
Designing multicore scalable filesystems with durability
and crash consistency

by

Srivatsa S. Bhat
B.Tech in Information Technology

National Institute of Technology Karnataka, Surathkal, India (2011)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2017

c○Massachusetts Institute of Technology 2017. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 19, 2017

Certified by .
M. Frans Kaashoek

Charles Piper Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Certified by .
Nickolai Zeldovich

Associate Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

2

Designing multicore scalable filesystems with durability and crash

consistency

by

Srivatsa S. Bhat

Submitted to the Department of Electrical Engineering and Computer Science
on May 19, 2017, in partial fulfillment of the

requirements for the degree of
Master of Science in Computer Science

Abstract
It is challenging to simultaneously achieve multicore scalability and high disk throughput in
a file system. For example, data structures that are on separate cache lines in memory (e.g.,
directory entries) are grouped together in a transaction log when the file system writes them
to disk. This grouping results in cache line conflicts, thereby limiting scalability.

McoreFS is a novel file system design that decouples the in-memory file system from
the on-disk file system using per-core operation logs. This design facilitates the use of highly
concurrent data structures for the in-memory representation, which allows commutative
operations to proceed without conflicts and hence scale perfectly. McoreFS logs operations
in a per-core log so that it can delay propagating updates to the disk representation until an
fsync. The fsync call merges the per-core logs and applies the operations to disk. McoreFS
uses several techniques to perform the merge correctly while achieving good performance:
timestamped linearization points to order updates without introducing cache line conflicts,
absorption of logged operations, and dependency tracking across operations.

Experiments with a prototype of McoreFS show that its implementation is conflict-free
for 99% of test cases involving commutative operations generated by Commuter, scales
well on an 80-core machine, and provides disk performance that matches or exceeds that of
Linux ext4.

Thesis Supervisor: M. Frans Kaashoek
Title: Charles Piper Professor of Electrical Engineering and Computer Science

Thesis Supervisor: Nickolai Zeldovich
Title: Associate Professor of Electrical Engineering and Computer Science

3

4

Acknowledgments

I would like to express my deepest gratitude to my advisors Frans Kaashoek and Nickolai

Zeldovich for their incredible guidance and support. I feel very fortunate to be a part of

PDOS, and I would like to thank everyone for all the enlightening discussions. My heartfelt

thanks to my brother and my parents for their constant support and encouragement through

all my endeavors.

This thesis incorporates work done jointly with Rasha Eqbal, and builds on top of

Rasha’s Masters thesis on the ScaleFS multicore file system [13].

5

6

Contents

1 Introduction 11

2 Related work 15

3 Durability semantics 19

4 Design overview 23

4.1 Making operations orderable [P, C] . 23

4.2 Merging operations [C] . 26

4.3 Flushing an operation log [P, C] . 27

4.4 Multiple disks and journals [P] . 31

4.5 Discussion . 33

5 Implementation 35

5.1 MemFS . 35

5.2 DiskFS . 37

5.3 Limitations . 38

6 Evaluation 39

6.1 Methodology . 39

6.2 Does McoreFS achieve multicore scalability? 40

6.3 Empirical scalability . 43

6.4 Does durability reduce multicore scalability? 45

6.5 Disk performance . 46

7

6.6 Crash safety . 46

6.7 Overhead of splitting MemFS and DiskFS 49

7 Conclusion 51

A Correctness of the directory loop avoidance algorithm in McoreFS 53

8

List of Figures

4-1 Example illustrating the need to order operations to preserve consistency . . 24

4-2 Example illustrating the challenges involved in performing a correct merge

of the operations from the per-core logs 27

4-3 Example illustrating how loops can be formed in the directory hierarchy

with a naïve implementation of fsync . 30

5-1 Lines of C++ code for each component of McoreFS. 35

6-1 Conflict-freedom of commutative operations in McoreFS 41

6-2 Conflict-freedom of commutative operations in the Linux kernel with an

ext4 file system . 41

6-3 Throughput of mailbench, smallfile and largefile workloads in a RAM disk

configuration . 42

6-4 Conflict-freedom of commutative operations in sv6 with an in-memory file

system . 43

6-5 Performance comparison of McoreFS and Linux ext4 using a single disk,

single core configuration . 44

6-6 Throughput of mailbench-p, smallfile and largefile workloads using 4 CPU

cores on multiple SSDs striped together 44

9

10

Chapter 1

Introduction

Many of today’s file systems do not scale well on multicore machines, and much effort is

spent on improving them to allow file system intensive applications to scale better [2, 9,

12, 21, 24, 28]. This thesis contributes a clean-slate file system design that allows for good

multicore scalability by separating the in-memory file system from the on-disk file system,

and describes a prototype file system, McoreFS, that implements this design.

McoreFS achieves the following goals:

1. Multicore scalability. McoreFS scales well for a number of workloads on an 80-

core machine, but even more importantly, the McoreFS implementation is conflict-free

for almost all commutative operations [9]. This allows McoreFS to achieve disjoint-

access parallelism [1, 18], which suggests that McoreFS will continue to scale even for

workloads or machines we have not yet measured.

2. Crash safety. McoreFS recovers from a crash at any point and provides clear guarantees

for fsync, consistent with what the POSIX specification implies (e.g., ensuring that

writes prior to sync or fsync are durably stored on disk).

3. Good disk throughput. The amount of data written to the disk is commensurate with

the changes that an application made to the file system, and that data is written efficiently.

These goals are difficult to achieve together. Consider directory operations in Linux.

Directories are represented in memory with a concurrent hash table. When Linux updates

a directory it also propagates these changes to the in-memory ext4 physical log, which is

11

later flushed to disk. This is essential to ensure crash safety, but can cause two commutative

directory operations to contend for the same disk block in the in-memory ext4 physical log.

For example, consider create(f1) and create(f2) under the same parent directory, where

f1 and f2 are distinct. According to the Scalable Commutativity Rule [9], the two creates

commute and should be conflict-free to allow for scalability. However, if they happen to

update the same disk block, they are not conflict-free and can limit scalability despite being

commutative.

Our key insight is to decouple the in-memory file system from the on-disk file system.

To enable decoupling, McoreFS separates the in-memory file system from the on-disk file

system using an operation log (based on oplog [3]). The operation log consists of per-core

logs of file system operations (e.g., link, unlink, rename). When fsync and sync are

invoked, McoreFS sorts the operations in the operation log, and applies them to the on-disk

file system. For example, McoreFS implements directories in such a way that if two cores

update different entries in a shared directory, then no interaction is necessary between the

two cores. When an application calls fsync on the directory, McoreFS merges the per-core

operation logs into an ordered log, prepares the on-disk representation, adds the updated

disk blocks to a physical log, and finally flushes the physical log to disk.

Although existing file systems decouple to some degree (e.g., Linux has different in-

memory and on-disk representations for directories), the operation log allows McoreFS

to take this approach to its logical extreme: it enables two independent file systems: an

in-memory file system and an on-disk file system, one tailored to achieve goal 1 (scalability)

and the other tailored for goal 3 (high disk throughput). The in-memory file system can

choose data structures that allow for good concurrency, choose inode numbers that can be

allocated concurrently without coordination, etc. On the other hand, the on-disk file system

can choose data structures that allow for good disk throughput. The on-disk file system can

even re-use an existing on-disk format.

To achieve goal 2 (crash safety), this thesis puts forward a set of principles that argue

for what minimal durability guarantees POSIX must provide, and uses them to articulate an

informal specification for fsync. McoreFS implements this specification by time-stamping

linearization points of in-memory operations, and merging the per-core logs with the

12

operations sorted by the time-stamps. McoreFS ensures that the set of changes written

to disk is small by tracking dependencies between operations in the merged log. At an

invocation of fsync, McoreFS applies only operations that relate to the file or directory

being fsynced, and absorbs operations that cancel each other out.

We have implemented McoreFS by modifying sv6 [9], which does not provide crash

safety. We adopted the in-memory data structures from sv6 to implement the in-memory

file system, but extended it with an on-disk file system from xv6 [11] using the decoupling

approach. The implementation does not support all of the file system operations that, say,

Linux supports (such as sendfile), but McoreFS does support complex operations such as

rename across directories.

Experiments with McoreFS on Commuter [9] demonstrate that McoreFS’s multicore

scalability for commutative operations is as good as that of sv6 while providing crash safety.

Experimental results also indicate that McoreFS achieves better scalability than the Linux

ext4 [26] file system for in-memory workloads, while providing similar performance when

accessing disk. McoreFS is conflict free in 99.2% of the commutative test cases Commuter

generates, while Linux is conflict free for only 70% of them. Furthermore, experiments

demonstrate that McoreFS achieves good disk performance.

The main contributions of the thesis are as follows.

∙ A new design approach for multicore file systems that decouples the in-memory file

system from the on-disk file system using an operation log.

∙ A set of principles for minimal durability guarantees provided by a file system, along

with an informal specification of fsync that follows these principles.

∙ Techniques based on timestamping linearization points that ensure crash safety and high

disk performance.

∙ An implementation of the above design and techniques in a McoreFS prototype.

∙ An evaluation of our McoreFS prototype that confirms that McoreFS achieves good

scalability and performance.

The rest of the thesis is organized as follows. §2 describes related work, §3 introduces

three principles for the design of fsync, §4 describes the design of McoreFS’s operation

13

log, §5 summarizes McoreFS’s implementation, §6 presents experimental results, and §7

concludes.

14

Chapter 2

Related work

The main contribution of McoreFS is the split design that allows the in-memory file system

to be designed for multicore scalability and the on-disk file system for durability and disk

performance. The rest of this section relates McoreFS’s separation to previous designs,

McoreFS’s memory file system to other in-memory file systems, and McoreFS’s disk file

system to previous durable file systems.

File system scalability. McoreFS adopts its in-memory file system from sv6 [9]. sv6 uses

sophisticated parallel-programming techniques to make commutative file system operations

conflict-free so that they scale well on today’s multicore processors. Due to these techniques,

sv6 scales better than Linux for many in-memory operations. sv6’s, however, is only an

in-memory file system; it does not support writing data to durable storage. McoreFS’s

primary contribution over sv6’s in-memory file system is showing how to combine multicore

scalability with durability. To do so, McoreFS extends the in-memory file system using

OpLog [3] to track linearization points, and adds an on-disk file system using an operation

log sorted by the timestamps of linearization points.

Many existing file systems, including Linux ext4, suffer from multicore scalability bot-

tlenecks [2, 9, 28], and file system developers are actively improving scalability in practice.

However, most practical file systems are taking an incremental approach to improving

scalability, as demonstrated by NetApp’s Waffinity design [12]. This improves scalability

for particular workloads and hardware configurations, but fails to achieve McoreFS’s goal

15

of conflict-free implementations for all commutative operations, which is needed to scale on

as-of-yet unknown workloads or hardware platforms.

