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Abstract

SoftECC is software memory integrity checking agent. SoftECC repeatedly computes page-level
checksums as an efficient means to verify that a page’s contents have not changed. Memory errors
that occur between two checksum computations will cause the two checksum values to disagree.
Legitimate memory writes also cause a change in checksum value, so a page can only be protected
during periods of time when it is not being written to. Preliminary measurements with an imple-
mentation of SoftECC in the JOS kernel on the x86 architecture show that SoftECC can halve the
number of undetectable soft errors using minimal compute time.

Thesis Supervisor: Frans Kaashoek
Title: Professor

2



Acknowledgments

I would like to thank Frans Kaashoek for overseeing this project and providing extensive feedback
on my writing. I would also like to thank him for allowing me to undertake this research in the first
place and ensuring I always had the resources necessary to complete my work.

I also owe a great debt of gratitude to Chris Lesniewski-Laas for conceiving the original project
idea and providing me with many hours of fruitful discussion.

The completion of this project happened to coincide quite poorly with the date for my move from
Boston to Seattle. Without Mayra’s invaluable assistance in packing, I would have had to choose
between my belongings and my thesis.

Finally, I would like to thank my parents. Without their continual support and encouragement,
I would never have made it this far.

3



Contents

1 Introduction 7

1.1 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Vulnerability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Rest of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Background and Related Work 10

2.1 Types of Memory Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 ECC memory: the hardware solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Software Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Design 12

3.1 State Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 The Trapwrite State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3 The Trapall State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.4 Design Alternatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.4.1 The Checksum Queue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.4.2 Linux: Swapfile of a modified ramfs partition . . . . . . . . . . . . . . . . . . 14

4 Implementation 15

4.1 Implementing Page State Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1.1 Read and Write Trap Handlers . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.2 The JOSkern VMM extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2.1 Trapping Memory Access on x86 . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2.2 Checking for Prior Memory Access on x86 . . . . . . . . . . . . . . . . . . . . 21

4.3 Checksums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.4 Redundancy for Error Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.4.1 Full Memory Copy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.4.2 Striped Hamming Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4



4.4.3 Hard Disk Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5 Evaluation 26

5.1 Testing Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.2 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.2.1 Sequential Writes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.2.2 Random Word Writes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.2.3 Random Page Writes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2.4 Memory Traces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6 Summary 34

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5



List of Figures

3-1 Properties of the three page states . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4-1 Computational cost of various checksum implementations (2.4Ghz AMD Opteron 150) 24

5-1 Checking performance for sequential writes . . . . . . . . . . . . . . . . . . . . . . . 29

5-2 Checking performance for sequential writes using the unoptimized checksum compu-
tation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5-3 Checking performance for random word writes . . . . . . . . . . . . . . . . . . . . . 30

5-4 Checking performance for random page writes . . . . . . . . . . . . . . . . . . . . . . 31

5-5 SPEC CPU2000 Benchmarks Represented In Memory Traces . . . . . . . . . . . . . 31

5-6 Memory Trace Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5-7 Checking performance while replaying a 1M entry trace of bzip . . . . . . . . . . . . 32

5-8 Checking performance while replaying a 1M entry trace of gcc . . . . . . . . . . . . . 32

5-9 Checking performance while replaying a 1M entry trace of swim . . . . . . . . . . . . 33

5-10 Checking performance while replaying a 1M entry trace of sixpack . . . . . . . . . . 33

6



Chapter 1

Introduction

Failing, damaged, or improperly clocked memory can introduce bit errors leading to crashes, freeze-
ups, or even data corruption. Even correctly functioning DRAM cells are subject to cosmic rays that
can induce transient, or soft errors. Because there are many possible causes of system instability,
these problems are notoriously hard to diagnose. This thesis describes SoftECC, a software memory
testing solution designed to detect and diagnose memory induced stability problems quickly and
automatically.

SoftECC’s goal is to protect against soft errors in memory without modifying existing applica-
tions. As a kernel-level extension to the virtual memory system, SoftECC uses the CPU’s page-level
access permissions to intercept reads and writes before they occur and repeatedly compute page-
level checksums. Using the checksums, SoftECC verifies that a page’s contents are the same at two
different points in time. A memory error that happens between two checksum computations will
cause the two checksum values to disagree. Legitimate memory writes will also cause a change in
checksum value, so a page can only be protected during periods of time when it is not being written
to.

1.1 Approach

Every pair of consecutive checksums creates an interval of time. At the end of each inter-checksum
interval, SoftECC can tell three things: if a read has happened, if the page’s contents changed,
and if there was a legitimate write. SoftECC cannot directly detect errors; however, a page change
without a legitimate write implies that an error has occurred. Since writes also imply changes to
the page contents, errors are not detectable during inter-checksum intervals containing a legitimate
write.

Consider a single page, P . There are four events of interest that can happen to P : reads (R),
writes (W), checksums (C), and errors (E). The order in which the occur will determine what
assurances SoftECC can provide about memory integrity. Consider the following possibilities:

Vulnerable Interval: C...W...R...W...R...C

Detection Interval: C...R...R...R...R...C

Protection Interval: C...................C

An inter-checksum interval with a legitimate write is a “vulnerable interval,” as any errors that
occur will go undetected. Two checksum events surrounding a period of time deviod of writes
create a “detection interval,” a period of time during which any memory errors that occur will be
detected. Any inter-checksum interval with neither reads nor writes is called a “protection interval,”
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because SoftECC guarantees that any errors that occur on page P during this time will be detected
before the user application has a chance to access invalid data. Furthermore, if SoftECC has stored
redundancy information for page P , the error is can be corrected, allowing the user application to
continue running.

SoftECC creates detection intervals inside larger inter-write intervals. To detect errors during
an inter-write interval, SoftECC must calculate a first checksum at the beginning of the interval,
and a second checksum before the end of the interval. Because of the cost of these checksums, not
all inter-write intervals are worth protecting. SoftECC tries to use checksums to create detection
intervals inside the largest inter-write intervals.

Similarly, because SoftECC cannot verify the integrity of reads that occur during the same
inter-checksum interval as an error, protection intervals can only be created inside larger inter-read
intervals. To reduce an application’s vulnerability to uncorrectable soft errors, SoftECC tries to use
checksums to create protection intervals inside the largest inter-read intervals.

1.2 Vulnerability

A page is vulnerable to undetected soft errors during any vulnerable interval (any inter-checksum
interval containing a write).

For an application, “vulnerability” is defined to be the average number of vulnerable pages (its
“exposure size”) multiplied by the length of real world time that the computation is running (the
“exposure time”). The units of vulnerability are page-seconds. Vulnerability multiplied by the
error density (errors / page / second) yields the expected number of errors that will occur during a
computation (which, given that it is a very small number, should be very close to the probability of
any errors occurring).

During idle-CPU time, SoftECC lowers an application’s vulnerability by checksumming pages
to reduce the application’s exposure size. When the CPU is not idle, SoftECC can lower soft error
vulnerability by reducing an application’s exposure size at the cost of increasing the exposure time.

