
𝜎OS: Elastic Realms for Multi-Tenant Cloud
Computing

by

Ariel Szekely

B.S., University of Texas at Austin (2020)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2022

© Massachusetts Institute of Technology 2022. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

August 25, 2022

Certified by. .
M. Frans Kaashoek

Charles Piper Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

2

𝜎OS: Elastic Realms for Multi-Tenant Cloud Computing
by

Ariel Szekely

Submitted to the Department of Electrical Engineering and Computer Science
on August 25, 2022, in partial fulfillment of the

requirements for the degree of
Master of Science

Abstract

Despite the enormous success of cloud computing, programming and deploying cloud
applications remains challenging. Application developers are forced to either explicitly
provision resources or limit the types of applications they write to fit a serverless
framework such as AWS Lambda.

𝜎OS is a new multi-tenant cloud operating system that allows providers to manage
resources for tenants while simplifying application development. A key contribution
of 𝜎OS is its novel abstraction: realms. Realms present tenants with the illusion of a
single-system image and abstract boundaries between physical machines. Developers
structure their applications as processes, called procs in 𝜎OS. Much like a time-sharing
OS multiplexes users’ processes across a machine’s cores, 𝜎OS multiplexes tenants’
procs across the cloud provider’s physical machines. Since each tenant tends to plan
for peak load, realms can improve data center utilization by enabling providers to
transparently reallocate partial machines to another tenant’s realm when load dips.

An evaluation of 𝜎OS demonstrates that a 𝜎OS-based MapReduce (𝜎OS-MR)
implementation grows quickly from 1 core to 32 and scales near-perfectly achieving
15.26× speedup over the same implementation running on 2 cores. Similarly, an elastic
Key-Value service built on 𝜎OS (𝜎OS-KV) cooperates with 𝜎OS to scale the number
of kvd servers and balance shards across them, according to client load. 𝜎OS also
achieves high resource utilization when multiple tenants’ realms compete for a shared
group of machines. For example, when 𝜎OS multiplexes a long-running 𝜎OS-MR job
in one realm and a 𝜎OS-KV service with varying numbers of clients in another realm,
𝜎OS keeps utilization above 90% and transparently moves partial machines between
the realms as the 𝜎OS-KV client load changes.

Thesis Supervisor: M. Frans Kaashoek
Title: Charles Piper Professor of Electrical Engineering and Computer Science

3

4

Acknowledgments
I would like to sincerely thank everyone who has supported me on this first step into
my graduate school journey. This work would not have been possible without Frans’
dedication, patience, and mentorship. Robert’s and Adam’s comments and ideas have
also been invaluable in the development of this work.

I am also tremendously thankful for my friends, both inside of PDOS and out,
who have helped make made the difficult moments bearable, and who have always
been willing to lend a sympathetic ear or another set of eyes throughout all of the
bugs squashed in the making of this thesis.

Of course, I wouldn’t even be here if it weren’t for the love and encouragement of
my family and my parents, Sally and Francisco Szekely. Thank you for always being
there for me, for inspiring me with your passion for learning, and for always believing
in me even when I didn’t believe in myself. I am more grateful than you can possibly
imagine.

5

6

Chapter 1

Introduction

𝜎OS is a new operating system for cloud computing. Unlike existing cloud computing
platforms, 𝜎OS allows cloud providers to manage resources such as machines, CPUs,
and memory for tenants, while tenants develop cloud applications using convenient
abstractions such as processes, pipes, and so on, without having to worry about
provisioning machines or keeping track where processes run. 𝜎OS reallocates resources
from one tenant’s application to another tenant’s application to meet each tenant’s
load, analogues to how a time-sharing operating system transparently reallocates
CPUs and memory from one application to another application.

𝜎OS’s approach is based on the assumption that a provider has many tenants and
that the provider multiplexes the tenants on the provider’s infrastructure. Tenant
loads vary and are hard to predict, so to achieve high utilization, the provider must
be able to reassign the resources devoted to each tenant as that tenant’s load, and the
loads of competing tenants, change. The goal of 𝜎OS is to make it easy for tenants to
write elastic applications and to offload resource provisioning to the provider.

To allow 𝜎OS to move resources between tenants transparently, 𝜎OS introduces
the notion of a realm: a per-tenant, elastic cluster of machines with a “single-system
image” shared across the cluster. Developers structure their applications as procs
(which are inspired by Unix processes [42]) and 𝜎OS runs those procs on the realm’s
machines. The procs can be indifferent to the machine they run on, because a realm
provides a single name space with a root name server. Using pathnames, a proc can
name and access realm resources such as files, pipes, and other proc, which may be
on a different machine. This single-system image allows 𝜎OS, for example, to add a
machine to a realm and then schedule a proc on this new machine, and allows the
new proc to interact with other procs in the realm transparently. To provide a single
system-image, the 𝜎OS interface resembles the core of the Unix API, but doesn’t
provide a complete POSIX API.

To allow 𝜎OS to shrink and grow realms effectively, 𝜎OS encourages developers
to use many procs for both batch-style (e.g., MapReduce jobs [14]) and long-running
services (e.g., Web sites). For example, 𝜎OS’s MapReduce library organizes a MapRe-
duce job as a coordinator proc which spawns a proc for each mapper and reducer
task, and waits for their completion, perhaps spawning a new proc if a tasks fails.
𝜎OS’s Web server spawns a new proc for each HTTP request. Spawning queues these

7

procs to 𝜎OS for execution, and 𝜎OS can decide when and where to run them proc.
To decide when to shrink and grow a realm 𝜎OS peeks inside the realm. For

example, if 𝜎OS observes that a realm has a backlog of spawned procs, it can allocate
a partial machine (with some CPU and RAM) to that realm and move procs from
the spawn queue to that machine. Alternatively, if 𝜎OS observes that a realm is
underutilizing its resources it can temporarily steal resources for other realms to use,
or ask the realm to scale down its applications. In response, the realm can evict some
of its application’s procs or rely on natural death of short-lived procs; the partial
machine freed-up by those exited procs can then be re-allocated to another realm.

To asses the feasibility of 𝜎OS’s ideas we implemented a prototype of 𝜎OS. A
provider runs 𝜎OS on its infrastructure and then 𝜎OS schedules realms’ procs and
reallocates partial machines between realms. The tenant’s experience is much like
writing application on a time-sharing operating system: tenants spawn proc and under
the hood 𝜎OS allocates partial machines, boots 𝜎OS on them, assigns the machines
to a realm, and schedules the realm’s procs on those machines.

𝜎OS provides a single protocol, 𝜎P, to build applications and with which 𝜎OS itself
is built too. 𝜎P is based on 9P [25, 40] and is a simple protocol: 10-20 remote procedure
calls. It supports a single name space, access to storage, direct communication between
procs, watches for coordination, and fences for fault tolerance. In other words, 𝜎P
doubles as a resource-discovery protocol, a single-system-image naming protocol, a
storage protocol, an alternative to RESTfull APIs [19, 47], and a ZooKeeper-like
coordination service [26].

To demonstrate it is convenient to build elastic applications using 𝜎OS’s procs,
we implemented a MapReduce library, a fault-tolerant, sharded in-memory key/value
service, and a dynamic Web server. Preliminary experiments with a small-scale
deployment on Cloud Lab and AWS EC2 demonstrate that 𝜎OS can dynamically and
quickly allocate resources across realms in response to utilization changes in a realm.

The contributions of this thesis are:

• A new cloud operating system, 𝜎OS, that supports realms, which allows cloud
providers to provision and manage physical resources and enables tenants to
develop applications without having to worry about provisioning machines;

• A new protocol, 𝜎P, that bundles service discovery, storage access, single-system
naming, and Zookeeper-like coordination;

• A two-level distributed scheduler that schedules procs within a realm and
reallocates resources between realms;

• A demonstration that 𝜎OS can achieve high utilization and divide resources up
well between competing applications.

The 𝜎OS source code is fully open-source at https://github.com/mit-pdos/
sigmaos.