Separation using logging. File systems use different data structures for in-memory and

on-disk file system operations. For example, directories are often represented in memory

differently than on disk to allow for higher performance and parallelism. Linux’s dcache [10,

27], which uses a concurrent hash table, is a good example. Similarly, ext4’s delayed

allocation allows ext4 to defer accessing disk bitmaps until necessary. However, no file

system completely decouples the in-memory file system from the on-disk file system. In

particular, in every other scalable file system, operations that perform modifications to

in-memory directories also manipulate on-disk data structures. This lack of decoupling

causes unnecessary cache-line movement and limits scalability.

ReconFS [25] pushes the separation further than traditional file systems do. For example,

it decouples the volatile and the persistent directory tree maintenance and emulates hierar-

chical namespace access on the volatile copy. In the event of system failures, the persistent

tree can be reconstructed using embedded connectivity and metadata persistence logging.

ReconFS, however, is specialized to non-volatile memory, while McoreFS’s design does

not require non-volatile memory.

The decoupling is more commonly used in distributed systems. For example, the BFT

library separates the BFT protocol from NFS operations using a log [5]. However, these

designs do not use logs designed for multicore scalability.

McoreFS implements the log that separates the in-memory file system from the on-disk

file system using an oplog [3]. Oplog allows cores to append to per-core logs without

any interactions with other cores. McoreFS extends oplog’s design to sort operations by

timestamps of linearization points of file system operations to ensure crash consistency.

Applying distributed techniques to multicore file systems. Hare is a scalable in-memory

file system for multicore machines without cache coherence [16]. It does not provide per-

sistence and poses this as an open research problem. McoreFS’s decoupling approach is

likely to be a good match for Hare too. One could use the Hare file system as the in-memory

16

file system and McoreFS’s on-disk file system for persistence. The main challenge will be

to implement the operation log on a non-cache-coherent machine, in particular the merge

operation.

SpanFS [20] extends Hare’s approach by implementing persistence. This requires each

core to participate in a two-phase commit protocol for operations such as rename that can

span multiple cores. Much like Hare, SpanFS shards files and directories across cores at

a coarse granularity, and cannot re-balance the assignment at runtime. While SpanFS can

alleviate some file system scalability bottlenecks, its rigid sharding requires the application

developer to carefully distribute files and directories across cores, and not to access the same

file or directory from multiple cores. In contrast, McoreFS does not require the application

developer to think about partitioning of files or directories; McoreFS provides scalability

for commutative operations, even if they happen to modify the same file or directory (e.g., a

mail server delivering messages into a shared spool directory on multiple cores). In addition,

SpanFS flushes all outstanding journal entries upon fsync, and invokes a two-phase commit

protocol when multiple cores are involved. In contrast, McoreFS computes a minimal set

of disk writes to flush for each fsync using operational dependency tracking, which allows

fsync to both write less data to disk and to incur less contention.

On-disk file systems. McoreFS’s on-disk file system uses a simple design based on

xv6 [11]. It runs file system updates inside of a transaction as many previous file systems

have done [7, 17], has a physical log for crash recovery of metadata file system operations

(but less sophisticated than, say, ext4’s design [26]), and implements file system data

structures on disk in the same style as the early version of Unix [31].

Because of the complete decoupling of the in-memory file system and on-disk file system,

McoreFS could be modified to use ext4’s disk format, and adopt many of its techniques

to support bigger files, more files, and better disk performance. Similarly, McoreFS’s

on-disk file system could be changed to use other ordering techniques than transactions; for

example, it could use soft updates [15], a patch-based approach [14], or backpointer-based

consistency [6].

17

McoreFS’s on-disk file system provides concurrent I/O using standard striping tech-

niques. It could be further extended using more sophisticated techniques from file systems

such as LinuxLFS [19], BTRFS [32], TABLEFS [30], NoFS [6], and XFS [34] to increase

disk performance.

McoreFS’s on-disk file system is agnostic about the medium that stores the file system,

but in principle should be able to benefit from recent work using non-volatile memory such

as buffer journal [23] or ReconFS to minimize intensive metadata writeback and scattered

small updates [25].

18

Chapter 3

Durability semantics

A challenge in ensuring that McoreFS is both crash-safe and high-performance lies in

determining the minimal set of requirements that McoreFS must satisfy to achieve crash

safety. For instance, it is easy to provide a crash-safe file system by flushing all changes

to disk immediately, but this achieves poor performance. Modern file systems implement

different strategies for deferring disk writes, but do not agree on a consistent set of crash

consistency guarantees [29, 35, 36]; for instance, Linux provides different guarantees

depending on the file system type and mount options.

To achieve high performance, a file system must defer writing to persistent storage for

as long as possible, allowing two crucial optimizations: batching (flushing many changes

together is more efficient) and absorption (later changes may supersede earlier ones). How-

ever, a file system cannot defer forever, and may need to flush to persistent storage for two

reasons. First, it may run out of space in memory. Second, an application may explicitly

call fsync, sync, etc. Thus, for performance, it is critical to write as little as possible in the

second case (fsync). To do this, it is important to agree on the semantics of fsync.

A complication in agreeing on the semantics of fsync comes from the application

developer, whose job it is to build crash-safe applications on top of the file system interface.

If the interface is too complex to use (e.g., the semantics of fsync are subtle), some

application developers are likely to make mistakes [29]. On the other hand, an interface

that provides cleaner crash safety properties may give up performance that sophisticated

application programmers want. In this thesis, McoreFS aims to provide high performance,

19

targeting programmers who carefully manage the number and placement of calls to sync

and fsync in their applications, with a view to obtain the best performance.

McoreFS’s semantics for fsync build on three principles. The first principle is that

fsync’s effects should be local: an fsync of a file or directory ensures that all changes to

that file or directory, at the time fsync was called, are flushed to disk. For instance, calling

fsync on one file will ensure that this file’s data and metadata are durably stored on disk,

but will not flush the data or metadata of other files, or even of the directory containing this

file. If the application wants to ensure the directory entry is durably stored on disk, it must

invoke fsync on the parent directory as well [29, 35].

The local principle allows for high performance, but some operations—specifically,

rename—cannot be entirely local. For instance, suppose there are two directories d1 and d2,

and a file d1/a, and all of them are durably stored on disk (there are no outstanding changes).

What should happen if the application calls rename(d1/a, d2/a) followed by fsync(d1)?

Naïvely following the local semantics, a file system might flush the new version of d1

(without a), but avoid flushing d2 (since the application did not call fsync(d2)). However,

if the system were to now crash, the file would be lost, since it is neither in d1 nor in d2.

This purely local specification makes it hard for an application to safely use rename across

directories, as articulated in our second principle, as follows.

The second principle for McoreFS’s fsync semantics is that the file system should be

able to initiate any fsync operations on its own. This is crucial because the file system

needs to flush changes to disk in the background when it runs out of memory. However,

this principle means that if the user types mv d1/a d2/a, a file system implementing purely

local semantics can now invoke fsync(d1) to free up memory, and as in the above example,

lose this file after a crash. This behavior would be highly surprising to users and application

developers, who do not expect that rename can cause a file to be lost, if the file was already

persistently stored on disk before the rename.

Our third principle aims to resolve this anomaly, by requiring that rename should not

cause a file or directory to be lost. Taking McoreFS’s three principles together, the final

semantics of fsync are that it flushes changes to the file or directory being fsynced, and, in

20

the case of fsync on a directory, it also flushes changes to other directories where files may

have been renamed to.

These semantics are sufficient to build crash-safe applications, since they are similar to

the semantics provided by some Linux file systems (e.g., applications already assume that

they need to call fsync on the parent directory to ensure crash safety for a newly created

file). While these semantics require for careful programming at the application level, they

also allow for the file system developer to provide high performance to applications (since

the file system need not flush changes unrelated to the file or directory being fsynced, and

those other changes can be deferred).

21

22

Chapter 4

Design overview

McoreFS consists of two file systems: an in-memory file system called MemFS, and an

on-disk file system called DiskFS. The in-memory file system uses concurrent data structures

that would allow commutative in-memory operations to scale, while the on-disk file system

deals with constructing disk blocks and syncing them to disk. This approach allows most

commutative file system operations to execute conflict-free. The two file systems are coupled

by an operation log [3], which logs operations such as link, unlink, rename, etc. Although

an operation log is designed for update-heavy workloads, it is a good fit for McoreFS’s

design because MemFS handles all of the reads, and the log is consulted when flushing

changes to DiskFS.

McoreFS’s design faces two challenges—performance and correctness—and the rest

of this section describes how McoreFS achieves both. We explicitly mark the aspects

of the design related to either performance or correctness with [P] and [C] respectively.

Performance optimizations need to achieve good performance for workloads that matter to

real applications, while correctness guarantees must be upheld regardless of what operations

the application issues.

4.1 Making operations orderable [P, C]

To ensure crash consistency, operations must be added to the log in the order that MemFS

applied the operations. Achieving this property while maintaining conflict-freedom is

23

difficult, because MemFS uses lock-free data structures, which in turn makes it difficult to

control the order in which different operations run. For example, consider a strawman that

logs each operation while holding all the locks that MemFS acquires during that operation,

and then releases the locks after the operation has been logged. Now consider the scenario

in Figure 4-1. Directory dir1 contains three file names: a, b and c. a is a link to inode 1,

b and c are both links to inode 2. Thread T1 issues the syscall rename(b, c) and thread

T2 issues rename(a, c). Both these threads run concurrently. Although this may seem

like a corner case, our goal is to achieve perfect scalability without having to guess what

operations might or might not matter to a given workload.

Directory dir1

directory entry a

directory entry b

directory entry c

inode 1

inode 2

Figure 4-1: Data structures involved in a concurrent execution of rename(a,c) and
rename(b,c). Arrows depict a directory entry referring to an inode. There are three
directory entries in a single directory, two of which are hard links to the same inode.

Assume that T1 goes first. To achieve conflict-freedom for commutative operations, T1

performs a lock-free read of b and c to determine that both are hardlinks to the same inode.

Thus, all it needs to do is remove the directory entry for b (and to decrement the inode’s

reference count, which it can do without holding a lock by using a distributed reference

counter like Refcache [8]). The only lock T1 acquires is on b, since it does not touch c at

all. In this case, T1’s rename(b, c) can now complete without having to modify any cache

lines (such as a lock) for c.

T2 then acquires locks on a and c and performs its rename. Both of the threads now

proceed to log the operations while holding their respective locks. Because the locks they

hold are disjoint, T2 might end up getting logged before T1. Now when the log is applied to

the disk on a subsequent fsync, the disk version becomes inconsistent with what the user

believes the file system state is. Even though MemFS has c pointing to inode 1 (as a result

24

of T1 executing before T2), DiskFS would have c pointing to inode 2 (T2 executing before

T1). Worse yet, this inconsistency persists on disk until all file names in question are deleted

by the application—it is not just an ephemeral inconsistency that arises at specific crash

points. The reason behind this discrepancy is that reads are not guarded by locks. However

if we were to acquire read locks, McoreFS would sacrifice conflict-freedom of in-memory

commutative operations.

We address this problem by observing that modern processors provide synchronized

timestamp counters across all cores. This observation is at the center of oplog’s design [3:

§6.1], which our file system design builds on. On x86 processors, timestamp counters can be

accessed using the RDTSCP instruction (which ensures the timestamp read is not re-ordered

by the processor).