Creating a detection interval of length tdet reduces a computation’s exposure size by one page
during that interval, decreasing vulnerability by tdet ∗ 1 page-seconds. However, any time a page
checksum is computed, the user application’s execution is put on hold, increasing the application’s
exposure time by one “checksum time unit” (tchk ). Thus, the two checksum operations needed to
create a detection interval increase vulnerability by tchk ∗ nvuln(t1) + tchk ∗ nvuln(t2) page-seconds,
where nvuln(t) is the number of vulnerable pages at time t. Note that a decision to checksum a
particular interval decreases nvuln by 1 for all checksums during that interval, and lengthens any
encompassing intervals by 2 ∗ tchk.

An omniscient checksumming agent would achieve the minimum possible vulnerability by check-
summing any inter-write interval where the length of the interval outweighs the cost of the checksum
operations ( tdet > tchk ∗nvuln(t1)+ tchk ∗nvuln(t2)). A realtime checksumming agent, like SoftECC,
will perform worse than the omniscient case because SoftECC cannot accurately predict how long
until a page will next be written (tnext ).

At any point in time SoftECC can spend one checksum to speculatively begin a detection interval
worth tnext∗1. However, if SoftECC is unlucky and checksums a page shortly preceding an impending
write, then the cost of the checksum operations will exceed the value of the detection interval for a
net increase in vulnerability. If SoftECC is particularly unlucky, the cost of the second checksum
alone will exceed the value of the detection interval. In this case, SoftECC should allow the write
to proceed without checking, giving up the first checksum operation as a sunk cost.

In order to avoid checksumming a page that will soon be written to, SoftECC waits to calculate
the first checksum until the page has not been written for a period of time. This reduces the chances
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of wasting time checksumming a page that is about to be written, but it also prevents SoftECC from
ever detecting over the entire inter-write interval.

1.3 Contribution

The main contribution of this thesis is a demonstration of the feasibility of software based mem-
ory integrity checking. More specifically, this thesis contributes a simple but effective algorithm
for verifying memory integrity, significantly reducing the chances of receiving undetectable and un-
correctable memory errors. This thesis also contributes an implementation of memory integrity
checking in the JOS kernel and an experimental evaluation of the performance characteristics of this
implementation. Finally, this thesis contributes suggestions for future work that would allow 100%
detection performance and increased error recovery capability.

1.4 Rest of Thesis

The remainder of this thesis is structured as follows. Section 3 describes the design of SoftECC .
Section 4 details the implementation of SoftECC as an extension to the JOS kernel. In section 5
we evaluate the performance characteristics of SoftECC as it protects several different user-mode
access-patterns. Section ?? provides an argument for the utility of SoftECC on desktop systems and
outlines a method for achieving 100% protection. We conclude in section 6 and provide suggestions
for future work.
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Chapter 2

Background and Related Work

2.1 Types of Memory Errors

There are several common causes of memory errors, each with different characteristics.

Hard Errors are caused by physical damage to the underlying DRAM circuitry. Typically they
will affect a particular pattern of memory addresses corresponding to a damaged cell, line, or
chip. While many types of errors are easily reproducible and will be caught by BIOS memory
tests, there are more insidious patterns. For example, if the insulation partially breaks down
between several cells, writing to the cells nearby can alter the middle cell’s voltage sufficiently
to induce a bit flip error. Such errors are pattern dependent and difficult to find. Compounding
this difficulty, such problems may occur only when the affected memory chip heats up, or may
occur only part of the time.

Soft Errors occur when the charge storage representing a bit is sufficiently disturbed to change
that bit’s value. As process technology advances, both the capacitance and voltage used to
store information are decreasing, reducing the “critical charge” necessary to induce a single
bit error [9].

Cosmic Radiation is a form of soft error that occurs when random high energy particles (mostly
neutrons) impact DRAM cells, disrupting their charge storage. According to Corsair, these
single bit errors can happen as often as once a month [6]. And computers in high altitude
cities such as Denver face up to 10x the risk of computers operating at sea level [8].

Package Radio-isotope Decay can lead to memory errors when trace quantities of radioactive
contaminants present in chip packaging decay, emitting alpha particles. There was a particu-
larly infamous problem in 1987 when Po210 from a faulty bottle cleaning machine contaminated
an IBM fab producing LSI memory modules. Affected memory chips suffered over 20 times the
soft error rate of chips produced at other fabs, leading to a large scale hunt for the contaminant
source [7].

Configuration / Protocol Errors on a motherboard can cause problems as well. In theory, a
DRAM module should perform reliably if the motherboard follows the module’s specified
timings 1. However, with so many DRAM and motherboard manufacturers in the marketplace,
the potential for incompatibility is great. For example, if the motherboard supplies the DRAM
with a lower than specified voltage, the memory will perform slower than it would with its
rated voltage. Also, each memory module adds parasitic capacitance to the memory bus. These
issues can be a problem for cheap memory modules, which barely meet their specification.

1For current generation memories, this information is stored on the module’s EEPROM Serial Presence Detect
Chip.
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2.2 ECC memory: the hardware solution

The problem of DRAM cell reliability is not a new one, and for years manufacturers have been
making ECC-DRAM for servers and other machines where reliability is at a premium. ECC-DRAM
effectively and transparently protects against single bit DRAM errors and provides detection (with-
out correction) for double bit errors.

However, ECC-DRAM requires 13% more memory cells per bit (72 cells per 64 bits), and is
produced in lower volumes than normal DRAM, both of which increase its price. Although memory
pricing is volatile and inconsistent, it would be reasonable to estimate a 33% price premium for
ECC-DRAM over comparable non-ECC-DRAM.2 Thus, while many “high-end” servers use ECC
DRAM, most users are rarely even aware of the various memory options and almost never choose
to pay the price premium for ECC-DRAM.

No software solution can improve upon the efficacy of hardware ECC at consistency checking
DRAM for single bit errors; however with the vast majority of computing devices using non-ECC
memory, there is a large space for solutions aiming to close the reliability gap between normal DRAM
and ECC-DRAM.

2.3 Software Solutions

One software memory testing solution is the Memtest86 utility, which runs an extensive battery of
memory test patterns to expose subtle, infrequent, and pattern dependent memory errors missed
by power-on BIOS testing [2]. Memtest86 has its own kernel and runs in real mode, requiring a
reboot. Because Memtest86 tests can only be performed offline, few users test their memory unless
they have reason to suspect it is failing. Furthermore, because it cannot test memory while it is in
use, Memtest86 provides no protection against soft errors.

In 2000 Rick van Rein noticed that many memory modules that failed a memtest would fail
consistently in the same location [1]. He then wrote a Linux kernel patch called BadRAM that
allocates to itself the regions of physical memory known to have problems, preventing faulty DRAM
cells from being allocated to user tasks. BadRAM relies on the user to run memtest86 manually to
calculate the BadRAM configuration string (passed as a kernel parameter).

BadRAM is a good approach for isolating hardware faults from the software level. In any system
with hardware failure, there will be a delay before a sufficiently competent user or administrator can
purchase and install new hardware. Software fault isolation can keep the system up and running
while corrective action is taken, allowing hardware to fail-in-place.

2As of 1/12/05 on Newegg.com: the price range for 1GB of PC3200 DDR DRAM was $155-$275 versus $200-$408
for ECC-DDR DRAM.
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Chapter 3

Design

SoftECC is a software solution for detecting and correcting soft errors in physical memory. As a
kernel-level extension to the virtual memory system, SoftECC’s operation is transparent to user
processes. SoftECC defines three page states based on their memory access policies and the status
of their stored checksum:

Hot: Pages that have been written since the last checksum occurred, and thus do not have a valid
checksum stored. User-mode writes and reads proceed normally. If all memory pages are left
hot, then SoftECC is effectively turned off. Errors that occur while a page is hot will not be
detected.