8

https://github.com/mit-pdos/sigmaos
https://github.com/mit-pdos/sigmaos

Chapter 2

Motivation and goals

High utilization is critical for cloud providers: they want to keep their expensive
hardware busy running useful work for tenants. Electricity alone is a significant cost:
data centers in the US consumed approximately 3% of the US’s electricity in 2017, and
are expected to consume 8-10% by the end of the decade [12, 49, 51]. Achieving high
utilization, however, is challenging, since tenant loads vary and are hard to predict.
In practice, cloud providers report low utilization [7, 31, 53]. Increasing utilization
would allow providers to do more with each running machine at no extra costs.

This thesis aims to achieve high utilization through elasticity: the provider varies
the resources devoted to each tenant as that tenant’s load, and the loads of competing
tenants, vary. Elasticity requires cooperation between provider and tenant: the
provider needs to know when a tenant could profitably use more resources or could
get by with fewer, and the tenant must be able to quickly exploit added resources and
give up revoked resources without disruption.

As an example of why elasticity is hard, consider AWS (with similar parallels
for the other major Cloud providers). AWS provides two main compute platforms:
Amazon’s EC2 and AWS lambdas. Tenants can create and destroy EC2 instances on
demand, but the relationship between load and the number of instances is entirely up
to the tenant. Because this is hard, and AWS doesn’t help, many tenants allocate a
fixed number of EC2 instances determined by likely peak load, so that many are idle
in non-peak periods; the result is low utilization.

AWS’s lambda service, in contrast, knows how much work a tenant would like to
perform (if any), and thus can devote resources to a tenant only when it has work
to do. However, lambda is suitable only for queuable batch jobs of finite duration
since AWS uses queue lengths to drive elasticity, and uses completion of jobs to free
up resources. To enforce completion AWS will unconditionally terminate a lambda
that runs too long (15min at the time of writing). Thus, neither EC2 nor lambda has
much to offer to tenants who need to build long-running stateful elastic services of
their own (Web sites, storage services, load balancers, and so on), which is perhaps
why AWS itself provides elastic versions of those services to tenants.

9

10

Chapter 3

𝜎OS design

𝜎OS’s abstractions and interfaces are designed so that tenant and provider cooperate
to obtain elasticity and high utilization. For both batch-style and long-running services,
developers organize applications into processes, called procs, and queue these procs
to 𝜎OS for execution when and where it is convenient for 𝜎OS. 𝜎OS thus knows when
a tenant has a backlog of procs, and can allocate machines and move processes from
the queue to those new machines. Similarly, because most processes run for short
quanta, 𝜎OS can observe when a tenant’s load decreases by observing that the queue
of spawned processes is shrinking, and can deallocate machines as work processes
complete. The result is that 𝜎OS tenant software is naturally elastic, reducing tenant
resource consumption and decreasing over-provisioning and consequent low utilization.

This section presents the main 𝜎OS abstractions, and how they fit together, to
achieve elasticity.

3.1 System overview

Figure 3-1 gives an overview of 𝜎OS’s design. Each tenant has a realm, an elastic of
cluster of machines with a single system image across the cluster. Developers structure
applications in terms of procs (the 𝑃𝑖s in Figure 3-1), which are the unit of isolation
and work in 𝜎OS.

A tenant that creates a realm doesn’t provision any resources such as CPUs and
memory, unlike in traditional cloud platforms like AWS. If a tenant wants to run an
application, the tenant doesn’t need to create a Virtual Private Cloud, configure it
with a several instances, decide what to run on those instances, what to run on spot
instances, what to run as lambda functions, and so on. Instead, with 𝜎OS the tenant
creates an account, creates a realm, and spawns procs within that realm.

The 𝜎mgr allocates resources (CPU and RAM) to realms. The resources may
constitute a partial machine or a full machine. Each machine runs the 𝜎OS kernel,
which provides, for example, primitives to create and destroy procs. In the prototype,
the 𝜎OS kernel runs atop a locked-down Linux kernel and 𝜎OS runs procs as Linux
processes, hardened using seccomp [17].

There are two types of procs: kernel procs, which can use Linux kernel system
calls, and user procs, which don’t have limited access to system calls and interact only
through the 𝜎OS API. Kernel procs include procd, which uses the kernel primitives

11

Figure 3-1: Overview of 𝜎OS design. User-space procs are green, kernel procs are
yellow, realm management procs are orange, and machines (Mi) are white. The
example 𝜎OS system has two realms, each with a few (partial) machines that are
allocated to the realm by the 𝜎OS manager. Each machine runs the 𝜎OS kernel
and kernel procs such procd, ux, and s3. The procds of a realm collaboratively
schedule the user procs (𝑃𝑖s) of a realm. rmgr monitors load in its realm and asks
or returns machines to the 𝜎mgr. Each realm has a named that is the root of the
realm’s namespace.

Figure 3-2: A realm’s namespace.

for processes to run procs. The procds of a realm collaboratively schedule the realm’s
user procs. Another kernel proc, rmgr, monitors a realm and collaborates with
𝜎mgr to request and return resources to the 𝜎mgr.

3.2 Single-system image realms

In a realm 𝜎OS procs often need to communicate and interact. To support this,
𝜎OS provides a single-system image through a distributed file-system-like naming and
storage system that procs can use to cooperate with each other. Figure 3-2 shows
parts of a realm’s name space for a proc in the prototype.

Each realm has a named proc that implements the root of the realm’s name space

12

name/. All procs talk to named to resolve pathnames. A given pathname has the same
meaning to all of a realm’s procs, so procs can meaningfully exchange pathnames.

The named service provides a file-system-like hierarchy of directories and files.
procs can store modest amounts of data in these files. procs can coordinate with
each other with these files, using atomic operations such as exclusive create. This
aspect of the design is inspired by ZooKeeper [26].

A service proc makes itself available to client procs by mounting themselves in the
named namespace. If a client looks up a pathname that refers to one of these mount
points, the client will start speaking the file-system protocol directly to the service
mounted there. This aspect of the design is inspired by Plan 9 [40] and SFS [32].

For example, in Figure 3-2, the procd directory lists the procd services in realm;
there is one procd service for each partial machine allocated to a realm and each
procd service advertises itself using its IP address as name. The procd services
collaboratively offer services for procs to create and manage other procs. Each procd
exports its internal state through the file system protocol; for example, each procd
has a directory pids, which lists all the procs that this procd manages, much like
/proc on Linux. It also exports its queue of running procs (running) and spawned
procs (spawned-lc and spawned-be), which are waiting to be run.

named and procd—and any other service in a realm—speak the same file system
protocol. For illustration, here are some ways that 𝜎OS procs use named and the
𝜎OS file system protocol (with details in subsequent sections):

• /proc-like status

• work stealing

• watches for events

• proxies that make other services available in a realm’s namespace

• fault-tolerant state such as views for fault-tolerant services

• leader election, and leader failure detection

The named service is not suitable for storing large amounts of data, and does
not support sophisticated queries, so it is expected that procs implementing more
specialized storage and database systems will announce themselves via named to sOS
client procs. For example, 𝜎OS has s3 proxies that expose S3 buckets to a realm’s
namespace, ux proxies that expose each machine’s local storage to the realm, and a
db proxy to export an SQL database.

3.3 𝜎OS procs

𝜎OS developers arrange their applications in terms of 𝜎OS procs, and 𝜎OS schedules
these procs. Since procs in a realm share a single name space that contains 𝜎OS
objects (e.g., files, other procs, etc.), 𝜎OS can schedule procs on any machine available
to a realm. If 𝜎mgr gives a realm a new machine, the procs scheduled on this new
machine can interact with the other procs in the realm transparently.

13

Method Description

Spawn(pid, descriptor) Create proc with pid as name
WaitStart(pid) Wait until pid has started
WaitExit(pid) Wait until pid has exited
WaitEvict(pid) Wait until pid has been evicted
Started(pid) pid marks itself as started
Exited(pid, status) pid marks itself as exited
Evict(pid) Ask pid to evict itself
SpawnBurst(descriptors) Spray a list of procs across procds

Figure 3-3: Summary of the 𝜎OS proc API.