Building on this observation, our design orders in-memory operations by requiring the

in-memory file system to be linearizable. Moreover, our design makes the linearization

order explicit by reading the timestamp counter at the appropriate linearization point, which

records the order in which MemFS applied these operations. This subsequently allows fsync

to order the operations by their timestamps, in the same order that they were applied to

MemFS, without incurring any additional space overhead.

Since MemFS uses lock-free data structures, determining the linearization points is

challenging. The linearization points are in regions made up of one or more atomic instruc-

tions. A simple way to get a timestamp at the linearization point would be to protect this

region with a lock and read the timestamp counter anywhere within the locked region. For

operations that update part of a data structure under a per-core lock this scheme works well.

For read operations, obtaining the linearization point is complicated by the fact that, to

achieve scalability, McoreFS does not use read locks. For example, T1 from Figure 4-1 does

not take a read lock on c to achieve scalability, but we do have to order T1 and T2 correctly.

To solve this problem, MemFS protects such read operations with a seqlock [22: §6].

With a seqlock, a writer maintains a sequence number associated with the shared data.

Writers update this sequence number both before and after they modify the shared data.

Readers read the sequence number before and after reading the shared data. If the sequence

numbers are different, or the sequence number is odd (indicating a writer is in the process of

25

modifying), then the reader assumes that a writer has changed the data while it was being

read. In that case a reader simply retries until the reader reads the same even sequence

number before and after. In the normal case, when a writer does not interfere with a reader,

a seqlock does not incur any additional cache-line movement.

To determine the timestamp of the linearization point for a read operation, MemFS uses

a seqlock around that read operation (such as a lock-free hash table lookup). Inside of the

seqlock-protected region, MemFS both performs the lock-free read, and reads the timestamp

counter. If the seqlock does not succeed, MemFS retries, which produces a new timestamp.

The timestamp of the last retry corresponds to the linearization point. This scheme ensures

that McoreFS correctly orders operations in its log, since the timestamp falls within a time

range when the read value was stable, and thus represents the linearization point. This

scheme also achieves scalability because it allows read-only operations to avoid modifying

shared cache lines.

4.2 Merging operations [C]

The timestamps of the linearization points allow operations executed by different cores to be

merged in a linear order, but the merge must be done with care. McoreFS’s oplog maintains

per-core logs so that cores can add entries without communicating with other cores, and

merges the per-core logs when an fsync or a sync is invoked. This ensures that commutative

operations do not conflict because of appending log entries. The challenge in using an oplog

in McoreFS is that the merge is tricky. Even though timestamps in each core’s log grow

monotonically, the same does not hold for the merge, as illustrated by the example shown in

Figure 4-2.

Figure 4-2 shows the execution of two operations on two different cores: op1 on core 1

and op2 on core 2. LP1 is the linearization point of op1, and LP2 of op2. If the per-core

logs happen to be merged at the time indicated by the dotted line in the figure, op1 will be

missing from the merged log even though its linearization point was before that of op2.

To avoid this problem, the merge must wait for in-progress operations to complete.

McoreFS achieves this by tracking, for each core, whether an operation is currently execut-

26

op1

op2

Core 1
LP1 log op1

Core 2
LP2 log op2

Merge per-core logs
time

Figure 4-2: Two concurrent operations, op1 and op2, running on cores 1 and 2 respectively.
The grayed-out box denotes the start and end time of an operation. LP denotes the lineariza-
tion point of each operation. “log” denotes the time at which each operation is inserted into
that core’s log. The dotted line indicates the time at which the per-core logs are merged.

ing, and if so, what its starting timestamp is. To merge, McoreFS first obtains the timestamp

corresponding to the start of the merge, and then waits if any core is running an operation

with a timestamp less than that of the merge start.

Concurrent fsyncs [P]. Per-core operation logs allow different CPUs to log operations

in parallel without incurring cache conflicts. However, an fsync has to merge the logged

operations first before proceeding further. This means that having a single set of per-core

operation logs for the entire filesystem would introduce a bottleneck when merging the

operations, thus limiting the scalability of concurrent fsyncs even when they are invoked on

different files and directories. We solve this problem by using a set of per-core logs for every

inode (file or directory). Per-inode logs allow McoreFS to merge the operations for that

inode on an fsync without conflicting with concurrent operations on other inodes. McoreFS

uses oplog’s lazy allocation of per-core logs for efficiency [3], so that McoreFS does not

need to allocate a large number of logs that are never used.

4.3 Flushing an operation log [P, C]

McoreFS’s per-inode operation logs allow fsync to efficiently locate the set of operations

that modified a given file or directory, and then flush these changes to disk. There are three

interesting complications in this process. First, for performance, McoreFS should perform

absorption when flushing multiple related operations to disk [P]. Second, as we discussed

in §3, McoreFS’s fsync specification requires special handling of cross-directory rename

27

to avoid losing files [C]. Finally, McoreFS must ensure that the on-disk file system state

is internally consistent, and in particular, that it does not contain any orphan directories,

directory loops, links to uninitialized files, etc [C].

In flushing the operations to disk, McoreFS first computes the set of operations that

must be made persistent, and then produces a physical journal representing these operations.

Since the operations may exceed the size of the on-disk journal, McoreFS may need to flush

these operations in several batches. In this case, McoreFS orders the operations by their

timestamps, and starts writing operations from oldest to newest. By design, each operation

is guaranteed to fit in the journal, so McoreFS can always make progress by writing at

least one operation at a time to the journal. Furthermore, since an operation represents a

consistent application-level change to the file system, it is always safe to flush an operation

on its own (as long as it is flushed in the correct order with respect to other operations).

Absorption [P]. Once fsync computes the set of operations to be written to disk in a

single batch, it removes operations that logically cancel each other out. For example, suppose

the application invokes fsync on a directory, and there was a file created and then deleted

in that directory, with no intervening link or rename operations on that file name. In this

case, these two operations cancel each other, and it is safe for fsync to make no changes

to the containing directory, reducing the amount of disk I/O needed for fsync. One subtle

issue is that some process can still hold an open file descriptor for the non-existent file. Our

design deals with this by remembering that the in-memory file has no corresponding on-disk

representation, and never will. This allows our design to ignore any fsync operations on an

orphaned file’s file descriptor.

Cross-directory rename [C]. Recall from §3 that McoreFS needs to avoid losing a file if

that file was moved out of some directory d and then d was flushed to disk. To achieve this

goal, McoreFS implements dependency tracking. Specifically, when McoreFS encounters

a cross-directory rename where the directory being flushed, d, was either the source or the

destination directory, it also flushes the set of operations on the other directory in question

(the destination or source of the rename, respectively). This requires McoreFS to access

28

the other directory’s operation log as well. As an optimization, McoreFS does not flush all

of the changes to the other directory; it flushes only up to the timestamp of the rename in

question. This optimizes for flushing the minimal set of changes for a given system call, but

for some workloads, flushing all changes to the other directory may give more opportunities

for absorption.

Internal consistency [C]. In addition to providing application-level consistency, McoreFS

must also guarantee that its own data structures are intact after a crash. There are three cases

that McoreFS must consider to maintain crash safety for its internal data structures.

First, McoreFS must ensure that directory links point to initialized inodes on disk. This

invariant could be violated if a directory containing a link to a newly created file is flushed.

McoreFS must ensure that the file is flushed first, before a link to it is created. McoreFS

achieves this using dependencies, much as with cross-directory renames; when flushing a

directory, McoreFS also flushes the allocation of new files linked into that directory.

Second, McoreFS must ensure that there are no orphan directories on disk. This invariant

could be violated when an application recursively deletes a directory, and then calls fsync

on the parent. McoreFS uses dependencies to prevent this problem, by ensuring that all

deletion operations on the subdirectory are flushed before it is deleted from its parent.

Finally, McoreFS must ensure that the on-disk file system does not contain any loops

after a crash. This is a subtle issue, which we explain by example. Consider the sequence

of operations showed in Figure 4-3. With all of the above checks (including rename

dependencies), if an application issues the two mv commands shown in Figure 4-3 and then

invokes fsync(D), the fsync would flush changes to D and A, because they were involved in

a cross-directory rename. However, flushing just D and A leads to a directory loop on disk, as

Figure 4-3 illustrates, because changes to B (namely, moving C from B to the root directory)

are not flushed.

To avoid directory loops on disk, McoreFS follows three rules. First, in-memory renames

of a subdirectory between two different parent directories are serialized with a global lock.

Although the global lock is undesirable from a scalability point of view, it allows for a

simple and efficient algorithm that prevents loops in memory, and also helps avoid loops

29

Figure 4-3: A sequence of operations that leads to a directory cycle (B-C-D-B) on disk
with a naïve implementation of fsync. The state of the file system evolves as an application
issues system calls. Large arrows show the application’s system calls. Large rectangles
represent the logical state of the file system, either in-memory (shaded) or on disk (thick
border). The initial state of the file system, on the left, is present both on disk and in memory
at the start of this example. Circles represent directories in a file system tree.

on disk in combination with the next two rules. Furthermore, this lock is rarely contended,

since we expect applications to not rename subdirectories between parent directories in their

critical path. Second, when a subdirectory is moved into a parent directory d, McoreFS

records the path from d to the root of the file system. This list of ancestors is well defined,

because McoreFS is holding a global lock that prevents other directory moves. Third, when

flushing changes to some directory d, if a child subdirectory was moved into d, McoreFS

first flushes to disk any changes to the ancestors of d as recorded by that rename operation.

As an optimization, McoreFS flushes ancestor changes only up to the timestamp of the

30

rename operation. An argument about this algorithm’s correctness is available in appendix

§A.

4.4 Multiple disks and journals [P]

On a computer with multiple disks or multiple I/O queues to a single disk (as in NVMe),

McoreFS should be able to take advantage of the aggregate disk throughput and parallel I/O

queues by flushing in parallel to multiple journals. This would allow two cores running fsync

to execute completely in parallel, not contending on the disk controller or bottlenecking on

the same disk’s I/O performance.

To take advantage of multiple disks for file data, McoreFS stripes the DiskFS data across

all of the physical disks in the system. McoreFS also allocates a separate on-disk journal for

every core, to take advantage of multiple I/O queues, and spreads these journals across cores

to take advantage of multiple physical disks. The challenges in doing so are constructing

and flushing the journal entries in parallel, even when there may be dependencies between

the blocks being updated by different cores.

To construct the journal entries in parallel, McoreFS uses two-phase locking on the

physical disk blocks. This ensures that, if two cores are flushing transactions that modify

the same block, they are ordered appropriately. Two-phase locking ensures that the result is

serializable.

Crash-safety [C]. Dependencies between transactions also show up when flushing the

resulting journal entries to disk. Suppose two transactions, T1 and T2, update the same

block. Two-phase locking will ensure that their journal entries are computed in a serializable

fashion. However, even if T1 goes first with two-phase locking, T2 may end up being

flushed to disk first. If the computer crashes at this point, T2 will be recovered but T1 will

not be. This will result in a corrupted file system.