Trapwrite: Pages that are read-only, and have a valid checksum of their contents stored so that
they can be checked for memory errors. Trapwrite pages might also have valid redundancy
information stored. Writes to trapwrite pages must be trapped, so that the page can be checked
before the write occurs. Reads can proceed without interruption. In order to minimize the
latency of detection, trapwrite pages should be periodically checked for errors.

Trapall: Pages that allow no access, trapping both reads and writes. Because no access is possible,
trapall pages need not be periodically checksummed.

.

The table in figure 3-1 shows an overview of the properties of the three page states, which are
discussed in more detail in the next few sections.

Hot Trapwrite Trapall

Valid Checksum no yes yes
Valid Redundancy no maybe yes

Writes poll trap trap
Reads poll poll trap

Vulnerable yes no no
Detection no yes yes
Protection no maybe yes

Figure 3-1: Properties of the three page states
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3.1 State Transitions

In order to keep SoftECC’s operation transparent to the user program, the transitions from trapall
to trapwrite to hot must be triggered automatically whenever the user program attempts an access
operation not allowed by the current state of the page accessed. In other words, writes to any page
force it to transition to the hot state, and reads to a trapall page force it to transition to trapwrite.
There are no automatic transitions from hot to trapwrite to trapall, and without intervention from
SoftECC, pages would stay hot forever.

The principle of temporal locality says that memory accesses to a particular region tend to be
highly clustered in time. In other words, pages that have been accessed recently are likely to be
accessed soon and pages that have not been accessed recently are less likely to be accessed soon.
Therefor, it makes sense to checksum the hot pages that have gone the longest since being written,
and the trapwrite pages that have gone the longest since being read.

SoftECC’s policy with respect with respect to trapwrite pages is slightly different. In order to
minimize the latency of detection, trapwrite pages should be checked periodically even if they are
still being accessed. However, it is not useful to continually check pages that are not being accessed.
If a trapwrite page becomes old enough to be checked again and it has not been accessed, then it
will be promoted to trapall, stalling its checksum until just before the next pending access.

3.2 The Trapwrite State

The trapwrite state is for pages that are not expected to be written soon, but might be read. In
order to determine if reads are occurring, SoftECC periodically checks whether reads have occurred
since the last time it checked. If reads don’t happen within a certain period of time, SoftECC will
assume that the page has stopped being read and might not be read for a while. When reads stop
occurring on a trapwrite page, SoftECC promotes it to trapall, checksumming it first if reads have
occurred since the last checksum.

Even if a trapwrite page is still being read and can’t be promoted to trapall, it should still be
periodically checksummed. This decision will validate all the reads that have occurred since the last
checksum and prevent any errors that have occurred from affecting future reads.

If both reads and an error have occurred since the last checksum, the program state is highly
suspect. Even if the page has stored redundancy information allowing the error to be corrected, the
application may have already accessed incorrect data and propagating the error to another location.
For this reason, the application should be terminated or reset as gracefully as possible. This may
require allowing the application to run with its questionable state just long enough to save any
(hopefully intact) user data to disk. A more ambitious approach to error recovery is described in
section 6.2.

3.3 The Trapall State

The trapall state is for pages that are not expected to be read or written soon. While a page is in
the trapall state, any errors that occur are guaranteed to be detected before they are used. Thus, if
these errors are corrected, the user application can continue running. For this reason, trapall pages
store redundancy information. Redundancy information remains valid until the next write and thus,
only needs to be computed during the first trapall promotion after each write.

The trapall state is also important for performance reasons. On a machine with 1GB of memory,
there are a quarter-million physical pages. At any point in time, only a very small fraction of these
pages will be in active use. Many of these pages will be used to speculatively cache disk blocks that
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may never be used. If SoftECC had to divide its page checking efforts between all physical pages,
there would not be very much compute time to spend on any single page and the level of protection
offered would be substantially lower. Instead, the vast majority of pages can be quickly promoted
to trapall status, allowing SoftECC to concentrate its checksumming efforts on the pages that drift
in and out of active use.

3.4 Design Alternatives

3.4.1 The Checksum Queue

Originally, SoftECC had a fourth state called checksum that would check for writes periodically
rather than trapping them. The goal of the checksum state was to avoid trapping writes to pages
that had been checksummed so recently that computing a second checksum was not worthwhile.
After each checksum, a page would spend a short while in the checksum queue before being promoted
to trapwrite (unless a write was detected).

However, the goal of avoiding not-worthwhile second checksum calculations can also be accom-
plished by the trapwrite state by simply not checking pages that trap early writes. While this method
still requires a trap, on a 2.4Ghz Opteron system, checksum computations take 1020ns while traps
are under 100ns. Thus, the main cost of trapping a write is the checksum computation, not the
actual trap. Because early writes should be rare, it is not clear that marginal benefit of avoiding a
rare trap even exceeds the marginal overhead of managing a third page queue.

3.4.2 Linux: Swapfile of a modified ramfs partition

One possibility under consideration for achieving memory integrity checking on Linux was to design a
modified version of the ramfs filesystem with integrity checking. Ramfs is a simpler version of tmpfs,
a special combination block-device/filesystem that stores its contents to virtual memory rather than
to a block device. Ramfs is designed to utilize only physical memory and does not support swapping
to disk.

The idea was to use a ramfs partition to store a swapfile. The benefit of this approach is that
Linux’s own memory management system would swap out the least active pages to the modified
ramfs disk where they would be checked for integrity.

This approach would not test the design of SoftECC in full detail, but would be a means to enable
memory protection on a Linux system without having to modify the kernel’s memory management
system.

Unfortunately, this solution was simply impossible. Linux refuses to use a swapfile stored on
either a ramfs or tmpfs partition. This limitation is most likely due to an internal conflict arising
from the tight integration of ramfs with the virtual memory system.
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Chapter 4

Implementation

The JOS kernel was developed to be used as a teaching aid for MIT’s Operating Systems class, 6.828.
It was designed with simplicity and extensibility in mind, and after being used in the classroom for
several years, it is now mature and thoroughly tested. In short it is a ready made platform for
testing new operating systems ideas without having to deal with the complexity of a kernel intended
for widespread use. The rest of this chapter describes the modifications SoftECC makes to the JOS
kernel.

4.1 Implementing Page State Transitions

SoftECC maintains a queue of pages that are waiting to have a periodic action performed. At each
timer interrupt (in JOS, this happens 100 times per second), SoftECC runs for a while, processing
the page queue and checksumming pages. The length of time that SoftECC consumes is carefully
chosen in order to keep CPU-usage at its target value (see listing 4.1). Each time a page makes its
way to the head of the queue, SoftECC considers the page (see listing 4.2), taking any necessary
actions, and inserting the page back into the tail of the queue.

When a hot page reaches the head of the queue, SoftECC uses the DIRTY bits to check whether
the page has been written since the last time it was inserted into the queue (see section 4.2.2). If
the page hasn’t been written to, then SoftECC assumes that the user process has stopped writing
to the page and promotes it to trapwrite. Otherwise, the page is shuffled to the back of the queue
to be checked again later.