Figure 3-3 lists the proc API. A developer creates a new proc using Spawn, which
takes as arguments the process identifier (PID) to assign to the proc and a descriptor,
which holds a pathname for the binary, a list of arguments to be passed to the proc,
environment variables, and so on. The developer specifies whether the proc performs
latency-critical (LC) work or best-effort (BE) work. For LC procs, the developer also
specifies how many CPUs the LC proc needs to achieve low latency at peak load. For
especiallly memory-intensive procs, the developer can also specify the proc’s memory
requirement. This BE/LC information effects how a proc is scheduled (§3.4).

The caller of Spawn can wait until its child starts running by calling WaitStart
or wait until its child exits by calling WaitExit. WaitExit returns an exit status to
the caller, which allows the child to pass a result to the parent. A proc signals to a
parent that is running or has exited using Started and Exited, respectively.

The Evict call allows the rmgr to alert a proc that will be evicted soon to clear
the machine it is running on, similar to how Borg evicts tasks [54]. On an eviction
signal, a proc can checkpoint itself, save its state, or just exit and rely on another
mechanism to redo its computation. If the proc doesn’t exit within a given amount of
time, the rmgr will instruct the local procd to terminate the proc. Once the procs
on a machine have exited, rmgr returns the machine to the 𝜎mgr.

By default, Spawn writes the supplied descriptor to the local procd’s control file
spawn. SpawnBurst sprays the descriptors for new procs across the procds of a realm.
For each proc written to a procd, the procd exports state about that proc through a
directory pid, where pid is the proc’s pid. This directory stores files and directories
to implement a proc: semaphore files for WaitStart, WaitExit, and Evict, one
directory for each child of the proc (if the proc spawned child procs), a symlink to
the parent pid directory (which maybe stored at a procd on a different machine), the
proc’s exit status file, and so on.

3.4 Scheduling procs in a realm

When Spawn or SpawnBurst writes a descriptor to a procd’s control file spawn, the
procd also adds the pid to either the directory spawned-be or spawned-lc, depending
whether the proc is BE or LC. The spawned-be and spawned-lc directories serve as

14

1 // Try to get a proc for this procd to run.
2 func (pd *Procd) getProc() (*Proc, bool) {
3 localQs := "name/procd/" + pd.MyAddr() + "/"
4 globalQs := "name/procd/ws/"
5 // Claim order:
6 // 1. local LC queue
7 // 2. remote LC queue
8 // 3. local BE queue
9 // 4. remote BE queue

10 queues := []string{
11 localQs + SPAWNED_LC,
12 globalQs + SPAWNED_LC,
13 localQs + SPAWNED_BE,
14 globalQs + SPAWNED_BE,
15 }
16 for _, q := range queues {
17 procs := pd.GetQueuedProcs(q)
18 for _, p := range procs {
19 if pd.hasEnoughMem(p) && pd.hasEnoughCores(p) {
20 // If this procd has sufficient resources to
21 // run this proc, try to claim it.
22 if ok := pd.tryClaimProc(p); ok {
23 return p, true
24 }
25 }
26 }
27 return nil, false
28 }

Figure 3-4: procd selects a proc to run by scanning its realm’s queues. First, the
procd searches for any LC proc it can run, and if it can’t find any, it searches for a
BE proc to run.

queues, and the procds of a realm monitor these queues and collectively schedule the
procs on their machines.

Figure 3-4 describes how procds select procs to run, and Figure 3-5 shows the
criteria procds use to decide whether or not they can run a proc. A procd claims
an LC proc by first scanning its local queue. If there are any LC procs at its local
spawned-lc queue, and procd has the capacity to run one, it tries to claim the proc.
A procd has capacity for an LC proc if it has sufficient cores and memory that it
hasn’t assigned to any other LC procs.

If procd doesn’t find any LC procs it can run, it looks in the global work-stealing
queue directory /name/procd/ws, to see if another procd advertised an LC proc that
the other procd could not run, and which this procd may be able to.

If a procd has no capacity for LC procs or there are no LC procs to be run, but
the utilization of one of its cores is below 90%, it looks for a BE proc. It tries to claim

15

1 func (pd *Procd) hasEnoughCores(p *Proc) bool {
2 if p.IsLC() {
3 // If this is a Latency Critical proc, and
4 // this procd does not have enough cores for
5 // it to run at peak load, don’t run it.
6 if pd.freeCores >= p.NumCores() {
7 return false
8 }
9 } else {

10 // If this is a Best Effort proc and the
11 // CPU utilization is above the system’s
12 // utilization target, don’t run it.
13 if pd.cpuUtil() > CPU_UTIL_TARGET {
14 return false
15 }
16 // If this procd has quickly claimed many
17 // Best Effort procs, back-off for a while
18 // to allow CPU utilization statistics to
19 // stabilize.
20 if pd.numBEClaimedRecently() > CLAIM_RATE_LIMIT {
21 return false
22 }
23 }
24 // All checks pass. This proc can be run.
25 return true
26 }

Figure 3-5: procd determines whether it can run a proc by checking if it has enough
unallocated cores, if the proc is LC, or if the procd’s CPU utilization is low, if the
proc is BE.

a proc first from the local spawned-be queue. If the local queue has no BE procs, it
looks in the gloabl work-stealing directory /name/procd/ws to see if another procd
advertised a BE proc, and tries to claim it.

Figure 3-6 shows the process by which procds decide to advertise stealable procs
to other procds. If a procd has insufficient capacity to run a proc for a sufficiently
long period of time, it advertises that proc in /name/procd/ws, a directory which
serves as the global work stealing queue. Other procds with unallocated resoruces
scan this queue periodically, and if another procds can run the proc, the procd will
steal it.

If a procd successfully claims a proc, it creates a Linux process for it. It assigns a
high scheduling priority to LC procs so that if a LC proc is busy it gets most of its
CPUs, which may otherwise be shared with BE procs.

Once the proc is running, the proc mounts its pid directory, which maybe remote,
as /procdir, so that the proc can updates its state (e.g., up the semaphore for
marking that it has started, which may unblock the parent, if it called WaitStart).

16

1 func (pd *Procd) offerStealableProcs() {
2 localQs := "name/procd/" + pd.MyAddr() + "/"
3 globalQs := "name/procd/ws/"
4 queues := []string{
5 SPAWNED_LC,
6 SPAWNED_BE,
7 }
8 for !pd.Done() {
9 time.Sleep(PROC_STEALABLE_TIMEOUT)

10 for _, q := range queues {
11 // Get procs from the local spawn queue.
12 procs := pd.GetQueuedProcs(localQs + q)
13 for _, p := range procs {
14 if p.SpawnTime > PROC_STEALABLE_TIMEOUT {
15 // If this proc has not been spawned for
16 // a long time, offer it to other procds
17 // by creating a symlink to its file in
18 // the local spawn queue.
19 pd.Symlink(globalQs + q, localQs + q)
20 }
21 }
22 }
23 }
24 }

Figure 3-6: procds mark procs as stealable and offer them to other procds by adding
them to the realm’s global work-stealing queue, /name/procd/ws. procds offer a proc
as stealable after they have remained un-claimed in the procd’s local queue for a
sufficiently long amount of time.

Similarly, it mounts its parent proc directory as /parent so that the child can interact
with the parent. Note that a new proc mounts its directory and its parent directory
with local pathnames (instead of global pathnames) so that a parent can run a child
process without mounting name, thereby isolating the child.

This overall design for implementing procs allows for good scalability: procs can
create children in parallel on different machines. To support work stealing 𝜎OS uses
a hybrid push/pull model to avoid network communication: procds push procs to
/name/procd/ws, from where other procds pull procs. An alternative design would
be a purely pull-based one (i.e., procds scan other procds’ run queues when they don’t
have spawned procs locally) but that results in more communication. The hybrid
design allows a procd to wait on a change in /name/procd/ws instead of continually
scanning other procds’ directories. Finally, the design guarantees that LC procs have
dedicated CPUs, but achieves high utilization by using under-utilized CPUs to run
BE procs.