To address this problem, McoreFS uses timestamps to defer flushing dependent journal

entries to disk. Specifically, McoreFS maintains an in-memory hash table recording, for

each disk block, what physical disk contains the last journal entry updating it, and the

31

timestamp of that journal entry. When McoreFS is about to flush a journal entry to a

physical disk, it looks up all of the disk blocks from that journal entry in the hash table, and,

for each one, ensures that its dependencies are met. This means waiting for the physical

disk indicated in the hash table to flush journal entries up to the relevant timestamp. When

McoreFS finishes flushing a journal entry to disk, it updates an in-memory timestamp to

reflect that this journal’s timestamp has made it to disk.

Applying transactions before a crash. During normal operations, for performance

reasons, a call to fsync only commits transactions to the on-disk journals and does not apply

them to the on-disk file system immediately. Applying the committed transactions from a

journal is deferred until that journal gets full. When a subsequent fsync finds that there is

no space left in a journal to commit more transactions, it applies all the existing transactions

from that journal and recovers all the space from that journal. However, this apply must

be done with care, so as to honor the dependencies that might exist between transactions

committed via different journals. We reuse the per-block timestamp-based dependency

tracking scheme outlined above to apply committed transactions in the correct order to the

on-disk file system.

Applying transactions after a crash. Applying dependent transactions from the vari-

ous per-core journals in the correct order can be challenging when performing recovery after

a crash, because the hash table that tracks transaction dependencies on a per-block basis

would no longer be available (as it is maintained only in memory). To solve this problem,

we timestamp every transaction at the time of committing it to an on-disk journal, and

persist this timestamp in the journal entry representing that transaction. Since the ordering

between dependent transactions would have been already resolved at the time of commit,

these timestamps will compactly reflect the correct ordering between transactions. This

simplifies applying dependent transactions during crash-recovery, because we can simply

read all the transactions from all the journals and apply them to the on-disk file system after

sorting them by their commit-timestamps.

32

Recovery with partially applied journals. A further challenge arises when perform-

ing recovery after a reboot, if some of the journals contain a mix of transactions, some of

which have been already applied to the on-disk file system and others that have been merely

committed to the journal. This could happen for example, when transactions are applied

from the journals during normal operations to make space for committing newer transactions.

Re-applying transactions that have been already applied is safe during crash-recovery only

if all the transactions they depend on are also re-applied in the correct order. However, this

could be problematic if some of the dependent transactions were stored in journals that were

wiped out as part of making space for newer transactions, and hence are no longer available

after reboot. To enable correct file system recovery in such scenarios, we note down the

timestamp of the latest transaction that was successfully applied from a given journal, in that

journal’s header, and sync the header to disk every time it is updated as part of transaction

apply. This helps the recovery code skip over applied transactions (if any) in that journal

and apply only those transactions that were only committed to the journal before the crash.

Committed transactions are not erased from the journals until they are successfully applied

to the on-disk file system, and hence all the dependencies among committed transactions

will remain available in the journals after reboot.

4.5 Discussion

The design described above achieves McoreFS’s three goals.

First, McoreFS achieves good multicore scalability, because operations that commute

should be mostly conflict-free. Since MemFS is decoupled from DiskFS, it is not restricted

in the choice of data structures that allow for scalability. All that MemFS must do is log

operations with a linearization timestamp in the operation log, which is a per-core data

structure. As a result, commutative file system operations should run conflict-free when

manipulating in-memory files and directories and while logging those operations in the

operation log. fsync is also conflict-free for file system operations it commutes with (e.g.,

creation of a file in an unrelated directory).

33

Second, McoreFS ensures crash safety through dependency tracking and loop avoidance

protocols described above. Third, McoreFS flushes close to the minimal amount of data to

disk on every fsync operation. In most cases, fsync flushes just the changes to the file or

directory in question. For cross-directory renames, McoreFS flushes operations on other

directories involved in the rename, and also on ancestor directories in case of a subdirectory

rename. Although these can be unnecessary in some cases, the evaluation shows that in

practice McoreFS achieves high throughput for fsync (and McoreFS flushes less data than

the ext4 file system on Linux).

Finally, McoreFS achieves good disk throughput through its optimizations (such as

absorption and group commit). McoreFS avoids flushing unnecessary changes to disk when

applications invoke fsync, which in turn reduces the amount of data written to disk, and

also enables better absorption and grouping. Finally, McoreFS takes advantage of multiple

disks to further improve disk throughput.

34

Chapter 5

Implementation

We implemented McoreFS in sv6, a research operating system whose design is centered

around the Scalable Commutativity Rule [9]. Previously sv6 consisted of an in-memory

file system that MemFS reuses, modifying it to interact with the operation log. McoreFS

augments sv6’s design with a disk file system DiskFS (that is based on the xv6 [11]

file system), and an operation log. The numbers of lines of code change involved in

implementing each component of McoreFS are shown in Figure 5-1. McoreFS is open-

source and available for download.

McoreFS component Lines of C++ code

MemFS (§5.1) 2,445
DiskFS (§5.2) 2,320
MemFS-DiskFS interface 4,177

Figure 5-1: Lines of C++ code for each component of McoreFS.

5.1 MemFS

Decoupling the in-memory and the on-disk file systems allows MemFS to be designed for

multicore concurrency; our prototype’s MemFS is based on the in-memory file system from

sv6. MemFS represents directories using chained hash tables that map file/directory names

to inode numbers. Each bucket in the hash table has its own lock, allowing commutative

operations to remain conflict-free.

35

Files use radix arrays to represent their pages, with each page protected by its own lock;

this design follows RadixVM’s representation of virtual memory areas [8]. MemFS creates

the in-memory directory tree on demand, reading in components from the disk as they are

needed. We refer to inodes, files and directories in MemFS as mnodes, mfiles and mdirs.

To allow for concurrent creates to be scalable, mnode numbers in MemFS are independent

of inode numbers on the disk and might even change each time the file system is mounted

(e.g., after a reboot). MemFS assigns mnode numbers in a scalable manner by maintaining

per-core mnode counts. On creation of a new mnode by a core, MemFS computes its mnode

number by appending the mnode count on that core with the core’s CPU ID, and then

increments the core’s mnode count. MemFS never reuses mnode numbers.

McoreFS maintains a hashmap from mnode numbers to inode numbers and vice versa

for fast lookup. McoreFS creates this hashmap when the system boots up, and adds entries

to it each time a new inode is read in from the disk and a corresponding mnode created in

memory. Similarly McoreFS adds entries to the hashmap when an inode is created on disk

corresponding to a new mnode in memory.

McoreFS does not update the hashmap immediately after the creation of an mnode; it

waits for DiskFS to create the corresponding inode on a sync or an fsync call, which is when

DiskFS looks up the on-disk free inode list to find a free inode. This means that MemFS

does not allocate an on-disk inode number right away for a create operation. Although this

violates the POSIX requirement that a file can be uniquely identified by its device and inode

number as reported by stat, few applications rely on this (qmail being the only example we

know of).

Operations in the log. If MemFS were to log all file system operations, the operation log

would incur a large space overhead. For example, writes to a file would need to store the

entire byte sequence that was written to the file. So MemFS logs operations in the operation

logs selectively.

By omitting certain operations from the log, McoreFS not only saves space that would

otherwise be wasted to log them, but it also simplifies merging the per-core logs and

36

dependency tracking as described in §4.3. As a result the per-core logs can be merged and

operations applied to the disk much faster.

To determine which operations are logged, MemFS divides all metadata into two cate-

gories: oplogged and non-oplogged. All directory state is oplogged metadata, and a file’s

link count, which is affected by directory operations, is also oplogged metadata. However,

other file metadata, such as the file’s length, its modification times, etc, is not oplogged. For

example, MemFS logs the creation of a file since it modifies directory state as well as a file’s

link count. On the other hand, MemFS does not log a change in file size, or a write to a file,

since it affects non-oplogged file data and metadata.

When flushing a file from MemFS to DiskFS, McoreFS must combine the oplogged

and non-oplogged metadata of the flushed mnode. It updates the oplogged metadata of

the mnode by merging that mnode’s oplog. The non-oplogged part of the mnode (such as

a file’s length and data contents) are directly accessed by reading the current in-memory

state of that mnode. These changes are then written to disk using DiskFS, which journals

all metadata (both metadata that was oplogged as well as non-oplogged file metadata), but

writes file data directly to the file’s blocks, which is similar to how Linux ext4 writes data in

“ordered” mode.

When MemFS flushes an oplogged change to DiskFS that involves multiple mnodes

(such as a cross-directory rename), McoreFS ensures that this change is flushed to disk in a

single DiskFS transaction. This in turn guarantees crash safety: after a crash and reboot,

either the rename is applied, or none of its changes appear on disk.

5.2 DiskFS

The implementation of DiskFS depends on the disk file system format used (e.g., ext3 [4],

ext4 [26], etc.). McoreFS’s DiskFS is based on the xv6 [11] file system, which has a

physical journal for crash recovery. The file system follows a simple Unix-like format with

inodes, indirect, and double-indirect blocks to store files and directories. DiskFS maintains

a buffer cache to cache physical disk blocks that are read in from the disk. DiskFS does not

cache file data blocks, since they would be duplicated with any cache maintained by MemFS.

37

However, DiskFS does use the buffer cache to store directory, inode, and bitmap blocks, to

speed up read-modify-write operations.

DiskFS implements high-performance per-core allocators for inodes and disk blocks

by carving out per-core pools of free inodes and free blocks during initialization. This

enables DiskFS to satisfy concurrent requests for free inodes and free blocks from fsyncs in

a scalable manner, as long as the per-core pools last. When the per-core free inode or free

block pool runs out on a given core, DiskFS satisfies the request by either allocating from a

global reserve pool or borrowing free inodes and free blocks from other per-core pools.

These scalability optimizations improve the scalability of fsync, and the scalability

of reading data from disk into memory. However, when an application operates on a file

or directory that is already present in memory, no DiskFS code is invoked. For instance,

when an application looks up a non-existent name in a directory, MemFS caches the entire

directory, and does not need to invoke namei on DiskFS. Similarly, when an application

creates or grows a file, no DiskFS state is updated until fsync is called.

5.3 Limitations

McoreFS does not support the full set of file system calls in POSIX, such as sendfile and

splice. However, McoreFS does support the major operations needed by applications, and

we believe that supporting the rest of the POSIX operations would not affect McoreFS’s

design. Our prototype does not implement background flushing, and flushes only when an

application calls fsync or sync.

38

Chapter 6

Evaluation

We ran experiments to try to answer the following questions:

∙ Does McoreFS achieve multicore scalability? (§6.2, §6.3)

∙ Does durability reduce multicore scalability in McoreFS? (§6.4)

∙ Does McoreFS achieve good disk throughput? (§6.5)

∙ Does McoreFS provide crash safety to applications? (§6.6)

∙ What overheads are introduced by McoreFS’s split of MemFS and DiskFS? (§6.7)

The evaluation focuses on the performance aspects of McoreFS’s design, which can be

evaluated empirically, rather than on the correctness aspects, which are always ensured by

McoreFS’s design.