When a trapwrite page reaches the head of the queue, SoftECC checks whether the page has
been read since the last queue insertion. If it hasn’t been read since it was inserted into the queue,
SoftECC assumes that the user program has stopped reading the page and promotes it to trapall.
Otherwise, SoftECC shuffles the page to the back of the queue, checking whether the page if its
checksum age exceeds the threshold.
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Listing 4.1: The Periodic Function

int s o f t e c c c p u l o ad ; // t a r g e t %CPU load
i n t 3 2 t s o f t e c c t i m e l e f t ; // unused CPU time be l ong ing to SoftECC
u in t 32 t s o f t e c c t im e l a s t ; // the l a s t time SoftECC was run

void on pe r i od i c (void )
{

u in t 32 t t ime s t a r t = get t ime ( ) ;
u i n t 32 t t ime e lap sed = ( t ime s t a r t − s o f t e c c t i m e l a s t ) ;
s o f t e c c t i m e l e f t += t ime e lap sed ∗ s o f t e c c cpu pe r c en t / 1 0 0 ;
u in t 32 t t ime done = t ime s t a r t + s o f t e c c t i m e l e f t ;

while ( ge t t ime () < t ime done ) {
cons ide r queue head ( ) ; // do some work

}

s o f t e c c t i m e l e f t −= get t ime () − t ime s t a r t ; // may be nega t i v e
s o f t e c c t i m e l a s t = t ime s t a r t ; // record t h i s s t a r t time f o r next run

}

void on i d l e (void )
{

cons ide r queue head ( ) ; // do some work
s y s y i e l d ( ) ;

}

4.1.1 Read and Write Trap Handlers

If SoftECC traps a write to either a trapwrite or trapall page (see section 4.2.1), that page must
transition to the hot state before the write can occur (see listing 4.3). As discussed in section 1.2, it is
not always worthwhile to compute a second checksum. However, as long as the page’s checksum-age
and thus, the size of the potential inter-checksum interval exceeds the threshold, SoftECC will check
the page. Next, SoftECC inserts the page back into the queue so that it will be periodically checked
to determine when the user-mode program is done writing to it. Finally, the time used to perform
these steps must be counted against SoftECC’s CPU usage for the purposes of load throttling (see
section 4.1).

Likewise, if SoftECC traps a read to a trapall page, that page must transition to the trapwrite
state before the write can occur. As with writes, the second checksum is only performed if the value
of the potential protection interval exceeds a threshold. Note that, if the user-mode application
issues a write just after the read (which is common), then the page will fail the threshold test and
transition directly to the hot state for only the cost of the trap.
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Listing 4.2: The Consider Function

PageQueue page queue ;

void con s i d e r ( struct Page ∗ pp)
{

struct Page ∗pp = remove head ( page queue ) ;

switch (pp−>s t a t e ) {
case HOT:

i f ( ch e ck d i r t y (pp ) ) {
// Move to the back o f the l i n e
page queue . i n s e r t t a i l ( pp ) ;

} else {
// Promote to Trapwrite s t a t u s
set checksum (pp ) ;
pp−>s t a t e = TRAPWRITE;
page queue . i n s e r t t a i l ( pp ) ;

}
break ;

case TRAPWRITE:
i f ( ch e ck ac c e s s (pp ) ) {

// Do I renew the checksum to minimize checksum−age ?
i f ( checksum age (pp) > param max checksum age ) {

check page (pp ) ;
}
// Move to the back o f the l i n e
page queue . i n s e r t t a i l ( pp ) ;

} else {
// Promote to TrapAl l s t a t u s
i f (pp−>f l a g s & ACCESS) {

check page (pp ) ;
}
pp−>s t a t e = TRAPALL;

}
break ;

case TRAPALL:
sh r ink redundancy in format ion (pp ) ;
page queue . i n s e r t t a i l (pp ) ;
break ;

}
}
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Listing 4.3: Read and write trap handlers

void t r ap wr i t e ( struct Page ∗ pp)
{

t ime t t ime s t a r t = get t ime ( ) ;

i f ( checksum age (pp) >= param min detec t th re sho ld ( ) ) {
check page (pp ) ;

}
pp−>s t a t e = HOT;
page queue . i n s e r t t a i l (pp ) ;

s o f t e c c t i m e l e f t −= ( get t ime () − t ime s t a r t ) ;
}

void t rap read ( struct Page ∗ pp)
{

t ime t t ime s t a r t = get t ime ( ) ;

i f ( checksum age (pp) >= param min protec t th re sho ld ) {
check page (pp ) ;

}
pp−>s t a t e = TRAPWRITE;
page queue . i n s e r t t a i l (pp ) ;

s o f t e c c t i m e l e f t −= ( get t ime () − t ime s t a r t ) ;
}
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4.2 The JOSkern VMM extensions

The JOS kernel VMM is fairly simple, relying primarily on the Pagestructure to represent physical
pages (see listing 4.4). The original Page structure is fairly spartan, containing only a reference
count, and a free list pointer.

SoftECC extends the Pagestructure with five items. Each page needs to store its current state
number and most recent checksum for consistency checking. In order to implement the page queue
(see section 4.1), another link was required as well a variable to store the time when the page was
inserted into the queue (to determine queue age; see section 4.1). Because trapping accesses to a
physical pages requires modifying all the virtual mappings that point to it, each page has a pointer
to a list of virtual mappings (see section 4.2.1). Lastly, SoftECC adds eight bits worth of flags to the
Pagestructure. Two of these will be needed for the special access and dirty bits (see section 4.2.2).

Listing 4.4: The Page Structure

struct Page {
Page ∗ pp l ink ; // f r e e l i s t l i n k
u in t 16 t pp r e f ; // re f e r ence count

u in t 8 t s t a t e ; // new : curren t page s t a t e
checksum t checksum ; // new : s t o r ed checksum va lue
Page ∗ queue l ink ; // new : page queue l i n k
u in t 32 t queue time ; // new : time o f l a s t queue i n s e r t i o n
Mapping ∗ va map l i s t ; // new : l i s t o f mapped va en t r i e s
u in t 8 t f l a g s ; // new : f l a g s , esp accessed and d i r t y

} ;
struct Mapping {

Mapping ∗ nex t l i n k ; // l i nked− l i s t p o i n t e r
p t e t ∗ pte ; // address o f PTE tha t maps to Page

} ;

4.2.1 Trapping Memory Access on x86

Removing the write (PTE W) and user (PTE U) permission bits from a PTE causes subsequent
user-mode writes and reads to the corresponding virtual page to throw a page fault which SoftECC
can intercept. In order to trap accesses to a physical page, SoftECC needs to modify all PTE’s that
map to that page.

Because SoftECC removes the PTE W bit to enable write trapping, it needs to know the original
state of that bit in order to restore the bit during trapped write. In other words, SoftECC needs a
way to distinguish between read-only virtual mappings to trapwrite (and trapall) physical pages and
originally writable virtual mappings to trapwrite pages. Because a physical page can have multiple
virtual mappings with differing permissions, this information must be for each virtual mapping.
Because user-mode pages in JOS always have the PTE U bit set, its original status is unambiguous.