17

1 // Monitor the realm and request resources
2 // from smgr if needed.
3 func (rmgr *RealmMgr) monitor() {
4 for !rmgr.Done() {
5 rmgr.Sleep(REALM_RESIZE_FREQUENCY)
6 // Get the aggregate length of all the
7 // spawned queues in the realm.
8 qlen := rmgr.realm.getQueueLen()
9 avgCPUUtil := rmgr.realm.getAvgCPUUtil()

10 // If the queue is long enough to fill up
11 // another node, or the queue length
12 // is non-zero and the average CPU
13 // utilization in the realm is above the
14 // utilization target.
15 if qlen >= NODE_SZ ||
16 (qlen > 0 && avgCPUUtil > REALM_AVG_CPU_UTIL_TARGET) {
17 // Ask the smgr to grow the realm.
18 rmgr.requestGrowRealm()
19 }
20 }
21 }

Figure 3-7: An rmgr monitors its realm’s resource utilization and global spawned
queue length, in order to decide whether or not the realm needs to grow to meet the
tenant’s applications’ demands.

3.5 Growing and shrinking realms

A long queue of spawned procs in a realm is a signal to rmgr to ask the 𝜎mgr for
more machines. The prototype 𝜎mgr assumes that the tenant specifies a minimum
dollar amount run to run LC procs and a maximum rate the tenant is willing to pay
to handle a burst of BE procs. 𝜎mgr will not scale the tenant’s realm beyond the
maximum rate. 𝜎mgr’s goal is then to move unused resources to realms that can use
more resources to run procs (e.g., BE procs), but rapidly re-allocate those resources
if another realm suddenly develops a queue of spawned LC procs.

There are several major challenges in shrinking and growing realms: 1) how to
measure load and decide if the realm requires more or fewer machines; and 2) the
granularity at which physical resources are handed out; 3) how to move state when
shrinking/expanding physical resources; and 4) how to handle rapid changes in load.
In general, 𝜎mgr uses similar ideas to existing cluster managers such as Borg, Omega,
and Kubernetes [4]. However, since applications in 𝜎OS are organized as collections
of procs, the rmgr and can 𝜎mgr inspect the realm’s state. This allows them to
learn when more (or fewer) resources are needed, and enables 𝜎OS to achieve higher
utilization.

18

Challenge 1. Figure 3-7 describes how rmgr monitors its realm’s load, and decides
to grow the realm. The rmgr monitors the utilization of all the realm’s procds (which
procds export as a file), and the realm’s global work-stealing queue, which contain
the procs that exceeded procds’ capacity. If the work-stealing queue length crosses a
threshold and the average CPU utilization in the realm is high, the rmgr asks 𝜎mgr
for more machines.

Challenge 2. Figure 3-8 shows how 𝜎mgr assigns additional machines to realms
which need them. 𝜎mgr hands out nodes, a partial machine, consisting of some CPUs
and a proportional amount of RAM. If 𝜎mgr grants a node to a realm with a procd
that already manages another part of that machine, then that procd combines the
two parts together. This allows a realm to grow vertically. If the node corresponds to
a physical machine for which the realm has no procd, the node starts a new procd
that manages that node. This allows a realm to scale horizontally.

Partial machines also help 𝜎mgr shrink realms gracefully. If 𝜎mgr asks an rmgr
to free up resources and the rmgr’s realm contains one or more merged nodes, the
rmgr can split one of the merged nodes and return a partial machine to 𝜎mgr instead
of a full machine. Any of the realm’s procs that were running on that physical machine
are then constrained to a smaller set of resources (e.g., fewer CPUs), but are allowed
to continue running. This allows rmgr to avoid evicting procs unless the physical
machine cannot be split into smaller node chunks. If the realm contains no merged
nodes rmgr can evict that node and all of its procs as a last resort. 𝜎mgr avoids
fully-evicting nodes which run LC procs to avoid degrading interactive applications’
performance. Instead, it relies on LC procs to be elastic themselves (§5.2).

Even if a realm has only LC procs, 𝜎OS can still achieve good utilization. If a realm
requests more resources than its LC procs are using, rmgr can steal underutilized
resources and offer them to 𝜎mgr in the form of node partial machines. 𝜎mgr can
temporarily allocate these nodes to other realms to run BE procs, and then quickly
return them when the original realm’s LC proc load increases. In this way 𝜎OS is
able to avoid fully evicting LC procs and still ensure high resource utilization even
when some realms run no LC procs.

Challenge 3. Figure 3-9 shows how 𝜎mgr decides whether to evict nodes and trigger
state migration. 𝜎mgr asks the rmgr of the lowest utilized realm with spare resources
to free up a node. If rmgr doesn’t free up a node within that time, then 𝜎mgr can
forcefully evict some node in the realm and take it back. 𝜎OS uses the following
strategies for the rmgr to free up a node:

• 𝜎OS encourages developers to structure their applications using many short-
running procs. For example, 𝜎OS’s web server forks a proc to serve a connection;
that proc may interact with db, retrieve a static file, or run some computation.
With this design, the rmgr can ask the least loaded procd to stop running
procs and return that procd’s node to 𝜎mgr when the procs on that node have
exited.

• Some applications have idempotent procs that can safely be re-executed. For
such applications rmgr can just evict any proc without saving its state. For

19

1 // Grow a realm’s resource allocation if possible.
2 func (smgr *SigmaMgr) growRealm(realm *Realm) {
3 // If there are free nodes in the system,
4 // allocate one to the realm.
5 if smgr.hasFreeNodes() {
6 smgr.allocNode(realm)
7 return
8 }
9 // Try to find an overprovisioned node in

10 // another realm.
11 for _, realm2 := range smgr.realms {
12 if realm == realm2 {
13 continue
14 }
15 // Get nodes in sorted order by CPU
16 // Utilization.
17 nodes := realm2.nodes.sortedByCPUUtil()
18 for _, node := range nodes {
19 // If realm2 has an overprovisioned node,
20 // free it and allocate the node to the
21 // growing realm.
22 if nodeIsOverprovisioned(node) {
23 smgr.freeNode(realm2, node)
24 smgr.allocNode(realm)
25 return
26 }
27 }
28 }
29 }

Figure 3-8: When growing a realm, 𝜎mgr first checks if there are unallocated resources
available. If not, 𝜎mgr tries to find an overprovisioned realm and reclaim one of its
nodes. After reclaiming the node, it assigns it to the growing realm.

example, the coordinator in the 𝜎OS MapReduce library will create new procs
for failed mappers and reducers and another procd can run those new procs,
freeing up the node whose procs were evicted.

• Some applications are written with elasticity in mind. For example, the 𝜎OS
key/value store can move shards on demand. So, if the key/value store is lightly
loaded, the rmgr can ask the key/value store to shrink the number of servers,
which will cause shards to be moved to other key/value servers, and free up a
node. If the load increases, the 𝜎OS key/value server will spawn new procs to
take over serving shards from other procs. A queue of new procs will cause
rmgr to ask for nodes to run these procs.

• Some applications can migrate themselves: they can checkpoint their state on

20

1 // Returns true if node is overprovisioned.
2 func nodeIsOverprovisioned(node *Node) bool {
3 stats := node.GetStats()
4 // If removing some cores would cause there to be too
5 // few cores to support the node’s current LC proc CPU
6 // utilization, the node is not overprovisioned.
7 if node.NumCores - NODE_MIN_CORES < stats.CPU.Util.LC {
8 return false
9 }

10 // If this node cannot be split further, shrinking it
11 // will trigger a node eviction. We handle this
12 // case specially.
13 if node.NumCores == NODE_MIN_CORES {
14 // If the total CPU utilization of this node is above
15 // a minimum threshold, don’t evict the node.
16 if stats.CPU.Util.Total >= NODE_MIN_CPU_UTIL {
17 return false
18 }
19 procd := node.GetProcd()
20 // If there are LC procs queued at this node’s procd,
21 // evicting the node would force parent procs to
22 // respawn them, which would harm latency. In this
23 // case, we avoid evicting the node.
24 if len(procd.GetSpawnedLCQueue()) > 0 {
25 return false
26 }
27 // If there are LC procs running on this node, don’t
28 // evict the node.
29 if len(procd.GetRunningLCProcs()) > 0 {
30 return false
31 }
32 }
33 // If all checks pass, the node is overprovisioned.
34 return true
35 }

Figure 3-9: When shrinking a realm, 𝜎mgr needs to select the right node to reclaim
from the victim realm. It makes this determination based on a variety of factors
including the node’s CPU utilization, whether or not it is running any LC procs, and
whether the procd’s spawned queue is long. If reclaiming cores from this node would
cause it to be evicted, 𝜎mgr first checks that there are no LC procs running on the
node.

eviction (e.g., in an S3 bucket exported through 𝜎OS) and spawn a new proc
that starts from the saved checkpoint.

