =
Θ(log n) virtual IDs per node will effectively increase the
protocol’s storage requirements by a factor of k. The rest of
the protocol remains unchanged from Section 3.4.

4. PRELIMINARY RESULTS
The simple protocol of Section 3.2 has been implemented

as a simulation proof-of-concept and tested against a graph
extracted from the Orkut social networking service. [1] Fol-
lowing SybilLimit [25], the graph was preprocessed to re-
move nodes with degree less than 5 and disconnected clus-
ters. The remaining graph has 7335 nodes and 56211 edges;
node degrees follow a power law distribution. The simula-
tion used the parameters w = 10 and r = 1000; since ran-
dom walks sometimes collide, the typical finger table sizes
were around 650 entries.

To generate an instance with g attack edges, the simulator
marked random nodes as “evil” until there were g edges be-
tween marked nodes and non-marked nodes. For example,

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5000 10000 15000 20000 25000 30000 35000

P
er

ce
nt

ag
e

of
 fa

ili
ng

 lo
ok

up
s

Number of attack edges

Figure 4: Routing failure rate versus attack edges

in the instance with g = 32000, there are n = 4487 hon-
est nodes (with m = 29445 honest edges) and 2848 Sybil
nodes. The adversary’s behavior is to swallow all escaping
random walks and ignore all requests: this is the optimal at-
tack against the simple broadcast-based protocol.

Figure 4 plots the rate of lookup failures versus the num-
ber of attack edges g. Note that the protocol provides a strict
guarantee only up to g = o(n/ log n), or approximately 750
attack edges. The graph shows the protocol’s graceful degra-
dation when the adversary is very powerful. In practice, the
number of failures is largely unaffected by the adversary un-
til g becomes substantial compared to the number of honest
edges (e.g., with g = 12000 and m = 43930, the failure rate
is 15.8%).

5. CONCLUSION
This paper presents the first structured DHT routing layer

which uses a social network to provide strong resilience against
a Byzantine Sybil attacker with many attack edges. Routing
table sizes are typical of one-hop DHTs, at O(

√
m log m)

entries per node. Lookups take only O(1) messages, and
lookup load is distributed evenly amongst nodes proportion-
ally to their degree.

This protocol solves the Byzantine Dissidents problem: it
permits a decentralized network of honest confederates to
maintain coordinated communication despite active interfer-
ence and misinformation spread by an attacker. This prob-
lem has applications to decentralized Internet system design,
censorship resistance, and secure network routing.

The technique presented here only applies straightforwardly
to a one-hop structured DHT. Multiple-hop routes pose a
challenge, because each hop has a non-negligible chance of
being controlled by the adversary; after O(log n) hops, al-
most all routes will be tainted. This paper leaves open the
question of whether a structured DHT with logarithmic ta-
ble size can be made highly Sybil-resistant using social net-
works.

23

Acknowledgements
I would like to thank Frans Kaashoek and the anonymous
reviewers for their many helpful comments. This research is
sponsored by the National Science Foundation under Coop-
erative Agreement ANI-0225660 (Project IRIS).

6. REFERENCES
[1] Orkut online community. http://orkut.com/.
[2] B. Awerbuch and C. Scheideler. Towards scalable and

robust overlay networks. IPTPS Workshop, Bellevue,
WA, Feb. 2007.

[3] N. Borisov. Computational puzzles as sybil defenses.
Peer-to-Peer Computing, pages 171-176, 2006.

[4] M. Castro, P. Druschel, A. J. Ganesh, A. I. T.
Rowstron, and D. S. Wallach. Secure routing for
structured peer-to-peer overlay networks. OSDI,
Boston, MA, Dec. 2002.

[5] A. Cheng and E. Friedman. Sybilproof reputation
mechanisms. Applications, Technologies,
Architectures, and Protocols for Computer
Communication, pages 128–132, ACM Press New
York, NY, USA, 2005.

[6] G. Danezis, C. Lesniewski-Laas, M. F. Kaashoek, and
R. J. Anderson. Sybil-resistant DHT routing.
ESORICS, pages 305-318, 2005.

[7] R. Dingledine, N. Mathewson, and P. F. Syverson. Tor:
The second-generation onion router. USENIX Security,
pages 303-320, San Diego, CA, Aug. 2004.