Intel’s x86 architecture defines three PTE bits to be available for operating system use. Of these,
JOS kernel utilizes two, referred to as PTE COW (Copy On Write) and PTE SHARE, and are both
used primarily in the implementation of fork. When a process forks, JOS marks all writable pages
as copy on write and clears the PTE W bit. When the next user-mode write is trapped, the page is
remapped to a copy of the original, preventing writes from one process becoming visible in the other.
However, pages with the PTE SHARE bit enabled are mapped directly by fork so that writes will
be visible to both processes, allowing inter-process communication. This leaves only one available
PTE bit remaining.

SoftECC defines the last remaining PTE bit to be PTE HOW (Heat On Write). When SoftECC

19



clears the PTE W bit, it stores the original state of that bit to PTE HOW, and when trapping a
write restores PTE W only if PTE HOW is set.

When a page is trapping writes (the page state is either trapwrite or trapall), PTE HOW is a
proxy to the “real” value of PTE W as concerns the rest of the kernel. Thus, any statement that
wants to read PTE W should instead read the logical “or” of both PTE W and PTE HOW. Any
statement that would have written PTE W should now write PTE HOW if the underlying page is
trapping writes and PTE W if not. These changes can also be abstracted by using the accessor
methods defined in listing 4.5. For example, when the original version of fork sets PTE COW, it
clears PTE W. Thus fork now clears both PTE W and PTE HOW.

Because JOS is an exokernel design [11], many of the more complicated operating system features
are implemented in user-space and call into sys page map to change permission bits. Thanks to the
flexibility of the exokernel design, updating this system call was sufficient to ensure correctness for
the majority of JOS kernel’s feature set.

Listing 4.5: PTE HOW Compatible Accessor Methods

bool get PTE W ( p t e t pte )
{

return ( pte & PTE W) | | ( pte & PTEHOW)
}
void set PTE W ( p t e t ∗ pte )
{

struct Page ∗ pp = pte2page ( pte ) ;
i f (pp−>s t a t e == TRAPWRITE | |

pp−>s t a t e == TRAPALL)
∗pte |= PTEHOW; // s e t PTE HOW

else

∗pte |= PTE W; // s e t PTE W
}
void clear PTE W ( p t e t ∗ pte )

∗pte &= ˜PTE W; // c l e a r PTE W
∗pte &= ˜PTEHOW; // c l e a r PTE HOW

}
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4.2.2 Checking for Prior Memory Access on x86

To check for prior memory accesses to a page, SoftECC can inspect the accessed (PTE A) and
dirty (PTE D) PTE bits. These bits are set automatically by the CPU whenever the corresponding
virtual page is read from or written to. A physical page should be considered accessed or dirty if
any of the PTE’s where it is mapped are marked accessed or dirty. Periodically polling the accessed
and dirty bits does not allow SoftECC to intercept page access events before they occur; however,
polling avoids the overhead of trapping into kernel space.

There is one additional complication to consider when polling. If one of a page’s virtual mappings
is accessed and then unmapped, the corresponding PTE will no longer be associated with the physical
page and thus the accessed and dirty bits will be lost. This could result in a dirty physical page
appearing to be not dirty. For this reason, whenever a PTE is about to be overwritten, the status
of its accessed and dirty bits needs to be retained. This is accomplished by “or”ing these bits with
special per physical page ACCESS and DIRTY bits (stored in the Page structure; see listing 4.4).

Listing 4.6: Checksum accessor methods

void check page ( struct Page ∗ pp)
{

i f ( ca l cu la t e check sum (pp ) != pp−>checksum ) {
handle memory error (pp ) ;

}
c l e a r a c c e s s ( pp ) ; // Reset ACCESS b i t s
c l e a r d i r t y (pp ) ; // Reset DIRTY b i t s

}

void set checksum ( struct Page ∗ pp)
{

pp−>checksum = ca lcu la t e check sum (pp ) ;
c l e a r a c c e s s ( pp ) ; // Reset ACCESS b i t s
c l e a r d i r t y (pp ) ; // Reset DIRTY b i t s

}
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4.3 Checksums

The simplest and quickest x86 checksum computation is a dword length (32 bit) xor operation
performed over the entire 4k page (see listing 4.7). Effectively, this produces 32 individual parity
bits, each one covering a stripe of 1024 bits.

Since each stripe only has single bit parity, some double-bit errors are not detectable; however,
this limitation is not a problem. The probability of receiving a true, instantaneous double bit error1is
exceptionally low [7]. And the probability of receiving two single-bit errors within the same 1024 bit
stripe within the same inter-checksum interval is very low as well. The probability of a double-bit
error within a single stripe during an period of time is the square of the probability of a single-bit
error during the same period of time. Unless the inter-checksum interval extends so long (multiple
years) that the probability of a single-bit error (within a single 1024 bit stripe) rises significantly,
double-bit errors will be exceedingly rare, and detection performance will be well defined by the
vulnerability metric (see section 1.2).

Listing 4.7: The Checksum Computation

checksum t ca l cu la t e check sum c ( struct Page ∗ pp)
{

// ge t a po i n t e r to page con ten ts
checksum t ∗ p = ( checksum t ∗) page2kva (pp ) ;
checksum t r e t = 0 ;
int i ;
for ( i =0; i <1024; i ++) {

r e t ˆ= p [ i ] ; // xor
}

return r e t ;
}

Unfortunately, the default assembly code for checksum calculation generated by gcc (see list-
ing 4.8) is less than optimal, requiring almost 3000 ns to execute on a 2.4Ghz AMD Opteron 150
system with 1GB of DDR400 memory (see the table in figure 4-1). The core loop is a single implicit
memory load and a trivial xor instruction; however, each loop iteration executes three instructions
for loop control.

Far less obvious, there is a subtle alignment problem with the compiler generated code (see listing
4.9). The core loop crosses a 16 byte boundary, putting it in a different two different cache lines.
The loader aligns the start of the function to a 16 byte boundary, but the compiler is not smart
enough to realize just how important the alignment of the core loop is. Simply inserting a few nop’s
before the core loop improves performance to 2000 ns.

Forcing the compiler to unroll the loop provides considerable benefit (see listing 4.10). The core
loop is now 16 instructions, effectively amortizing the overhead of the loop control instructions.
Checksum now runs in 1489 ns.

Utilizing the 128bit packed xor from Intel’s MMX intstruction set allows for even more improve-
ment, bringing execution time to 1058 ns (see listing 4.11). The core loop is now a scant 8 pxor
instructions that do the work of 32 regular xors. With only 8 instructions consuming 128 bytes of
data, the calculation is now heavily bound by memory bandwidth.

Finally, it is possible to optimize the memory access just slightly by interleaving the instructions
to exercise multiple cache lines at once, checksumming an entire page in just 1024 ns (see listing 4.12).