We considered migrating running procs to avoid having to evict them. Since

21

Method Description

AdvanceEpoch(pathname) Advance epoch number
FenceAtEpoch(epoch, dir) Fence calls to objects in dir

Figure 3-10: The epoch and fence API.

transparent migration from one machine to another is challenging to implement
correctly, however, we haven’t explored this option. We expect that the above
strategies cause unrecoverable evictions to be rare, which would be in line with
reported experience with Borg [54] and Harvest VMs [2, 57].

Challenge 4. Since all tenants run nodes with the 𝜎OS image, 𝜎OS can quickly
allocate pre-initialized nodes from a hot-standby pool to a realm that experiences a
rapid increase in load. A 𝜎OS pre-initialized node elides some of the initialization
and environment setup costs that some cluster managers must endure to create a
node with the right set of OS packages, because each node may use a different OS
and different packages. The hot-standby pool gives 𝜎OS some head room to use one
of the strategies above to free up nodes.

3.6 Coping with failures

A goal of 𝜎OS is to support stateful applications that can handle crashes (e.g., one of
the machines in the realm loses power and takes out its procd and all the procs it is
running). As a first step to be able to recover from failures, developers can specify in
the descriptor passed to Spawn the failure domain that they want the proc to run in.

When a proc creates a file it can mark the file as ephemeral, which is particularly
useful for leader election. procs that want to become a leader of a replicated service
create an ephemeral symlink for the service that points to themselves. The first
proc that succeeds in creating the symlink (i.e., the symlink doesn’t exist) becomes
the leader. The other candidate leaders will wait in the Create call until the first
leader removes the symlink voluntarily or until the leader’s session with the server
storing the symlink is terminated. Sessions are terminated unilaterally when a proc’s
connection to a server breaks and fails to be re-established for a sufficiently long period
of time. When a session terminates, all ephemeral files associated with that session
are removed.

To avoid a split-brain scenario in which both a partitioned old leader and a new
leader are running at the same time, 𝜎OS supports epochs and fences (see Figure 3-10).
Applications that want to avoid a split-brain create an epoch file, which contains an
epoch number, on the same server where a leader creates the symlink (e.g., in named’s
file system). The epoch file is an ordinary file.

The new leader uses AdvanceEpoch to atomically read the epoch file and increment
the epoch number in the file; this call is implemented using 𝜎OS’s core API (§4.1),
which supports reads and writes conditional on a file’s version number. The old leader
can no longer interact with the server storing the epoch file because its session was

22

terminated.
To stop the old leader from writing to other servers after it has been partitioned,

leaders can ask 𝜎OS to fence 𝜎OS calls for objects in a specified directory with an
epoch number. Every 𝜎OS server will reject requests that carry an epoch number that
is lower than what it already has seen. So, after the new leader sends a request to a
server, the server will reject the old leader’s requests because they carry an older epoch
number. Note that servers don’t have to be aware that they are part of fault-tolerant
service: a fault-tolerant application that uses some server can count on that server’s
rejecting fenced requests, because the 𝜎OS protocol supports them.

Clients of a replicated service can use FenceAtEpoch similarly to ensure that their
requests go to the right server for a given epoch by fencing their operations using
the current epoch. If a client receives a stale epoch error in response to a request,
the client knows that a configuration changes has happened and will lookup the new
configuration and its epoch number.

23

24

Chapter 4

𝜎OS implementation

This section overviews how 𝜎OS is implemented by describing: (1) the 𝜎OS API;
(2) the 𝜎P protocol; (3) automounting of services; (4) the lines of code for the
implementation; and (5) deploying 𝜎OS.

4.1 The 𝜎OS API

The 𝜎OS API is inspired by the core Unix API: it small—see Figure 4-1 for the main
calls—but expressive: many of 𝜎OS abstractions are implemented using this API,
including procs (§3.4). In principle, if a tenant likes to change procd’s policy, the
tenant’s developers can write their own using 𝜎OS API and run it instead.

The 𝜎OS API allows procs to name all resources in a realm using pathnames and
access them through a file API using Create, Open, Read, Write, and Close. Procs
can create file-like objects (e.g., files, directories, symlink, pipes etc.) and virtual file
objects (e.g., /proc, semaphores, etc.). These objects are then accessible through
pathnames to other procs in the realm, perhaps with restricted access due to limited
permissions.

In 𝜎OS, some pathnames name files on a disk or S3 buckets, others name keys
of an in-memory key-value stores, yet others name procs themselves, and so on. For
example, to list all the running procs in a realm, the programmer lists the directory
of running procs, analogues to /proc but for all machines in a realm.

Some procs offer services that don’t directly fit in 𝜎OS’s core API. Those procs
typically export a virtual file to which client procs write commands, similar as in
Plan9 [40]. For example, 𝜎OS has a proc, db, which exports an SQL database. Client
write queries to db’s command file and read the query results from a response file.

Procs uses watches [26] for coordination: for example, OpenWatch will block until
the specified pathname exists and then invoke func. 𝜎OS provides libraries that
encapsulate watches in more convenient coordination primitives; for example, 𝜎OS
implements WaitExit using semaphores, which in turn are implemented using watches.

4.2 𝜎OS protocol

The 𝜎OS protocol, 𝜎P, has multiple functions: it is naming protocol that provides a
single-system image through pathnames, it is a protocol to discover servers, it is a
storage protocol for applications to read/write data; it is a communication protocol

25

Abstraction Methods Description

Files

Create(path, perm, mode) Create (ephemeral)
file/dir/link/pipe

Open(path, mode) Open file/dir/link
Close(fd) Close file descriptor returned by

Create/Open
Remove(path) Remove object named by path
Rename(old, new) Rename old to new (within a file

system)
Stat(path) Returns info about object named

by path
Read(fd) Returns data from file descriptor
Write(fd, data) Write data to file descriptor
Lseek() Changes offset for file descriptor
Put(path, perm, mode, data) Create (ephemeral) file/dir/link

with data
Get(path) Returns data
Set(path, data) Set file to data
Mount(path1,path2) Mount path1 at path2

Watches
OpenWatch(path, func) Open file or wait file is created
SetDirWatch(path, func) Call func when directory changes
SetRemoveWatch(path, func) Call func when path is removed

Figure 4-1: The core 𝜎OS API. Other APIs, including the proc API are implemented
using the core API. procs can also create special files, such as named pipes and control
files, and operate on them using the core API.

that allows applications to directly interact without dropping down to TCP; it is a
RESTfull API alternative that defines a uniform interface for many servers, and it is
a coordination protocol for procs.

Figure 4-2 shows the request messages in 𝜎P. The 𝜎OS protocol is derived from
9P [25, 40], which provides a small set of carefully thought-out remote procedure
calls. 𝜎P extends 9P with support for self-certifying pathnames, sessions (to support
transparent fail-over for clients and a reply table to filter duplicate requests), ephemeral
files, watches, reads/writes at a file version, fences, and put/get/set of small files
(which combine walking a pathname, opening a file, reading/writing the file, and
closing it in single RPC). 𝜎OS supports these extension with a protocol that is only
slightly more complicated than 9P: for example, supporting fences and reads/writes at
a version require small changes to 9P, but many others extensions can be implemented
in the client and server libraries that use 𝜎P.