6.1 Methodology

To measure scalability of McoreFS, we primarily rely on Commuter [9] to determine if

commutative filesystem operations incur cache conflicts, limiting scalability. This allows

us to reason about the scalability of a file system without having to commit to a particular

workload or hardware configuration.

To confirm the scalability results reported by Commuter, we also experimentally evaluate

the scalability of McoreFS by running it on an 80-core machine with Intel E7-8870 2.4 GHz

CPUs and 256 GB of DRAM, running several workloads. We also measure the absolute

39

performance achieved by McoreFS, as well as measuring McoreFS’s disk performance,

comparing the performance with a RAM disk, with a Seagate Constellation.2 ST9500620NS

rotational hard drive, and with up to four Samsung 850 PRO 256GB SSDs.

To provide a baseline for McoreFS’s scalability and performance results, we compare it

to the results achieved by the Linux ext4 filesystem running in Linux kernel version 4.9.21.

We use Linux ext4 as a comparison because ext4 is widely used in practice, and because

its design is reasonably scalable, as a result of many improvements by kernel developers.

Linux ext4 is one of the more scalable file systems in Linux [28].

6.2 Does McoreFS achieve multicore scalability?

To evaluate McoreFS’s scalability, we used Commuter, a tool that checks if shared data

structures experience cache conflicts. Commuter takes as input a model of the system and

the operations it exposes, which in our case is the kernel with the system calls it supports,

and computes all possible pairs of commutative operations. Then it generates test cases that

check if these commutative operations are actually conflict-free by tracking references to

shared memory addresses. Shared memory addresses indicate sharing of cache lines and

hence loss of scalability, according to the Scalable Commutativity Rule [9]. We augmented

the model Commuter uses to generate test cases by adding the fsync and sync system calls,

and used the resulting test cases to evaluate the scalability of McoreFS.

Figure 6-1 shows results obtained by running Commuter with McoreFS. 99% of the

test cases are conflict-free. The green regions show that the implementation of MemFS

is conflict free for almost all commutative file system operations not involving sync and

fsync, as there is no interaction with DiskFS involved at this point. MemFS simply logs

the operations in per-core logs, which is conflict-free. MemFS also uses concurrent data

structures that avoid conflicts.

McoreFS does have some conflicts when fsync or sync calls are involved. Some of the

additional conflicts incurred by fsync are due to dependencies between different files or

directories being flushed. Specifically, our Commuter model says that fsync of one inode

commutes with changes to any other inode. However, this does not capture the dependencies

40

12 12 5 5 2 1 6

1

16

2

1 3 4 13

1 1 4

5 8 6

10 5 15

12

24

24 21

1 5

9

fsync
sync
open
link

unlink
rename

stat
fstat

lseek
close
pipe
read

write
pread

pwrite
mmap

munmap
mprotect
memread

memwrite

m
em

w
ri

te
m

em
re

ad
m

pr
ot

ec
t

m
un

m
ap

m
m

ap
pw

ri
te

pr
ea

d
w

ri
te

re
ad

pi
pe

cl
os

e
ls

ee
k

fs
ta

t
st

at
re

na
m

e
un

lin
k

lin
k

op
en

sy
nc

fs
yn

c

100%

0%

Figure 6-1: Conflict-freedom of commutative operations in McoreFS. Out of 31,551 total
test cases generated, 31,317 (99.2%) were conflict-free.

1 28 26 30 18 25 4 16 7 4 1 1 11 1 13
1 2 2 4 2 3 1 1 1 1 2 1
5 110 24 21 14 9 2 47 36 4 7 57 16 120114

8 16 9 10 9 18 5 67 14 88
4 8 3 8 2 9 1 16 6
7 20 11 20 6 27 3 4 66

1 1 1
25 13 15 16 24 4 16 7
141162120 61 52 4 117
28 4 4 7 9 4 39

1 3
16 2 226 49 47 44 35

6 5 68 57 43 38
20 2 269105 98

94 131
6121804907
29 38

114
23 20
28

fsync
sync
open
link

unlink
rename

stat
fstat

lseek
close
pipe
read

write
pread

pwrite
mmap

munmap
mprotect
memread

memwrite

m
em

w
ri

te
m

em
re

ad
m

pr
ot

ec
t

m
un

m
ap

m
m

ap
pw

ri
te

pr
ea

d
w

ri
te

re
ad

pi
pe

cl
os

e
ls

ee
k

fs
ta

t
st

at
re

na
m

e
un

lin
k

lin
k

op
en

sy
nc

fs
yn

c

100%

0%

Figure 6-2: Conflict-freedom of commutative operations in the Linux kernel using an ext4
file system. Out of 31,539 total test cases generated, 22,096 (70%) were conflict-free.

that must be preserved when flushing changes to disk to ensure that the on-disk state is

consistent. As a result, fsync of one inode accesses state related to another inode (such as

its oplog and its dirty bits).

Some fsync calls conflict with commutative read operations. These conflicts are brought

about by the way MemFS implements the radix array of file pages. In order to save space,

the radix array element stores certain flags in the last few bits of the page pointer itself, the

41

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60 70 80

m
a
ilb

e
n
ch

 t
h
ro

u
g
h
p
u
t

(r
e
la

ti
v
e
 t

o
 s

in
g
le

 c
o
re

)

Number of cores

McoreFS (-p)
McoreFS (-s)

Linux ext4

 0

 5

 10

 15

 20

 25

 30

 35

 0 10 20 30 40 50 60 70 80

sm
a
llfi

le
 t

h
ro

u
g
h
p
u
t

(r
e
la

ti
v
e
 t

o
 s

in
g
le

 c
o
re

)

Number of cores

McoreFS
Linux ext4

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 10 20 30 40 50 60 70 80

la
rg

e
fi
le

 t
h
ro

u
g
h
p
u
t

(r
e
la

ti
v
e
 t

o
 s

in
g
le

 c
o
re

)

Number of cores

McoreFS
Linux ext4

Figure 6-3: Throughput of the mailbench, smallfile, and largefile workloads respectively, for
both McoreFS and Linux ext4 in a RAM disk configuration.

page dirty bit being one of them. As a result, an fsync that resets the page dirty bit conflicts

with a read that accesses the page pointer.

MemFS could, in principle, avoid these conflicts by keeping track of the page dirty bits

outside of the page pointer. But in that case, as long as the dirty flags are stored as bits, there

would be conflicts between accesses to dirty bits of distinct pages. So in order to provide

conflict freedom MemFS would need to ensure that page dirty flags of different pages do

not share a cache line, which would incur a huge space overhead. Our implementation of

MemFS makes this trade-off, saving space at the expense of incurring conflicts in some

cases.

sync conflicts only with itself, and its only conflict is in acquiring the locks to flush per-

core logs. Although we could, in principle, optimize this by using lock-free data structures,

we do not believe that applications would benefit from concurrent calls to sync being

conflict-free. Note that concurrent calls to sync and every other system call are conflict-free.

The rest of the conflicts are between idempotent operations. Two fsync calls are

commutative because they are idempotent, but they both contend on the operation log as

well as the file pages. fsync and pwrite also conflict despite being commutative when

pwrite performs an idempotent update.

To provide a baseline for McoreFS’s heatmap, we also ran Commuter on the Linux

kernel with an ext4 file system.1 The heatmap in Figure 6-2 shows the results obtained.

Out of a total of 31,539 commutative test cases, the heatmap shows 9,443 of them (30%)

1We ran Commuter on Linux kernel version v3.16 (from 2014) because the authors of Commuter have
not ported their Linux changes to a more recent version of the kernel. We expect that the results are not
significantly different from those that would be obtained on a recent version of Linux, based on recent reports
of Linux file system scalability [28].

42

9

2

2 4 12

1 1 4

5 6

5 13

12

24 12

1 1

9

open
link

unlink
rename

stat
fstat

lseek
close
pipe
read

write
pread

pwrite
mmap

munmap
mprotect
memread

memwrite

m
em

w
ri

te
m

em
re

ad
m

pr
ot

ec
t

m
un

m
ap

m
m

ap
pw

ri
te

pr
ea

d
w

ri
te

re
ad

pi
pe

cl
os

e
ls

ee
k

fs
ta

t
st

at
re

na
m

e
un

lin
k

lin
k

op
en

100%

0%

Figure 6-4: Conflict-freedom between commutative operations in sv6 with only an in-
memory file system. Out of 13,664 total test cases generated, 13,528 (99%) were conflict-
free.

conflicting in the Linux kernel. Many of these can be attributed to the fact that the in-

memory representation of the file system is very closely coupled with the disk representation.

Commutative operations end up conflicting in the page cache layer. These results are in

line with the bottlenecks uncovered in prior work [2, 28]. Manually analyzing the source

of some of these bottlenecks indicates that they are the result of maintaining the on-disk

data structure while executing in-memory operations. For example, when creating files in a

directory, multiple cores contend on the lock protecting that directory, which is necessary

to serialize updates to the on-disk directory structure. This is precisely the problem that

McoreFS’s split design avoids.

6.3 Empirical scalability

To confirm that Commuter’s results translate into scalability for actual workloads on real

hardware, we compared the performance of three workloads on McoreFS to their perfor-

mance on Linux ext4; unfortunately, porting applications to sv6 is difficult because sv6 is

not a full-featured OS.

43

Disk Benchmark McoreFS Linux ext4

largefile 331 MB/sec 378 MB/sec
RAM disk smallfile 7151 files/sec 3553 files/sec

mailbench-p 641 msg/sec 675 msg/sec

largefile 180 MB/sec 180 MB/sec
SSD smallfile 364 files/sec 277 files/sec

mailbench-p 61 msg/sec 66 msg/sec

largefile 83 MB/sec 92 MB/sec
HDD smallfile 51 files/sec 27 files/sec

mailbench-p 9 msg/sec 9 msg/sec

Figure 6-5: Performance of workloads on McoreFS and Linux ext4 on a single disk and a
single core.

 0

 50

 100

 150

 200

 250

 1 2 3 4

m
a
ilb

e
n
ch

 t
h
ro

u
g
h
p
u
t

(m
e
ss

a
g
e
s/

se
c)

Number of disks

McoreFS
Linux ext4

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1 2 3 4

sm
a
llfi

le
 t

h
ro

u
g
h
p
u
t

(fi
le

s/
se

c)

Number of disks

McoreFS
Linux ext4

 0

 100

 200

 300

 400

 500

 600

 1 2 3 4

la
rg

e
fi
le

 t
h
ro

u
g
h
p
u
t

(M
B

/s
e
c)

Number of disks

McoreFS
Linux ext4

Figure 6-6: Throughput of the mailbench-p, smallfile, and largefile workloads respectively,
for both McoreFS and Linux ext4, using 4 CPU cores. The x-axis indicates the number of
SSDs striped together.

mailbench. One of our workloads is mailbench, a qmail-like mail server benchmark

from sv6 [9]. The version of mailbench used by sv6 focused on in-memory file system

scalability. To make this workload more realistic, we added calls to fsync, both for message

files and for the containing directories, to ensure mail messages are queued and delivered

in a crash-safe manner (6 fsyncs total to deliver one message). The benchmark measures

the number of mail messages delivered per second. We run mailbench with per-core spools,

and with either per-core user mailboxes (mailbench-p) or with 1,000 shared user mailboxes

(mailbench-s).

largefile. Inspired by the LFS benchmarks [33], largefile creates a 100 MByte file and

calls fsync after creating it. Each core runs a separate copy of the benchmark, creating and

fsyncing its own 100 MByte file. All of the files are in the same directory. We report the

combined throughput achieved by all cores, in MB/sec.