1Actually, double-bit errors in DRAM need not be cause by the exact same event (eg high energy cosmic neutron).
Two single-bit errors within the same refresh cycle (approx 4-64ms, barring earlier programmatic access) is sufficient.
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Listing 4.8: Compiler-generated (gcc -O3) assembly code for calculate checksum

ca l cu lat e checksum :
{ . . . } ; s e t edx = p ( s t a r t o f page )
xor %eax , % eax ; s e t eax = 0
xor %ecx , % ecx ; s e t ecx = 0

loop :
xor (%edx , % ecx , 4 ) , % eax ; eax = eax xor32 MEM[ edx + 4∗ ecx ]
inc %ecx ; increment index
cmp $1024 , % ecx ; compare
j l loop ; loop i f ecx < 1024
{ . . . } ; return eax

Listing 4.9: Annotated objdump output for compiler-generated code

080485d0 < ca l cu la te checksum c >:
−−−−−−−−−−−−−−−−−−−−−−−−−16−BYTE−BOUNDARY−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
80485d0 : 55 push %ebp
80485d1 : 89 e5 mov %esp ,%ebp
80485d3 : 8b 4d 0 8 mov 0x8(%ebp),% ecx
80485d6 : 31 c0 xor %eax ,%eax
80485d8 : 31 d2 xor %edx ,%edx
80485da : 89 f 6 mov %es i ,% e s i
c o r e l o o p s t a r t :
80485dc : 33 04 91 xor (%ecx ,%edx ,4) ,% eax
80485 df : 42 inc %edx
−−−−−−−−−−−−−−−−−−−−−−−−−16−BYTE−BOUNDARY−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
80485 e0 : 81 f a f f 03 00 00 cmp $0x3f f ,%edx
80485 e6 : 7 e f 4 j l e 80485dc < c o r e l o op s t a r t >

80485 e8 : c9 l eave
80485 e9 : c3 r e t

Listing 4.10: Loop-unrolled (gcc -O3 -funroll-loops) assembly code for calculate checksum

ca l cu lat e checksum :
{ . . . } ; s e t edx = p ( s t a r t o f page )
xor %eax , % eax ; s e t eax = 0
xor %ecx , % ecx ; s e t ecx = 0

loop :
xor 0x00(%edx , % ecx , 4 ) , % eax ; eax = eax xor32 MEM[ edx + 4∗ ecx + 0]
xor 0x04(%edx , % ecx , 4 ) , % eax ; eax = eax xor32 MEM[ edx + 4∗ ecx + 4]
. . .
xor 0x3c(%edx , % ecx , 4 ) , % eax ; eax = eax xor32 MEM[ edx + 4∗ ecx + 60]
addl $0x10 , % ecx ; increment index
cmp $1024 , % ecx ; compare
j l loop ; loop i f ecx < 1024
{ . . . } ; return eax

Listing 4.11: MMX Loop-unrolled assembly code for calculate checksum

ca l cu lat e checksum :
{ . . . } ; s e t edx = p ( s t a r t o f page )
pxor %xmm1, %xmm1 ; s e t xmm1 = 0
xor %ecx , % ecx ; s e t ecx = 0

loop :
pxor 0x00(%edx , % ecx ) , %xmm1 ; xmm1 = xmm1 xor128 MEM[ edx + ecx + 0]
pxor 0x10(%edx , % ecx ) , %xmm1 ; xmm1 = xmm1 xor128 MEM[ edx + ecx + 16]
. . .
pxor 0x70(%edx , % ecx ) , %xmm1 ; xmm1 = xmm1 xor128 MEM[ edx + ecx + 112]
addl $0x80 , % ecx ; increment index
cmp $4096 , % ecx ; compare
j l e loop ; loop i f ecx < 4096

subl $0x10 ,%esp ; a l l o c a t e 128 b i t s o f s tack space
movdqu %xmm1,(% esp ) ; and s to r e xmm1
xor %eax ,%eax ; eax = 0
xor 0 x00(%esp ) ,%eax ; eax = eax xor xmm1[ 0 : 3 1 ]
xor 0 x04(%esp ) ,%eax ; eax = eax xor xmm1[ 3 2 : 6 3 ]
xor 0 x08(%esp ) ,%eax ; eax = eax xor xmm1[ 6 4 : 9 5 ]
xor 0 x0c(%esp ) ,%eax ; eax = eax xor xmm1[ 9 6 : 1 2 7 ]
addl $0x10 ,%esp ; r e l e a s e s tack space
{ . . . } ; return eax
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Listing 4.12: Interleaved MMX Loop-unrolled assembly code for calculate checksum

ca l cu lat e checksum :
{ . . . } ; s e t edx = p ( s t a r t o f page )
pxor %xmm1, %xmm1 ; s e t xmm1 = 0
xor %ecx , % ecx ; s e t ecx = 0

loop :
pxor 0x00(%edx , % ecx ) , %xmm1 ; xmm1 = xmm1 xor128 MEM[ edx + ecx + 0]
pxor 0x40(%edx , % ecx ) , %xmm1 ; xmm1 = xmm1 xor128 MEM[ edx + ecx + 64]
pxor 0x10(%edx , % ecx ) , %xmm1 ; xmm1 = xmm1 xor128 MEM[ edx + ecx + 16]
pxor 0x50(%edx , % ecx ) , %xmm1 ; xmm1 = xmm1 xor128 MEM[ edx + ecx + 80]
pxor 0x20(%edx , % ecx ) , %xmm1 ; xmm1 = xmm1 xor128 MEM[ edx + ecx + 32]
pxor 0x60(%edx , % ecx ) , %xmm1 ; xmm1 = xmm1 xor128 MEM[ edx + ecx + 96]
pxor 0x30(%edx , % ecx ) , %xmm1 ; xmm1 = xmm1 xor128 MEM[ edx + ecx + 48]
pxor 0x70(%edx , % ecx ) , %xmm1 ; xmm1 = xmm1 xor128 MEM[ edx + ecx + 112]
addl $0x80 , % ecx ; increment index
cmp $4096 , % ecx ; compare
j l e loop ; loop i f ecx < 4096

{ . . . } ; eax = xor (xmm1[ 0 : 3 1 ] , xmm1[ 3 2 : 6 3 ] , xmm1[ 6 4 : 9 5 ] , xmm1[ 9 6 : 1 2 7 ]
{ . . . } ; return eax

Checksum Cost

Plain C 2932 ns
Aligned C 2000 ns

Loop-unrolled 32-bit 1489 ns
Loop-unrolled MMX 1058 ns

Interleaved-unrolled MMX 1024 ns

Figure 4-1: Computational cost of various checksum implementations (2.4Ghz AMD Opteron 150)
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4.4 Redundancy for Error Correction

To enable error correction, enough redundant information must be stored about the contents of a
page that the location of a single-bit error is determinable. There are at least three options, each
with various advantages:

4.4.1 Full Memory Copy

The simplest redundancy scheme is to allocate a second page, and make a full duplicate copy of
the original. The drawback to this approach is poor storage efficiency, requiring double the physical
DRAM. However, this method has a compelling advantage: it is very fast (1694 ns).

Like the normal checksum operation, a memory copy is bounded by the DRAM bandwidth,
except that whereas a checksum condenses the incoming data to a single dword, a memory copy
writes a full page back to DRAM. Because both the checksum and memcpy operations require
reading the same data from memory, calculating a checksum while performing a memcpy takes no
more time than performing the memcpy alone.

4.4.2 Striped Hamming Code

A hamming code[12] is perhaps the most compelling of the traditional error correcting coding
schemes. Most importantly, it does not require mangling the original data bits. Also, it is rea-
sonably compact and only moderately computationally expensive.

Hamming coding works by setting the value of every bit occupying a power of two address in the
signal (eg, the 1st bit, 2nd bit, 4th bit, 8th bit... 2N bit) to be the xor of all bits whose addresses’
binary representations have the Nth bit set. These bits are the parity bits. The bits not located at
power of two addresses are data bits. Naturally, in the actual implementation, the logical Hamming
code signal addresses will not match the actual addresses of the bits. The data bits will remain in
place, while the parity bits will be stored in an array of redundancy data.