[8] J. R. Douceur. The sybil attack. IPTPS Workshop,
pages 251-260, Peter Druschel, M. Frans Kaashoek,
and Antony I. T. Rowstron, ed. Springer Lecture Notes
in Computer Science 2429, Cambridge, MA, Mar.
2002.

[9] M. J. Freedman and R. Morris. Tarzan: A peer-to-peer
anonymizing network layer. CCS, pages 193-206,
Vijayalakshmi Atluri, ed. ACM, Washington, D.C.
Nov. 2002.

[10] A. Gupta, B. Liskov, and R. Rodrigues. Efficient
routing for peer-to-peer overlays. NSDI, pages
113-126, San Francisco, CA, Mar. 2004.

[11] I. Gupta, K. P. Birman, P. Linga, A. J. Demers, and R.
van Renesse. Kelips: Building an efficient and stable
p2p DHT through increased memory and background
overhead. IPTPS Workshop, pages 160-169, M. Frans
Kaashoek and Ion Stoica, ed. Springer Lecture Notes
in Computer Science 2735, Berkeley, CA, Feb. 2003.

[12] L. Lamport, R. E. Shostak, and M. C. Pease. The
byzantine generals problem. ACM ToPLaS,
4(3):382-401, 1982.

[13] B.N. Levine, C. Shields, and N.B. Margolin. A survey
of solutions to the sybil attack. University of
Massachusetts Amherst, Amherst, MA, 2006.

[14] S. Marti, P. Ganesan, and H. Garcia-Molina. DHT
routing using social links. IPTPS Workshop, pages
100-111, Geoffrey M. Voelker and Scott Shenker, ed.

Springer Lecture Notes in Computer Science 3279, La
Jolla, CA, Feb. 2004.

[15] D. Mazi„eres, M. Kaminsky, M. F. Kaashoek, and E.
Witchel. Separating key management from file system
security. SOSP, pages 124-139, Kiawah Island, SC,
Dec. 1999.

[16] P. Nikander and J. Laganier. An IPv6 prefix for
overlay routable cryptographic hash identifiers
(ORCHID). RFC 4843, 2007.

[17] R. Pagh and F. F. Rodler. Cuckoo hashing. J.
Algorithms, 51(2):122-144, 2004.

[18] B. C. Popescu, B. Crispo, and A. S. Tanenbaum. Safe
and private data sharing with turtle: Friends team-up
and beat the system. Security Protocols Workshop,
pages 213-220, 2004.

[19] R. Rodrigues and B. Liskov. Rosebud: A scalable
byzantine-fault-tolerant storage architecture. MIT
CSAIL, Technical Report TR/932, Dec. 2003.

[20] H. Rowaihy, W. Enck, P. McDaniel, and T. L. Porta.
Limiting sybil attacks in structured p2p networks.
INFOCOM, pages 2596-2600, 2007.

[21] M. W. A. D. Rubin and L. F. Cranor. Publius: A robust,
tamper-evident, censorship-resistant, web publishing
system. USENIX Security, pages 59–72, August 2000.

[22] A. Singh, T.-W. Ngan, P. Druschel, and D. S. Wallach.
Eclipse attacks on overlay networks: Threats and
defenses. INFOCOM, 2006.

[23] E. Sit and R. Morris. Security considerations for
peer-to-peer distributed hash tables. IPTPS Workshop,
pages 261-269, Peter Druschel, M. Frans Kaashoek,
and Antony I. T. Rowstron, ed. Springer Lecture Notes
in Computer Science 2429, Cambridge, MA, Mar.
2002.

[24] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger,
M. F. Kaashoek, F. Dabek, and H. Balakrishnan.
Chord: A scalable peer-to-peer lookup protocol for
Internet applications. ToN, 11(1):17-32, 2003.

[25] H. Yu, P. B. Gibbons, M. Kaminsky, and F. Xiao. A
near-optimal social network defense against sybil
attacks. To appear. IEEE Symposium on Security and
Privacy, Oakland, CA, May 2008.

[26] H. Yu, M. Kaminsky, P. B. Gibbons, and A. Flaxman.
SybilGuard: Defending against sybil attacks via social
networks. SIGCOMM, pages 267-278, Piza, Italy,
Sept. 2006.

24

	Introduction
	The Byzantine Dissidents Problem
	The Byzantine Dissidents' relevance

	Background
	Protocols
	System model
	A simple sublinear protocol
	On estimating w and r
	Reducing lookup to O(1) messages
	Finger table balancing protocol

	Preliminary results
	Conclusion
	References