44

smallfile. The smallfile microbenchmark creates a new file, writes 1 KByte to it, fsyncs

the file, and deletes the file, repeated 10,000 times (for different file names). Each core

runs a separate copy of the smallfile benchmark, each of which performs 10,000 iterations.

The files are spread among 100 directories that are shared across all cores. We report the

combined throughput achieved by all cores, in files/sec.

To avoid the disk bottleneck, we ran these experiments on a RAM disk. Both McoreFS

and ext4 still performed journaling, flushing, etc, as they would on a real disk. §6.5 presents

the performance of both file systems with real disks.

Figure 6-3 shows the results. McoreFS scales well for all three workloads, achieving

approximately 40× performance at 80 cores. McoreFS does not achieve perfect 80×

scalability because going across sockets is more expensive than accessing cache and DRAM

within a single socket (which occurs with 1-10 cores), and because multiple cores contend

for the same shared L3 cache. mailbench-s scales to a lesser extent than mailbench-p at high

core counts due to contention on the shared mailboxes, not due to any McoreFS bottlenecks;

mailbench-p continues to scale2. Linux ext4 fails to scale for all three workloads, achieving

no more than 7× the performance of a single core, and collapsing as the number of cores

grows beyond 10. We run only the mailbench-p variant on Linux since it is more scalable.

6.4 Does durability reduce multicore scalability?

To evaluate the scalability impact of McoreFS’s approach for achieving durability, we

compare the results of Commuter on McoreFS to the results of running Commuter on the

original sv6 in-memory file system, on which MemFS is based. Figure 6-4 shows results for

sv6; this heatmap does not have a column for fsync or sync because sv6 did not support

these system calls (it had no support for durability). Compared to Figure 6-1, we see that

McoreFS introduces no new conflicts between existing syscalls.

2A scalability bottleneck was observed in the virtual memory subsystem when running mailbench, caused
by frequent calls to sync the reverse-map entries in the Oplog. We alleviated this bottleneck by syncing
reverse-map entries in batches of 1 million (as opposed to batches of 100).

45

6.5 Disk performance

Single disk, single core. To evaluate whether McoreFS can achieve good disk throughput,

we compare the performance of our workloads running on McoreFS to their performance on

Linux ext4. Figure 6-5 shows the results, running with a single disk and a single CPU core.

McoreFS achieves comparable performance to Linux ext4 in all cases. For the smallfile

microbenchmark, McoreFS is faster because McoreFS’s precise fsync design flushes only

the file being fsynced. Linux ext4, on the other hand, maintains a single journal, which

means that flushing the fsynced file also flushes all other preceding entries in the journal as

well, which includes the modification of the parent directory.

Multiple disks, 4 cores. Since the disk is a significant bottleneck for both McoreFS

and ext4, we also investigated whether McoreFS can achieve higher disk throughput with

additional physical disks. In this experiment, we striped several SSDs together, and ran

either McoreFS or Linux ext4 on top. To provide sufficient parallelism to take advantage of

multiple disks, we ran the workload using 4 CPU cores. Figure 6-6 shows the results for our

workloads. McoreFS achieves similar throughput to Linux ext4. For the largefile workload,

both McoreFS and Linux cannot obtain more throughput because the SATA controller is

saturated.

McoreFS scales better than Linux for mailbench and smallfile. This is because when

Linux ext4’s fsync issues a barrier to the striped disk, the Linux striping device forwards

the barrier to every disk in the striped array. McoreFS is aware of multiple disks, and its

fsync issues a barrier only to the disks that have been written to by that fsync.

6.6 Crash safety

To evaluate the crash safety properties of McoreFS, we performed a series of experiments

to observe whether McoreFS recovers correctly from crashes, under scenarios governed by

the crash model below.

46

Crash model. We run the experiments on McoreFS that has been configured to use an

SSD as the storage device. Crashes are caused by triggering an external machine reset, which

power cycles the machine. Given this setup, the system could be in any of the following

crash states in the event of a crash:

∙ All the disk writes ever issued by McoreFS had durably reached the disk before the

crash.

∙ A subset of the disk writes issued by McoreFS had durably reached the disk before the

crash. This includes scenarios where the disk controller had signaled completion of some

disk writes issued by McoreFS, but those writes had only been recorded in the disk’s

volatile buffer, and they had not actually made it to the durable storage medium on the

disk before the crash.

Internal consistency tests. We ran a number of tests to observe the behavior of McoreFS

in scenarios involving failures at particularly tricky crash points in the file system code.

Each test is run in verbose mode where it prints its progress after every successful call to

fsync. This enables us to note down the state of the files and directories manipulated by the

test, at each progress point, which we expect to see persisted intact on DiskFS even in the

event of a crash. To verify the crash safety properties of McoreFS, we trigger a crash (via

machine reset) after a randomly chosen time interval has elapsed since the start of the test.

We then compare the state of the file system after recovery, with the state corresponding to

the last progress point that was printed by the program before the crash. The test is deemed

to have passed if the two states are consistent with each other. The tests themselves are

described below.

∙ Create a large number of files in a shared directory and fsync the newly created files and

the containing directory from multiple cores, thereby causing transaction dependencies

that span across multiple cores and journals. This helps us verify the correctness of the

dependency tracking and resolution code in the most challenging scenarios, both when

committing transactions as well as when applying transactions from the journals during

crash recovery.

47

∙ Create a large number of dependent transactions that span multiple cores and journals as

above, but randomize the number of transactions flushed from each core so as to overflow

some but not all of the journals. This test helps us verify that McoreFS recovers correctly

from crashes even when it encounters transaction dependencies that span across partially

applied journals.

∙ Perform a long series of cross-directory file renames that form a chain of dependencies

across different directories, and invoke fsync on these directories. This helps us evaluate

whether McoreFS preserves the atomicity of file renames and applies them in the correct

order during crash recovery.

∙ Perform a series of sub-directory renames across different source and destination di-

rectories, and invoke fsync on some of these directories to create scenarios that can

potentially result in directory loops in the on-disk file system. This helps us verify the

correctness of our loop avoidance protocols in the event of crashes.

Our experiments confirmed that McoreFS recovers correctly from crashes in all of these

scenarios, under the given crash model described above.

Application-level crash consistency tests. To evaluate whether the crash safety guaran-

tees of McoreFS helps preserve the semantics of applications running on top of it, we ran

crash recovery tests by running mailbench-s on multiple cores. We employed a scheme

very similar to the one we used for the internal consistency tests (i.e., using verbose prints

after every successful call to fsync, triggering crashes after random timeouts after the start

of the test, and then comparing the state of the files and directories manipulated by the

benchmark before crash and after crash recovery) to verify whether McoreFS provides crash

consistency to mailbench.

To deliver a mail message, an instance of mailbench creates the mail text and spawns

a mail-enqueue process to queue the message durably to a per-core spool directory and

communicate the recipient and the message identifier to a mail-manager instance that is

running on that core. This involves one cross-directory file rename, and two file fsyncs and

two directory fsyncs. Upon receiving a mail transfer request, the mail-manager spawns a

48

mail-deliver process to durably forward the mail message to the recipient’s mail directory.

This involves another cross-directory file rename and a file fsync as well as a directory

fsync.

We run mailbench-s on multiple cores with per-core spool directories and a single user

mailbox, so as to create a large number of dependencies (spanning multiple cores and

journals) across transactions that try to update the shared user’s mail directory. This is the

most challenging scenario for crash recovery in the context of mailbench, as this calls for

careful dependency resolution when applying transactions from multiple journals to the

on-disk file system after a crash.

Incorrect file system recovery can result in a variety of inconsistencies for mailbench,

ranging from delivered mail messages missing after a crash, dangling directory entries

(i.e., links pointing to uninitialized inodes), missing or corrupted file contents among the

delivered mail messages, and rename operations that appear to violate atomicity (such as

losing files involved in the rename, or finding duplicates corresponding to both the source

and the destination of the rename).

In our experiments, we were able to verify that McoreFS recovers all the files and

directories managed by mailbench correctly after crashes under our crash model, and never

exposes any of the possible inconsistencies outlined above.

6.7 Overhead of splitting MemFS and DiskFS

The main worry about using McoreFS’s split-design, with an in-memory MemFS file system

and an on-disk DiskFS file system is that McoreFS might incur higher memory overhead

because it has to keep the operation log in memory and because metadata blocks (those

containing bitmaps, inodes, and directory blocks) may be kept in memory twice: once in

MemFS and once in DiskFS. However, file data blocks are not stored twice.

To evaluate how severe this overhead is, we measured the memory usage for the largefile

benchmark. During the benchmark’s execution, memory usage is similar to Linux. When

the application invokes fsync, memory usage of the file system increases by the size of the

file being fsynced (i.e., 100 MBytes for the largefile benchmark), because McoreFS creates

49

a copy of the file’s blocks in memory in preparation for writing them to disk. We could avoid

this by using copy-on-write, but have not implemented this in our prototype. Once the data

is written to disk, the DiskFS buffer cache discards copies of blocks for file data, bringing

the memory usage back in line with Linux. A more sophisticated design could avoid this

double-buffering by allowing DiskFS to keep pointers directly into user-accessible pages

from MemFS.

50

Chapter 7

Conclusion

It is a challenge to achieve multicore scalability, crash consistency and good disk throughput

in a file system. This thesis proposes a new design that addresses this challenge using the

insight of completely decoupling the in-memory file system from the on-disk file system.

The in-memory file system can be optimized for concurrency and the on-disk file system

can be tailored for durability and crash consistency. To achieve this decoupling, this thesis

introduces an operation log that extends oplog [3] with a novel scheme to timestamp the

logged operations at their linearization points in order to apply them to the disk in the same

order that a user process observed them in memory. The operation log also minimizes

the data that must be written out at an fsync by computing dependencies and absorbing

operations that cancel out each other.

We implemented this design in a prototype file system, McoreFS, that was built on the

existing sv6 kernel, and analyzed the implementation using Commuter. We experimentally

evaluated the multicore scalability and disk performance of McoreFS by running bench-

marks on an 80-core machine, in different configurations including a RAM disk, SSDs and

an HDD. We evaluated the crash safety properties of McoreFS by using several consistency

tests and an application benchmark. The results show that the implementation of McoreFS

achieves good multicore scalability and disk throughput, while providing crash consistency

to applications.