To correct a single-bit error, simply flip the bit at the address that is the sum of the addresses of
all the parity bits that are incorrect. If only one parity bit is incorrect, the error is that parity bit.
In order that errors to the parity bits be detected, the pages containing parity bits are checksummed
by SoftECC in the same manner as normal pages, except that because only SoftECC accesses these
pages, they need not be trapped or polled like normal pages.

4.4.3 Hard Disk Storage

The third redundancy level is to store a duplicate of the page’s contents to disk. This has the
advantage of requiring no extra memory storage; however, disk access is quite slow. Even the fastest
hard disks still have access times of several milliseconds, thousands of times longer than tchk . Not
all of this time requires CPU attention, but the CPU-overhead of disk management will still be
greater than for the other two schemes.

In some cases, hard disk redundancy already exists. The executable images and the file cache
originated from copies on disk. Also, the virtual memory system on commercial operating systems
periodically copies dirty pages to a swapfile in case they need to be swapped out to make room for
other memory uses.
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Chapter 5

Evaluation

5.1 Testing Methodology

In order to analyze the performance of SoftECC on various workloads, a test harness was created.
SoftECC ’s checking was disabled for the test harness, and only the memory pages for the benchmark
applications were included in the results.

The first plan for testing was to introduce errors at random memory locations at randomized
randomized time intervals and count how many were detected. Because of the cyclical nature of the
benchmarks, each page is guaranteed to be accessed at least once per iteration, so any errors not
detected after a complete iteration were assumed to be missed. Because the results of the user-mode
benchmarks are not of interest, errors need not be corrected as they will not affect the program flow.
Unfortunately this conservative benchmarking strategy was extremely slow, taking hours to produce
a single data point.

An important properties of soft errors are that they are randomly distributed in both space and
time. Put another way, the probability or density of soft errors is evenly distributed in space and
time. Rather than introduce errors one at a time randomly distributed between the various pages
and averaging the results to achieve a probability, introducing one error in each page would directly
measure the instantaneous probability of detecting a randomly placed error.

Furthermore, the instantaneous probability of error detection or correction can be measured
without actually introducing errors and waiting. Errors that occur on a page during a vulnerable
interval will never be detected. Errors during either detection or protection intervals will always be
detected. Thus the instantaneous probability of detection is simply the fraction of pages that are
currently in a detection or protection intervals.

Because all hot pages have been written at least once and do not have valid checksums, hot
pages are always in vulnerable intervals. Because they trap reads and are guaranteed to have been
checksummed since the last access, trapall pages are always in protection intervals. Because they do
not trap reads, the correct interval type of a trapwrite is not known until it is next checksummed.
If a trapwrite page is checksummed without being accessed since its last checksum, then it just
completed a protection interval. Otherwise, it was a detection interval.1

Because pages only change inter-checksum interval status when they are checksummed, it is
possible to do better than randomly sampling the instantaneous probability of detection. By using
the vulnerability metric, the overall probability of detection for an interval of time can be calculated

1If trapwrite pages are accessed while their checksum is still young, then they will transition to hot without
checksumming first, rendering the entire interval vulnerable. This design is fine, however, because the next checksum
will occur when the page is hot, correctly counting the time the page spent in the trapwrite state as being vulnerable
to silent errors.
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by monitoring for page checksum events (see listing 5.1).

While this improved methodology does not provide the same tangibility as introducing and
detecting actual errors, it is not only much much faster; it is also more accurate, directly measuring
the quantities of interest rather than approximating them through statistical methods.

Listing 5.1: Statistics gathering for inter-checksum intervals (at checksum events)

void stats on checksum ( struct Page ∗ pp)
{

pause t ime ( ) ;

// Ca l cu l a te the l en g t h o f the Inter−Checksum In t e r v a l
t ime t ICI durat ion = get t ime () − pp−>checksum time ;
pp−>checksum time = get t ime ( ) ;

switch (pp−>s t a tu s ) {
case HOT:

// By des i gn hot pages have been wr i t t en at l e a s t once
// Thus , t h i s was a vu l n e ra b l e i n t e r v a l
s t a t s . vuln += ICI durat ion ;
break ;

case TRAPWRITE:
// This i s the complex one . . .
// By des i gn there were no wr i te s , but maybe reads , so
// Check the ACCESS b i t ( s )
ch e ck ac c e s s ( pp ) ;
i f (pp−>f l a g s & ACCESS)

s t a t s . d e t ec t += ICI durat ion ;
else

s t a t s . p rot ec t += ICI durat ion ;
break ;

case TRAPALL:
// By design , there were no reads , no wr i t e s :
// Thus , t h i s was a p ro t e c t i on i n t e r v a l
s t a t s . p rot ec t += ICI durat ion ;
break ;

unpause t ime ( ) ;
}

5.2 Benchmarks

Perhaps the most important consideration when benchmarking SoftECC is to decide what user
program to execute. The memory access patterns of the user program will have a far greater impact
upon the performance of SoftECC than any other single factor. Unfortunately, many traditional
benchmarks end up as pathological best or worst cases.

For example, many CPU intensive benchmarks have a very small memory footprint and operate
primarily on a single page of stack memory. For a program with such a small memory footprint,
SoftECC would be unable to significantly impact reliability. At any point in time the program’s error
exposure will already be limited to its single page of memory. And if SoftECC were to checksum
this memory page, it would almost immediately be written to.
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What follows are preliminary benchmarks that outline some of the factors affecting SoftECC’s
performance.

5.2.1 Sequential Writes

Consider a benchmark that repeatedly performs sequential writes to memory (see listing 5.2). Such a
memory access pattern has bad temporal locality because the pages most recently accessed have the
least chance of being accessed, while the oldest pages are most likely to be accessed next. Because
SoftECC uses a LRU-like scheme, it will tend to checksum the oldest pages first, just as they are
about to be written to again.

Listing 5.2: Sequential Write Benchmark

int a r r a y s i z e = 1000 ∗ (PGSIZE/4 ) ;
u i n t 32 t array [ a r r a y s i z e ] ;

void bench seq wr i t e ( ) {
while ( 1 ) {

for ( int i =0; j<a r r a y s i z e ; j ++) {
array [ i ] = i ;

}
}

}

Unless SoftECC can checksum pages faster than they are written, it will spend all of its time
working on checksumming pages that will soon be overwritten. This is demonstrated in figure 5-1,
which shows SoftECC’s detection rate hovering near zero until the checksumming exceeds the rate
of writing around 25% CPU-load. After this point, SoftECC is able to checksum pages immediately
after the user application finishes writing to them and detection performance rises to nearly 100%.

At 25% CPU-load (33% CPU-overhead), SoftECC has a 0.33:1 CPU usage ratio with the user
application. This indicates that the user application takes 3 times as long to write a page as SoftECC
takes to checksum a page. Herein lies the significance of optimizing SoftECC ’s checksum algorithm
(see section 4.3). Using the unoptimized checksum algorithm, SoftECC the rise in detection doesn’t
occur until 45% CPU-load (81% CPU-overhead) (see figure 5-2).
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Figure 5-1: Checking performance for sequential writes
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Figure 5-2: Checking performance for sequential writes using the unoptimized checksum computation

5.2.2 Random Word Writes

Consider a benchmark that allocated all available memory to a single array that was written with
random accesses (see listing 5.3). Because this benchmark exhibits no temporal locality, we expect
SoftECC to perform poorly.