Any proc (e.g., procd) that exports a file system must implement the 𝜎OS
protocol; to simplify implementing servers, 𝜎OS provides a generic protocol library,

26

Operation Description

VERSION Return protocol version number
AUTH Authenticate server
ATTACH Attach server to client’s name space
WALK Walk a pathname, returns file identifier
OPEN Open a pathname, returns file file identifier
CREATE Create file/dir/etc
WRITE Write data
READ Read data
CLUNK Release file identifier
REMOVE Release file identifier
RENAMEAT Rename a file at a server atomically
STAT Return file info
WATCH Watch a pathname
PUTFILE Create pathname and set data
GETFILE Get data for pathname
SETFILE Set data for pathname

Figure 4-2: Request messages of the 𝜎OS protocol, which is derived from 9P [25, 40].
Each message has a corresponding response message (not shown). Each request may
carry an epoch number to fence the request, and read/write can indicate that the
request is conditional on the version number at which the file client opened the file.

protsrv, that takes care of all the generic protocol operation so that a proc just
has to implement the file and directory objects. A proc can also import one of the
existing file system implementations to export S3 buckets, Unix files, or an in-memory
file system (which are all implemented using protsrv). An advantage of this design
is that for servers that fit the file system API developers don’t have to define RPCs
or RESTfull APIs (which in practice involves quite bit of boilerplate). Furthermore,
these servers can use features like pathname lookup, permissions, watches, and so on,
out of the box.

Supporting fences requires little additional mechanism: each 𝜎OS request carries
an epoch number, protsrv checks the epoch number, and the 𝜎OS library supports a
call to specify which directories should be fenced at a particular epoch number.

4.3 Automounting

𝜎OS allows a proc to export a namespace that clients will transparently mount when
accessing a file in that name space. For example, a proc that implements a key-value
service can announce its services by creating a symbolic link in the name name space
with a special format: the symlink contains the network name (DNS name or IP
address, and a port number) and the proc’s public key, inspired by SFS’s self-certifying
pathnames [32]. For example, a key/value service can create a symbolic link name/kv,
which contains the DNS name of the key-value service and its public key.

27

Component LOC

Core 𝜎OS protocol 4,825
𝜎OS API 5,734
realm 1,722
procd 1,780
named 82
s3 921
ux 767
dbd 210
proxy 465

Libraries protsrv 2,387
semclnt 163
electclnt 192
epochclnt 219
groupmgr 201

Applications mr 1,678
kv 1,579
wwwd 382

Total 23,307

Figure 4-3: Lines of code for subsystems of 𝜎OS (excluding etcd’s Raft [18], which
𝜎OS uses to replicate named and kv shards)

When 𝜎OS resolves a pathname, say name/kv/key-10, it will automount the
destination file system (i.e., name/kv), which involves starting an authenticated session
with the proc, and continue resolving the remainder of the path (i.e., key-10) at the
server. These symlinks allow procs to hook their name space into the shared name
name space, and allow other procs to look up the proc’s file objects.

4.4 Lines of code

The prototype of 𝜎OS is implemented in the Go programming language [11] and runs
on top of Linux. Although 𝜎OS uses Linux as its kernel, only kernel procs have access
to Linux system calls; all user procs use only the 𝜎OS API.

Figure 4-3 lists 𝜎OS’s parts, including test code but excluding etcd’s Raft [18].
𝜎OS protocol includes the Go packages for the protocol definition, RPC stubs, sessions,
which multiplex and demultiplex 𝜎OS messages on a TCP connection and provide
fail-over and duplicate detection. 𝜎OS API are the Go packages that implement 𝜎OS
API and the proc API.

28

4.5 Deployments

We deploy 𝜎OS in two ways: on CloudLab on dedicated machines and on AWS as a
VPC. In both deployments, a user sshs into a realm and launches 𝜎OS programs that
create procs in the realm. For convenience, users can explore the state of a realm
using Unix utility programs such as ls, cat, etc., to see, for example, all the running
procs. This is accomplished by mounting 𝜎OS’s proxy program, which converts 9P
into 𝜎P, as a 9P file system under Linux.

29

30

Chapter 5

𝜎OS applications

To explore how to build elastic applications using 𝜎OS, we built a a MapReduce
library, and a sharded, fault-tolerant key/value service, and dynamic web server.

5.1 MapReduce

𝜎OS’s MapReduce library, mr, illustrates how a developer can use 𝜎OS for implement-
ing a data processing framework. mr uses a coordinator proc to manage the mappers
and reducers. mr replicates the coordinator with the groupmgr library, which starts
three coordinators. They elect one leader using the electclnt library and the others
are hot standbys. The leader coordinator stores its progress (e.g., which mappers have
completed) in name/mr. If the leader coordinator crashes, one of the standbys becomes
leader and pick up from where the crashed coordinator left off. The groupmgr will
also start another standby.

The coordinator spawns a proc for each mapper and reducer. The mapper proc
stores the intermediate output file for each reducer persistently on the local machine
using the pathname name/ux/~local and record a symbolic link in the directory
name/mr/r𝑖/ (one per reducer). Reducer 𝑖 watches this directory and if a new link
output appears, the reducer reads the link, automounting the ux server that exports
the file in the proc. This implementation allows overlap between the map and reduce
phases; reducers can run as soon as a mapper’s output is available.

If a mapper or reducer crash, the coordinator will restart it. If a reducer cannot
read an intermediate file and fails, the coordinator will also restart the appropriate
mapper.

Note that in this design there are no worker machines; it is the job of 𝜎OS to
provision machines to run the coordinator, mapper, and reducer procs. All of the
MapReduce library’s procs are BE.

5.2 key/value service

𝜎OS’s key/value service, kv, illustrates how a developer can use 𝜎OS to build fault-
tolerant applications. One possible approach to supporting a key/value service in
𝜎OS is side-stepping most of 𝜎OS: take an existing high-performance key/value store
and modify it to export a control file in the realm’s name space to which clients write
requests (much like db). Alternatively, one could export the key space through a proxy

31

(a)

(b)

Figure 5-1: KV setup and namespace. Figure 5-1a shows the top-level directory
structure of a kv service. The kv service exposes a config file which the clerks watch
and the balancer modifies as it balances load across the kvd groups. Figure 5-1b
shows a sample of the kvd directory strucutre. Shards are directories, and keys are files
in the directories. the balancer moves shards across kvd groups by invalidating the
kvconfig file, atomically moving the directories, and then publishing a new kvconfig
file.

as s3 does. This section doesn’t take either approach but instead explores how to
build a key/value service natively using 𝜎OS’s API. Even though a realm provides
a single system image that mostly hides machine boundaries, the key/value service
must be linearizable in the presences of crashes and shard reassignment.

The kv store is organized as a group of balancer procs and one or more KV groups,
which serve shards and which each consist of three kv procs for fault tolerance. One
of the balancer procs elects itself as leader using the electclnt library, and it is
responsible for adding KV groups, terminating KV groups, and balancing shards
across KV groups in response to changes in load.

Figure 5-1 shows where state of the kv service is stored. The balancer stores all its
state, which includes a table that maps shards to KV group 𝑖 and an epoch number,
in the file kvconfig in the kv directory at named. So, if a balancer crashes, a new
elected balancer can find the last state in name/kv/kvconfig. Each KV group elects
a leader using the electclnt, which uses etcd’s Raft library [18] to replicate put and
get operations on each kvd procd of the group. Each kvd serves an in-memory file
system with a directory for each shard that the group is responsible for, and with a
file for each key in that shard (as shown at the right side of Figure 5-1). Each KV
group posts a symbolic link name/KV/𝑔𝑟𝑝𝑖, to which each member of the group adds
its DNS names (and public key).

Clients of the kv service, use the kvclerk library, which supports a put and get
interface to interact with the service. The clerk reads the name/KV/kvconfig file,
which it caches for subsequent access. The clerk computes the shard number for the
key it wants to access, and looks up the group responsible in the shard table. Then, it
performs an 𝜎OS put or get operation (Figure 4-1) with name/KV/𝑔𝑟𝑝𝑖/𝑠ℎ𝑎𝑟𝑑/𝑘𝑒𝑦
as the pathname argument. When 𝜎OS resolves name/KV/𝑔𝑟𝑝𝑖, it will automount
one of the kvds for name/KV/𝑔𝑟𝑝𝑖. The mounted kvd will receive a Put request (see

32

Figure 4-2) and insert it in etcd’s Raft log, so that each kvd will perform the Put
on its in-memory file system. Note the latter Put operation is implemented by the
protsrv library, which all 𝜎OS procs use that serve the 𝜎OS protocol, whether they
part of a replicated group or not.