51

52

Appendix A

Correctness of the directory loop

avoidance algorithm in McoreFS

McoreFS employs a number of techniques to ensure the internal consistency of the file

system. However, McoreFS’s split design with a separate MemFS and DiskFS, coupled with

some of the optimizations it uses to limit fsync’s writeback, poses challenges to achieve

the consistency goal, and notable among them is the task of preventing orphaned directory

loops in MemFS and DiskFS. The problem was explained in chapter §4 in section §4.3,

accompanied by an outline of the solution. This appendix describes an argument for the

correctness of the directory loop avoidance algorithm in McoreFS.

It is helpful to recall some of the salient properties of McoreFS that are central to the

correctness argument: McoreFS maintains a set of per-core operation logs for every inode

in the system. Each operation in an operation log is accompanied by a timestamp, which

represents the linearization point of that operation when it was performed in MemFS. The

operations in a given operation log are flushed to disk strictly in the increasing order of their

timestamps.

53

We describe the notation and conventions used in the argument below:

∙ For any node d (representing a file or directory) in the file system tree, parent(d) denotes

its containing directory.

∙ The set of ancestors of any node d is defined as:

ancestors(d) := {d}, if d is the root directory.

ancestors(d) := parent(d)
⋃︀

ancestors(parent(d)) otherwise.

∙ For any node d, the notation MemFS.ancestors(d) @ t represents ancestors(d) as seen in

MemFS at timestamp t.

Definition: Loop in a file system.

A loop is said to exist in a file system, if:

∃ some timestamp t, ∃ some node d in the file system (d , root directory), such that

d ∈ ancestors(d) @ t

Theorem 1: MemFS is loop-free.

Claim: MemFS never contains loops in the file system hierarchy, which can be expressed as:

∀ t, ∀ d (d , root directory), d <MemFS.ancestors(d) @ t

Correctness argument for Theorem 1. We argue this theorem by deriving a contradiction.

Suppose there exists a loop in MemFS at timestamp tloop. We focus on the very first instance

of such a loop, implying that there is no loop in MemFS at any timestamp t < tloop. Now let

us consider the set of all file system operations in MemFS that can potentially cause the loop

at tloop.

Observation 1.1. Neither file operations nor the mkdir and rmdir directory operations can

cause loops in a file system.

Explanation. We observe that the property of a loop (as described above) is common to all

the nodes that belong to the loop. In particular, every node in the loop has an ancestor, or

equivalently, every node in the loop has at least one child node. This implies that leaf nodes

(nodes that don’t have any children) cannot be part of any loop.

54

Therefore, we can conclude that any operation that adds, deletes or modifies only leaf

nodes in the file system cannot cause a loop. All file operations belong to this category, as

do mkdir and rmdir. □

Eliminating several classes of operations using observation 1.1 leaves us with directory

renames as the only file system operations that can potentially cause the loop at tloop. In

MemFS, directory renames are performed while holding a global, file system-wide lock,

which means that at most one directory rename can occur in MemFS at a given timestamp t.

Now consider the directory rename that could have caused the loop in MemFS at tloop. It

can be represented as:

rename(src/target, dst/target)@ tloop, where src, dst and target are all directories.

It is easy to see that renaming a subdirectory within the same containing directory cannot

cause a loop (by the same argument that we used in observation 1.1), and hence we can

conclude that src , dst.

Let us recall our assumption about loops in MemFS:

∀ d (d , root directory), d <MemFS.ancestors(d) @ t, for t < tloop, and

∃ d (d , root directory), d ∈MemFS.ancestors(d) @ tloop

This implies that, to cause the loop at tloop, the loop-causing operation at tloop must have

altered the set of ancestors of some node d in the file system. Now consider the directory

rename operation mentioned above. The only file system nodes it deals with are src, dst and

target directories, and clearly it alters the set of ancestors of target (since we had argued

that src , dst). It can be shown that if target is not part of a loop at the end of the rename

(despite the change of ancestors), neither src nor dst could have become parts of any loops

either. But by our assumption, there is a loop in MemFS at tloop. So the rename must have

caused target to be part of a loop, which can be represented as:

target ∈MemFS.ancestors(target) @ tloop

This in turn implies that dst is also part of the same loop as target, because:

MemFS.ancestors(target) @ tloop = {dst}
⋃︀

MemFS.ancestors(dst) @ tloop

Now let us consider the implicit change in ancestors of dst caused by the rename

operation. If trename_begin denotes the timestamp at the start of that rename, and trename_end

(= tloop) denotes the timestamp at the end of the rename, then we know that:

55

MemFS.ancestors(dst) @ trename_begin <MemFS.ancestors(dst) @ trename_begin

MemFS.ancestors(dst) @ trename_end ∈MemFS.ancestors(dst) @ trename_end, and

target ∈MemFS.ancestors(dst) @ trename_end

However, since the rename operation moves target into dst, making it a child directory of

dst, it follows that target must have been an ancestor of dst at trename_begin itself. In other

words, the rename operation at tloop must have moved an ancestor directory (target) into one

of its descendant directories (dst). But this is impossible because MemFS’s loop avoidance

algorithm explicitly checks (while holding the global file system-wide lock), for attempts to

move an ancestor into a descendant, and fails such rename operations. This leaves us with

no way to cause a loop in MemFS at tloop, which completes our argument for theorem 1, by

contradiction.

□

Observation 1.2. The only way to cause a loop in a file system hierarchy is to move an

ancestor directory into one of its descendants.

Theorem 2: DiskFS is loop-free.

Claim: DiskFS never contains loops in the file system hierarchy, which can be expressed as:

∀ t, ∀ d (d , root directory), d < DiskFS.ancestors(d) @ t

Proof of Theorem 2. By observation 1.1, neither file operations nor the mkdir and rmdir

directory operations can cause loops in a file system tree. Since the argument of observation

1.1 assumed nothing about MemFS, this property is applicable to DiskFS too. Thus, only

directory renames can potentially cause loops in DiskFS.

Once again, we argue this theorem by deriving a contradiction. Suppose there exists

a loop in DiskFS at timestamp tloop. We focus on the very first instance of such a loop,

implying that there is no loop in DiskFS at any timestamp t < tloop. Now consider the

file system operation flushed to disk at tloop, which caused the loop. It must have been a

directory rename (based on our deduction above), of the form:

rename(src/target, dst/target), which was performed in MemFS at trename < tloop

Using a similar reasoning as we used for theorem 1, we can argue that flushing this operation

56

causes target to be part of a loop in DiskFS: target ∈ DiskFS.ancestors(target) @ tloop, and

further, dst also becomes part of the same loop at timestamp tloop.

From observation 1.2, flushing this rename could have caused target to be part of a loop

only if target was already an ancestor of dst in DiskFS, just before flushing the rename

operation. Now we take a moment to make a few additional observations, to assist the

argument for theorem 2.

Observation 2.1. If directory B is a child of directory A in the file system at some timestamp

t, then the only way to make B an ancestor of A at some later timestamp t’ > t involves

renaming B out of A as a necessary step.

Explanation. The only operations that alter ancestor-descendant relationships among di-

rectories are mkdir, rmdir and rename. It is straight-forward to see that neither mkdir nor

rmdir can change the relationship between A and B, which leaves us with renames.

Consider the sequence of renames that can make B an ancestor of A. The last operation

would have to be a rename of A into B or one of B’s descendants. However, we know from

observation 1.2 that moving an ancestor into a descendant (in a single step) is not a legal

rename operation. Hence, just before performing this last rename which moves A into B (or

one of its descendants), we know that A could not have been an ancestor of B. But since B

was A’s child to begin with, it implies that B had to be moved out of A along the way, as a

necessary step, before performing the last rename. □

Observation 2.2. Let absolute_path(d) @ t denote the absolute path of directory d at

timestamp t. A directory in MemFS is said to be clean (non-dirty) at timestamp t, if there

are no pending operations modifying that directory, yet to be flushed at timestamp t. If a

directory d and all its ancestors in MemFS are clean at timestamp t, then:

MemFS.absolute_path(d) @ t = DiskFS.absolute_path(d) @ t

Explanation. The property obviously holds for the root directory, since its absolute path

never changes in memory or on the disk. Using this as the basis, we use a recursive induction

to argue for any other directory in the file system.

57

If d is a directory and p is parent(d), then if p is clean at timestamp t, then it implies

that p has the same children in MemFS and DiskFS at timestamp t. Hence d has the same

relative path from p, in MemFS and DiskFS, at timestamp t.

Now, if we set d ← p and p ← parent(p) and re-run this argument, we see that d’s

relative path from parent(p) would be the same in MemFS and DiskFS at timestamp t. Going

this way all the way up to the root directory, we can conclude that if all the ancestors of a

directory are clean at some timestamp t, then the absolute path of that directory would be

the same in MemFS and DiskFS at that timestamp. □

Observation 2.3. If a directory d and all its ancestors were clean at timestamp t, and there

were operations that modified some of them in MemFS after t, but none of those operations

have been flushed to the disk yet at some later timestamp t’ > t, then:

DiskFS.absolute_path(d) @ t’ =MemFS.absolute_path(d) @ t

Continuing the argument of theorem 2, let us recall that in order to have a loop in DiskFS

at tloop, target must have been an ancestor of dst in DiskFS just before flushing the rename

operation at tloop. Denoting that timestamp as trename_ f lush_begin (< tloop), we have:

target ∈ DiskFS.ancestors(dst) @ trename_ f lush_begin

The loop avoidance protocol in McoreFS prepares the destination directory of a rename

operation, just before flushing the rename itself. Thus, dst gets prepared at trename_ f lush_begin,

where prepare is defined as:

prepare(directory d, timestamp t):

if (d != root):

prepare(MemFS.parent(d) @ t, t)

Flush all operations with timestamp <= t that modify d

Specifically, dst gets prepared at timestamp trename_ f lush_begin by invoking

prepare(dst, trename) (recall that trename is the timestamp at which the directory rename

operation was performed in MemFS). This call to prepare ensures that for every directory

d ∈MemFS.ancestors(dst) @ trename, there is no pending operation yet to be flushed to the

disk, which modifies d and has a timestamp <= trename. Thus, when prepare returns, the

58

state of each of these directories in DiskFS is at least as up-to-date as they were in MemFS

at timestamp trename.

However, we had already established that in order to form a loop in DiskFS at tloop,

target must have been an ancestor of dst at trename_ f lush_begin. This implies that at the end of

prepare(dst, trename), target must have been an ancestor of dst in DiskFS, as there is no

intermediate flush step between prepare(dst, trename) and flushing the rename operation

at tloop.

So, now we evaluate the different scenarios in which target could have ended up being an

ancestor of dst at the end of the prepare. By the definition of prepare, for every directory

d ∈MemFS.ancestors(dst) @ trename, its state on the disk would be at least as up-to-date as

its state in memory at timestamp trename. Thus, we have 2 possible cases to consider, for

each such directory d ∈MemFS.ancestors(dst) @ trename:

∙ Case 1: DiskFS.d after prepare is exactly as up-to-date as MemFS.d @ trename Using

observation 2.3, we can conclude that:

DiskFS.absolute_path(dst) just after prepare =MemFS.absolute_path(dst) @ trename

In other words, if target ∈ DiskFS.ancestors(dst) just after prepare, then target ∈

MemFS.ancestors(dst) at the beginning of trename. But that would have caused a loop in

MemFS at the end of the rename operation at trename, contradicting theorem 1. This rules

out case 1.