Listing 5.3: Random Word Write Benchmark

int a r r a y s i z e = 1000 ∗ (PGSIZE/4 ) ;
u i n t 32 t array [ a r r a y s i z e ] ;

void bench rand word write ( ) {
while ( 1 ) {

u in t 32 t r = sys genrand ( ) ;
int i = r \% ar r ay s i z e ;
array [ p ] = r ;

}
}

As can be seen in the left graph of figure 5-3, SoftECC doesn’t manage to protect a significant
fraction of the data pages until its checksumming keeps up with the rate of page turnover, allowing
it to compute a checksum after each memory write. For random word writes, this implies that
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SoftECC will need an order of magnitude more compute time than the user-mode code 2. Because
of this, SoftECC’s failed efforts increase the exposure time without decreasing the exposure size,
yielding a net increase in the vulnerability metrics that only gets worse with increasing CPU use
(see the right graph in figure 5-3).
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Figure 5-3: Checking performance for random word writes

5.2.3 Random Page Writes

While protecting fine-grained random word writes is costly, the situation is quite different for coarse

grained random writes. Consider a benchmark that simulates the activity of a block cache for a
filesytem by picking a random page and writing to it (see listing 5.4).

Listing 5.4: Random Page Write Benchmark

int a r r a y s i z e = 1000 ∗ (PGSIZE/4 ) ;
u i n t 32 t array [ a r r a y s i z e ] ;

void bench rand page ( ) {
while ( 1 ) {

u in t 32 t r = sys genrand ( ) ;
int i = r % 1000;
for ( int j =0; j <1024; j ++) {

array [ i ∗PGSIZE+j ] = r ;
}

}
}

2It takes 1024 dword reads to checksum a page, versus 1 dword write to invalidate that checksum. The only
thing that prevents the rise in this graph from occurring at 99.9% CPU-load is that random number calculations are
expensive, dominating the runtime of the user-code.
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Figure 5-4: Checking performance for random page writes

5.2.4 Memory Traces

While artificial benchmarks can provide many insights as to the factors affecting SoftECC ’s perfor-
mance, ultimately, it is SoftECC ’s integrity checking performance on real-world applications that is
of greatest interest. Real-world applications have far more complexity than can be captured by an
artificial benchmark. Unfortunately, it is not feasible to port a large application such as gcc to JOS
kernel, as this would require emulating a significant fraction of the standard POSIX kernel API calls.
For this reason, we acquired 1 million entry memory access traces from four applications: bzip, gcc,
and swim. These traces were published as a part of the course materials for Notre Dame’s Operating
Systems Principles class, CSE 341 [10], and were derived from four SPEC CPU2000 benchmarks of
the same names (see table 5-5) [13].

Benchmark Category Suite

176.gcc C Programming Language Compiler CINT2000
256.bzip2 Compression CINT2000
171.swim Shallow Water Modeling CFP2000

200.sixtrack High Energy Nuclear Physics Accelerator Design CFP2000

Figure 5-5: SPEC CPU2000 Benchmarks Represented In Memory Traces

Figures 5-7, 5-8, 5-9, and 5-10 reflect the performance of SoftECC while replaying 1 million
entry traces of bzip, gcc, swim, and sixpack. One striking feature of these graphs is that on all four
benchmarks, SoftECC is able to achieve approximately a 50% error detection rate with less than
1% CPU-load, which implies that about half of the pages utilized by these applications are being
accessed in a read-only manner. This observation is confirmed by the statistics in table 5-6.

There is no similar effect for the correction rate, implying that every page is being accessed
repeatedly. Unfortunately, the source of these repeated accesses is the looping of the memory trace.

As demonstrated in table 5-6, for gcc, swim, and sixpack, there are a significant number of pages
that are only accessed once during the trace. However, these accesses occur each time the memory
trace loops. Because the memory traces are so short, these accesses appear periodic to SoftECC
, much like the access patterns in the sequential write benchmark. Consequently, the number of
single access pages is roughly proportional to the overhead threshold where protection performance
begins to rise. Similarly, the number of single write pages is roughly proportional to the overhead
threshold where detection performance begins to rise. This suggests that these memory traces are
insufficiently short to demonstrate SoftECC’s performance, and better benchmarks are needed.
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Trace bzip gcc swim sixpack

Writes 122419 107184 67170 160983
Reads 877581 892816 932830 839017

Unique Addresses 11113 37697 93694 84920
Unique Pages 317 2852 2543 3890

Read-only Pages 167 1707 1374 1825
Pages Written 1 time 26 471 397 827
Pages Written 2 times 10 148 124 271
Pages Accessed 1 time 16 886 690 1399
Pages Accessed 2 times 19 293 292 500

Figure 5-6: Memory Trace Statistics
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Figure 5-7: Checking performance while replaying a 1M entry trace of bzip
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Figure 5-8: Checking performance while replaying a 1M entry trace of gcc
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Figure 5-9: Checking performance while replaying a 1M entry trace of swim
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Figure 5-10: Checking performance while replaying a 1M entry trace of sixpack
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Chapter 6

Summary

6.1 Conclusions

The preliminary benchmarks indicate that SoftECC can halve the number of undetected soft error
using only minimal compute time. Most multi-user, multi-process operating systems in use today
exibit significant spacial and temporal locality of data access and stand to benefit greatly from the
added reliability SoftECC can provide. Because it is implemented at the kernel-level, SoftECC’s
operation is transparent to user-mode applications. This indicates that for a minimal overhead
cost, SoftECC can provide added protection against soft errors to existing systems. Furthermore,
SoftECC is capable of exploiting idle CPU-time to perform its checks.

6.2 Future Work

Linux Implementation

Ideally, SoftECC would have been implemented as a patch to the Linux kernel. However, there
are significant implementation issues to overcome before SoftECC on Linux can become a reality.
Perhaps the greatest challenge is to find ways to minimize SoftECC ’s impact on other virtual
memory features. For x86 systems, the only practical way to trap user mode memory accesses is
to modify the virtual page table entries by removing the Write, Present, or User permission bits.
Overloading the functionality of the page table permission bits requires checking every statement
within the kernel that references these bits in order to verify that existing kernel functionality has
not been compromised.

While the size and complexity of the Linux kernel prevented a Linux implementation during this
iteration of the project, an implementation on a full-featured OS will be necessary before SoftECC
can have any broad applicability.

Enhanced Error Recovery

The recovery scenario to a correctable but not protected (detected before potential use) error would
be much better if it were possible to emulate the backward execution of the application code. In
some (but clearly not all) cases, this can be done even on x86. In the best case, an error could be
demonstrably unused, and the application could continue running. In other cases, it is possible to
prove that the error propagated to certain other memory locations, which could also be corrected
by emulating the reexecution of the instructions that used tainted data. Even if it is not possible
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to prove that all tainted memory locations had been fixed, the application level recovery scheme
(graceful termination) would have a better chance of success.

Improved Benchmark Results

Unfortunately, due to constraints on what user-mode benchmarks could be ported to the JOS kernel,
the benchmarking results are incomplete. Future work entails aquiring or recording more extensive
memory access traces, including access timing information. These would be used to give a much
clearer picture of SoftECC’s performance in real-world scenarios. Alternatively, real-world applica-
tions could be ported to run on top of the JOS kernel.
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