If a kv server crashes, the etcd Raft library will remove it from the group and the
groupmgr library will start a new one, which the etcd Raft library will add to the
group. Any clerk that was using the failed kvd server will fail over to another one in
the group transparently: 𝜎OS will fail to perform a put or get request because the
connection to the kvd has been broken, which causes 𝜎OS to unmount the crashed
kvd, automount one of the other kvds in name/KV/𝑔𝑟𝑝𝑖, and send the request to that
kvd.

The balancer serves request to grow and shrink the KV store. To grow, the balancer
computes a new kvconfig file that minimizes shard movement, adds the list of shards
to be moved to the file, increments the epoch number, and then posts the new file
using Rename (which is atomic). Then, it creates a mover proc for each shard in the
to-be-moved list. Each mover proc moves its shard by copying the shard directory and
the key files from name/KV/𝑔𝑟𝑝𝑖/𝑠ℎ𝑎𝑟𝑑/ to name/KV/𝑔𝑟𝑝𝑗/𝑠ℎ𝑎𝑟𝑑/. It first copies them
into a temporary directory name/KV/𝑔𝑟𝑝𝑗/𝑠ℎ𝑎𝑟𝑑#/, and then atomically renames the
directory to name/KV/𝑔𝑟𝑝𝑗/𝑠ℎ𝑎𝑟𝑑/. This extra step is necessary to handle the scenario
in which the balancer starts a second mover proc, because it lost connection with the
first one but, if there was only a network failure, the first one might still be running
and also copying the shard. When the mover exits without a failure indicator, the
balancer removes the shard from the to-be-moved list in kvconfig.

A mover proc uses FenceAtEpoch to fence its requests to move a shard with the
epoch number that the balancer passed as an argument to the mover through Spawn.
When a kvd server learns about the new epoch (because it is a source or destination
of mover), it will reject requests from movers or clerks in older epochs. To ensure
the latter, clerks also use FenceAtEpoch to tell 𝜎OS to fence their requests with the
epoch number they read from kvconfig. If a clerk receives a stale epoch error, it
rereads kvconfig to find out the new shard mapping and tries again. Fencing with
epoch numbers ensuring linearizability of puts and gets.

If the leader balancer crashes, one of the standby leaders will elect itself as the
new leader. The new leader reads kvconfig to to pick up where the old leader left off.
The new leader increments the epoch number and spawns new movers, if to-be-moved
list isn’t empty.

A realm that use kv doesn’t provision machines. If the balancer adds new KV
groups to handle an increase in load and the realm has no capacity to run them, a
queue of spawned procs will develop, signaling the 𝜎mgr to give the realm more nodes.
If the kv realm’s rmgr is asked by 𝜎mgr to return nodes, it asks the balancer to
shrink the number of KV groups so that it uses fewer resources.

The kvd and clerk procs are LC. All other kv procs are marked BE.

5.3 Web server

𝜎OS has a simple Web server, which is structured in a similar way to OKWS [29].
The server consists of an wwwd proc, which accepts HTTP connections, and which

33

spawns procs to serve content. The wwwd proc runs without named mounted so that
if it is compromised, the attacker cannot explore the realm and mount other services.
wwwd does mount the pid directory of each proc it spawns, so that it can wait for a
child to start, to exit, etc.

For static content, wwwd spawns a proc that has access to the directory with static
content. For dynamic pages, wwwd spawns a proc that can mount mount db. Before
spawning a child, wwwd creates a pipe in its in-memory file system and whose names it
passes along to the child so that it can return the response over the pipe, wwwd then
returns to the client. The Web server runs as a LC proc, while the other procs run
as BE ones.

A realm that uses wwwd doesn’t provision machines. As the load on wwwd increases,
it will spawn more procs. If the realm doesn’t have enough resources to run those
procs, the realm will develop a long spawned queue and 𝜎mgr will allocate new
resources to realm. If the load decreases, the realm’s rmgr can return any node that
doesn’t run any procs.

34

Chapter 6

Evaluation

In this section we seek to answer the following questions:

1. Can a single realm scale up quickly in response to increased load?

2. Is 𝜎OS able to effectively multiplex resources across multiple realms?

3. Do 𝜎OS applications perform well?

4. Are 𝜎OS abstractions efficient?

Experimental Setup. We run 𝜎OS’s application-level benchmarks on an AWS
Virtual Private Cloud (VPC) composed of 16 EC2 t3.small VM instances. Each
instance has 2 vCPUs, 2GiB of memory, and a 200GiB EBS volume. For the comparison
to Corral (§6.3), we run 𝜎OS on an AWS Virtual Private Cloud (VPC) composed
of 8 EC2 t3.medium VM instances. Each instance has 4 vCPUs, 2GiB of memory,
and a 20GiB EBS volume. Aditionally, each instance has up to 5Gbps network burst
bandwidth, and 2, 085Mbps EBS burst bandwidth. We run 𝜎OS’s microbenchmarks
on a cluster of 5 Cloudlab [16] r650 nodes. Each node has two 36-core Intel Xeon
Platinum 8360Y CPUs at 2.4GHz, 256GB ECC DDR4-2666 Memory, a Dual-port
Mellanox ConnectX-5 25Gb NIC, and a Dual-port Mellanox ConnectX-6 100 Gb NIC.

Datasets. We use a snapshot of all English html Wikipedia pages taken on May
4th, 2022 as the dataset for the MapReduce experiments. The full snapshot is 89GB
(wiki-89G) of raw text which we trim down to 2GB (wiki-2G) for some experiments.

6.1 Elasticity within a single realm

𝜎OS must quickly grow realms in response to spikes in application load. However, this
poses a challenge for 𝜎OS. In order to achieve high resource utilization, the realm’s
procds must balance procs across across an elastic set of resources to ensure that few
resources are idle over the duration of the job.

We evaluate 𝜎OS’s ability to provide and make use of elasticity using two ap-
plications: MapReduce-grep (MR) and the 𝜎OS Key-Value Service (KV). MR is
representative of Best Effort (BE), long-running batch Jobs. KV is representative of
a Latency Critical (LC), stateful and interactive application, and thus introduces a
different set of challenges in the face of dynamic scaling.

35

MapReduce-grep (MR). The MR workload relies purely on 𝜎mgr to manage
elasticity. As the MR coordinator proc spawns mapper and reducer procs, 𝜎mgr
notices the realm’s utilization and queue length increase. 𝜎mgr incrementally grows
the realm, starting fresh nodes on free machines and gradually allocating more cores to
existing heavily-utilized nodes. procds started on fresh nodes begin to steal work from
existing procds, and mappers and reducers start to transparently access intermediate
files on remote machines symlinked into the realm’s namespace.

𝜎mgr must respond to the realm’s increase in load quickly to enable MR to derive
full performance benefit from all of the provider’s resources. Moreover, the realm’s
procds should collaborate to balance procs across the realm and keep node utilization
high. Ideally, this would enable MR to speed up proportionally to the number of VMs
that 𝜎mgr controls.

Figure 6-1 plots the MR job’s aggregate throughput as it runs in a 16VM AWS
VPC. Initially the tenant’s realm has only half of a VM (1 core) assigned to it. 𝜎mgr
detects the realm’s growing queue size and the increase in the realm’s CPU utilization.
It gradually scales the realm’s resource allocations up, eventually allocating all 16
VMs (32 cores) to the tenant’s realm.

𝜎OS is able to provide almost perfect linear speedup as the VPC it manages
grows. Specifically, the MR job is 15.26× faster when running on 16 VMs than it is
when running on 1 VM. The good speedup results from the procds’ collaboratively
balancing load well across the realm’s fluctuating set of resources. In the trace from
Figure 6-1, all VMs are utilized until the benchmark is 79% complete, and 15 VMs
are fully utilized until 85% of the job is complete. In short, 𝜎OS achieves both
high performance for tenants as well as high utilization for cloud providers when
dynamically scaling applications.