∙ Case 2: DiskFS.d after prepare is more up-to-date than MemFS.d @ trename

This implies that by the end of prepare, some operations with timestamps > trename that

modified the ancestors of dst, have also been flushed to the disk. Since we ruled out case

1, it follows that the operations with timestamps > trename that were flushed by the end of

prepare must have caused target to become an ancestor of dst on the disk.

However, note that target was moved into dst in MemFS by the rename operation at

timestamp trename. Using observation 2.1, it is clear that if target had to become an

ancestor of dst once again in MemFS after trename, it must have involved moving target

out of dst as a necessary step, using another rename operation, with timestamp > trename.

But these two rename operations both modify dst, and hence they are guaranteed to be

flushed to disk strictly in the increasing order of their timestamps. This implies that the

59

set of operations modifying dst with timestamps > trename that may have been flushed to

disk by the end of prepare does not include the rename that moves target out of dst after

trename. Hence, even case 2 cannot cause target to become an ancestor of dst on the disk

just before tloop. This leaves us with no way to cause a loop in DiskFS at tloop, which

completes our argument for theorem 2 by contradiction.

□

60

Bibliography

[1] H. Attiya, E. Hillel, and A. Milani. Inherent limitations on disjoint-access parallel
implementations of transactional memory. In Proceedings of the 21st Annual ACM
Symposium on Parallelism in Algorithms and Architectures, pages 69–78, Calgary,
Canada, Aug. 2009.

[2] S. Boyd-Wickizer, A. T. Clements, Y. Mao, A. Pesterev, M. F. Kaashoek, R. Morris,
and N. Zeldovich. An analysis of Linux scalability to many cores. In Proceedings of
the 9th Symposium on Operating Systems Design and Implementation (OSDI), pages
1–16, Vancouver, Canada, Oct. 2010.

[3] S. Boyd-Wickizer, M. F. Kaashoek, R. Morris, and N. Zeldovich. OpLog: a library
for scaling update-heavy data structures. Technical Report MIT-CSAIL-TR-2014-019,
MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, Sept.
2014.

[4] M. Cao, T. Y. T’so, B. Pulavarty, S. Bhattacharya, A. Dilger, and A. Tomas. State of
the art: Where we are with the ext3 filesystem. In Proceedings of the Linux Symposium,
pages 69–96, Ottawa, Canada, July 2005.

[5] M. Castro and B. Liskov. Practical byzantine fault tolerance. In Proceedings of the 3rd
Symposium on Operating Systems Design and Implementation (OSDI), pages 173–186,
New Orleans, LA, Feb. 1999.

[6] V. Chidambaram, T. Sharma, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau.
Consistency without ordering. In Proceedings of the 10th USENIX Conference on File
and Storage Technologies (FAST), pages 101–116, San Jose, CA, Feb. 2012.

[7] S. Chutani, O. T. Anderson, M. L. Kazar, B. W. Leverett, W. A. Mason, and R. N.
Sidebotham. The Episode file system. In Proceedings of the Winter 1992 USENIX
Technical Conference, pages 43–59, Jan. 1992.

[8] A. T. Clements, M. F. Kaashoek, and N. Zeldovich. RadixVM: Scalable address spaces
for multithreaded applications. In Proceedings of the 8th ACM EuroSys Conference,
pages 211–224, Prague, Czech Republic, Apr. 2013.

[9] A. T. Clements, M. F. Kaashoek, N. Zeldovich, R. T. Morris, and E. Kohler. The
scalable commutativity rule: Designing scalable software for multicore processors. In
Proceedings of the 24th ACM Symposium on Operating Systems Principles (SOSP),
pages 1–17, Farmington, PA, Nov. 2013.

61

[10] J. Corbet. Dcache scalability and RCU-walk, Apr. 2012. http://lwn.net/
Articles/419811/.

[11] R. Cox, M. F. Kaashoek, and R. T. Morris. Xv6, a simple Unix-like teaching operating
system, 2012. http://pdos.csail.mit.edu/6.828/2012/xv6.html.

[12] M. Curtis-Maury, V. Devadas, V. Fang, and A. Kulkarni. To Waffinity and beyond: A
scalable architecture for incremental parallelization of file system code. In Proceedings
of the 12th Symposium on Operating Systems Design and Implementation (OSDI),
pages 419–434, Savannah, GA, Nov. 2016.

[13] R. Eqbal. ScaleFS: A multicore-scalable file system. Master’s thesis, Massachusetts
Institute of Technology, Aug. 2014.

[14] C. Frost, M. Mammarella, E. Kohler, A. de los Reyes, S. Hovsepian, A. Matsuoka,
and L. Zhang. Generalized file system dependencies. In Proceedings of the 21st ACM
Symposium on Operating Systems Principles (SOSP), pages 307–320, Stevenson, WA,
Oct. 2007.

[15] G. R. Ganger and Y. N. Patt. Metadata update performance in file systems. In Proceed-
ings of the 1st Symposium on Operating Systems Design and Implementation (OSDI),
pages 49–60, Monterey, CA, Nov. 1994.

[16] C. Gruenwald, III, F. Sironi, M. F. Kaashoek, and N. Zeldovich. Hare: a file system for
non-cache-coherent multicores. In Proceedings of the 10th ACM EuroSys Conference,
Bordeaux, France, Apr. 2015.

[17] R. Hagmann. Reimplementing the Cedar file system using logging and group commit.
In Proceedings of the 11th ACM Symposium on Operating Systems Principles (SOSP),
pages 155–162, Austin, TX, Nov. 1987.

[18] A. Israeli and L. Rappoport. Disjoint-access-parallel implementations of strong shared
memory primitives. In Proceedings of the 13th ACM SIGACT-SIGOPS Symposium on
Principles of Distributed Computing, Los Angeles, CA, Aug. 1994.

[19] M. Jambor, T. Hruby, J. Taus, K. Krchak, and V. Holub. Implementation of a Linux
log-structured file system with a garbage collector. ACM SIGOPS Operating Systems
Review, 41(1):24–32, Jan. 2007.

[20] J. Kang, B. Zhang, T. Wo, W. Yu, L. Du, S. Ma, and J. Huai. SpanFS: A scalable file
system on fast storage devices. In Proceedings of the 2015 USENIX Annual Technical
Conference, Santa Clara, CA, July 2015.

[21] Y. Klonatos, M. Marazakis, and A. Bilas. A scaling analysis of Linux I/O performance.
Poster presented at EuroSys, 2011.

[22] C. Lameter. Effective synchronization on Linux/NUMA systems. In Gelato Conference,
May 2005. http://www.lameter.com/gelato2005.pdf.

62

http://lwn.net/Articles/419811/
http://lwn.net/Articles/419811/
http://pdos.csail.mit.edu/6.828/2012/xv6.html
http://www.lameter.com/gelato2005.pdf

[23] E. Lee, H. Bahn, and S. H. Noh. Unioning of the buffer cache and journaling layers
with non-volatile memory. In Proceedings of the 11th USENIX Conference on File
and Storage Technologies (FAST), pages 73–80, San Jose, CA, Feb. 2013.

[24] L. Lu, A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, and S. Lu. A study of Linux file
system evolution. In Proceedings of the 11th USENIX Conference on File and Storage
Technologies (FAST), pages 31–44, San Jose, CA, Feb. 2013.

[25] Y. Lu, J. Shu, and W. Wang. ReconFS: A reconstructable file system on flash storage. In
Proceedings of the 12th USENIX Conference on File and Storage Technologies (FAST),
pages 75–88, Santa Clara, CA, Feb. 2014.

[26] A. Mathur, M. Cao, S. Bhattacharya, A. Dilger, A. Tomas, and L. Vivier. The new ext4
filesystem: current status and future plans. In Proceedings of the Linux Symposium,
pages 21–34, Ottawa, Canada, June 2007.

[27] P. E. McKenney, D. Sarma, and M. Soni. Scaling dcache with RCU. Linux Journal,
2004(117), Jan. 2004.

[28] C. Min, S. Kashyap, S. Maass, and T. Kim. Understanding manycore scalability of file
systems. In Proceedings of the 2016 USENIX Annual Technical Conference, Denver,
CO, June 2016.

[29] T. S. Pillai, V. Chidambaram, R. Alagappan, S. Al-Kiswany, A. C. Arpaci-Dusseau,
and R. H. Arpaci-Dusseau. All file systems are not created equal: On the complexity
of crafting crash-consistent applications. In Proceedings of the 11th Symposium on
Operating Systems Design and Implementation (OSDI), pages 433–448, Broomfield,
CO, Oct. 2014.

[30] K. Ren and G. Gibson. TABLEFS: Enhancing metadata efficiency in the local file
system. In Proceedings of the 2013 USENIX Annual Technical Conference, pages
145–156, San Jose, CA, June 2013.

[31] D. M. Ritchie and K. Thompson. The UNIX time-sharing system. Communications of
the ACM, 17(7):365–375, July 1974.

[32] O. Rodeh, J. Bacik, and C. Mason. BTRFS: The Linux B-tree filesystem. ACM
Transactions on Storage, 9(3):9:1–32, Aug. 2013.

[33] M. Rosenblum and J. Ousterhout. The design and implementation of a log-structured
file system. In Proceedings of the 13th ACM Symposium on Operating Systems
Principles (SOSP), pages 1–15, Pacific Grove, CA, Oct. 1991.

[34] A. Sweeney, D. Doucette, W. Hu, C. Anderson, M. Nishimoto, and G. Peck. Scala-
bility in the XFS file system. In Proceedings of the 1996 USENIX Annual Technical
Conference, San Diego, CA, Jan. 1996.

63

[35] J. Yang, P. Twohey, D. Engler, and M. Musuvathi. eXplode: A lightweight, general
system for finding serious storage system errors. In Proceedings of the 7th Symposium
on Operating Systems Design and Implementation (OSDI), pages 131–146, Seattle,
WA, Nov. 2006.

[36] M. Zheng, J. Tucek, D. Huang, F. Qin, M. Lillibridge, E. S. Yang, B. W. Zhao, and
S. Singh. Torturing databases for fun and profit. In Proceedings of the 11th Symposium
on Operating Systems Design and Implementation (OSDI), pages 449–464, Broomfield,
CO, Oct. 2014.

64

	Introduction
	Related work
	Durability semantics
	Design overview
	Making operations orderable [P, C]
	Merging operations [C]
	Flushing an operation log [P, C]
	Multiple disks and journals [P]
	Discussion

	Implementation
	MemFS
	DiskFS
	Limitations

	Evaluation
	Methodology
	Does McoreFS achieve multicore scalability?
	Empirical scalability
	Does durability reduce multicore scalability?
	Disk performance
	Crash safety
	Overhead of splitting MemFS and DiskFS

	Conclusion
	Correctness of the directory loop avoidance algorithm in McoreFS