Note that roughly every 60-70 seconds, there is a sharp drop in the MapReduce
job’s aggregate throughput. We observed similar behavior with the same periodicity
in all of the benchmarks. We believe this is due to variations in the VPC’s network
bandwidth. In order to confirm this, we ran iperf on two machines in the VPC, one
acting as a client and the other as a server. We observed 20-40% drops in network
throughput between the pair of machines roughly every 60-70 seconds as well.

Key-Value Service (KV) Unlike MR, the KV service must move state as it grows
and shrink, and participates in scaling decisions. A balancer proc monitors the load
of the kvd servers and then spawns additional kvd servers and redistributres shards
in order to balance load evenly while minimizing data movement. As the balancer
scales the application by spawning procs, it indicates to 𝜎mgr that the realm needs
to grow. This leads 𝜎mgr to assign more cores to the tenant’s realm. Ideally, 𝜎mgr
should quickly grow the KV service’s realm in order to acommodate the balancer’s
scaling decisions while achieving high resource utilization.

Figure 6-2 shows the aggregate client-side throughput of 16 KV clerks as they
execute operations against an elastic, dynamically-scaled KV service. The benchmark
driver program begins by spawning the balancer, 16 KV clerks, and an initial kvd
server populated with 1000 keys per clerk. For the first 45 seconds, the benchmark
driver program waits for the kvd’s initial state to be set up and for 𝜎mgr to allocate

36

0 50 100 150 200 250 300
Time (sec)

0.0

0.2

0.4

0.6

0.8

1.0
No

rm
al

ize
d

Ag
gr

eg
at

e
Th

ro
ug

hp
ut

5

10

15

20

25

30

Co
re

s A
ss

ig
ne

d

MapReduce Aggregate Throughput

MR Throughput
Cores Assigned

Figure 6-1: Aggregate throughput of MapReduce-grep running on the wiki-89G dataset
in a 16 VM AWS VPC. Initially only half a VM (one core) is assigned to the realm.
As the MR job’s load increases, 𝜎mgr grows the realm to encompass all 32 cores in
the VPC (the green line).

enough cores for all of the procs to start. Once the setup is complete the clerks
simultaneously perform Set and Get operations against their set of keys in a tight
loop.

At around 60 seconds the balancer detects high load at the kvd server and scales
up the KV deployment to 2 kvd servers, each holding half of the shards. For a short
period of time, the clerks’ aggregate throughput drops to 0 as they wait for the shards
to move and for the balancer to update the config file which indicates the new location
of each shard. Then, the clerks continue executing Set and Get operations against the
2 kvd servers until the benchmark terminates after 135 seconds.

Figure 6-2 demonstrates that stateful, interactive applications can drive 𝜎OS’s
scaling and resource multiplexing decisions. That cooperation between a realm
and 𝜎OS enables a stateful applcation to be elastic. Furthermore, 𝜎OS does not
overprovision the KV server’s realm, assigning only 20 cores to it: 1 for each of the 16
clerks, and 2 cores per kvd server. This ensures that CPU utilization is high for the
duration of the benchmark.

37

0 20 40 60 80 100 120 140
Time (sec)

0.0

0.2

0.4

0.6

0.8

1.0
No

rm
al

ize
d

Ag
gr

eg
at

e
Th

ro
ug

hp
ut

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Co
re

s A
ss

ig
ne

d

Throughput of a Dynamically-Scaled KV Service with 16 Clerks
KV Throughput
Cores Assigned

Figure 6-2: Client-side aggregate throughput of 16 clerks accessing a dynamically-
scaled KV service. The first 45 seconds are spent initializing clerks’ keys and setting
up the KV service. At 45 seconds, 16 clerks start to perform Set and Get operations
in a tight loop. At 60 seconds, the balancer detects high load at the kvd server and
scales up to 2 kvd servers. The clerks’ throughput briefly drops to 0 as they wait for
the balancer to rebalance shards and publish a new config file.

6.2 Growing and shrinking multiple realms

A goal of 𝜎OS is to multiplex multiple realms across a fixed set of resources. In order
to achieve high utilization, 𝜎OS steals resources from realms with Latency-Critical
(LC) procs when the realm is idle. However, in order to meet LC procs’ performance
goals, 𝜎OS must quickly return stolen resources when they are needed.

We evaluate whether 𝜎OS is able to achieve high utilization and high application
performance across multiple realms by setting up two competing realms on a 16
VM AWS VPC. Then, we start an LC application, KV with 16 clerks, in one realm
and a BE application, MR-grep running on wiki-89G, in the other. We measure the
performance degradation of each application relative to the unconctended setting,
where each realm runs on dedicated hardware. Ideally, 𝜎OS should prioritize LC
procs across both realms, and allow BE procs to make progress while the LC procs
are idle.

As shown in Figure 6-3, 𝜎mgr quickly reallocates cores from the BE realm to the

38

0 50 100 150 200 250 300 350 400
Time (sec)

0.0

0.2

0.4

0.6

0.8

1.0
No

rm
al

ize
d

Ag
gr

eg
at

e
Th

ro
ug

hp
ut

0

5

10

15

20

25

30

Co
re

s A
ss

ig
ne

d

Aggregate Throughput Balancing 2 Realms' Applications

KV Throughput
MR Throughput
KV Realm Cores Assigned
MR Realm Cores Assigned

Figure 6-3: Aggregate throughput of two applications in different realms. The MR
realm starts to execute a BE MR-grep job on the wiki-89G dataset. While the KV
realm runs an LC KV service which is initially idle. 110 seconds later, 8 clerks begin
performing Get and Set operations on the KV service, leading to an increase in load.
This causes 𝜎mgr to reassign cores from the MR realm to the KV realm (as shown
by the green lines), degrading MR’s throughput but allowing KV to achieve 44% of
the throughput it achieves running on dedicated hardware. At 240 seconds, the KV
clerks stop issuing requests, and 𝜎mgr reassigns the KV realm’s idle cores to the MR
realm, allowing MR’s throughput to increase again.

LC realm once the LC realm’s load increases. The BE realm’s application continues
to make progress, albeit with lower throughput, while the LC realm is busy. When
the clerks in the LC realm terminate and 𝜎mgr detects decreased resource utilization
in the LC realm, 𝜎mgr reassigns its cores back to the BE realm. In response to the
added resources, the BE realm’s throughput improves until the BE job enters its final
phase.

𝜎OS manages to achieve high utilization, keeping all machines in both realms
busy for the duration of the experiment. Both applications see some performance
degradation from this resource sharing. The BE job (MapReduce-grep), which lost
around 30% of its cores for roughly 30% of its execution time, took 23% longer to
complete compared to the same MR job running on 16 dedicated VMs. The throughput

39

of the LC job (one kvd server with 8 clerks) degraded by 45% compared to the same
kvd job running on 16 dedicated VMs.

The LC application’s performance suffers for two reasons. First, the current 𝜎mgr
implementation is conservative about evicting nodes from a realm. If the KV realm
starts LC procs which reserve all the cores on a machine and then go idle for some
time, some of the cores may be stolen by a BE realm. When the LC procs’ load
increases, the LC realm may try to recover all its stolen cores from the BE realm.
However, since recovering all the stolen cores requires that 𝜎mgr evict the BE realm’s
node and some of its procs, 𝜎mgr’s conservative eviction policy stops the LC realm
from recovering all of its cores.

Second, the current implementation provides performance isolation for user-level
procs, but not kernel-level procs. This means that the BE realm’s kernel-procs, such
as its s3 proxy and local storage server, may share cores with the LC realm’s procs,
slowing them down.

In conclusion, 𝜎OS is able to mantain high resource utilization by multiplexing
realms with LC and BE tasks across a the same set of hardware. 𝜎OS does not
provide perfect performance isolation between procs in competing realms, end-to-end
application performance is within 23% of ideal for BE jobs, and within 55% of ideal
for LC jobs.

6.3 Performance of 𝜎OS applications

𝜎OS Applications must use the 𝜎OS API, which provides transparency across a realm,
but incurs cost for implementing that transparency. Furthermore, 𝜎OS applications
communicate using the API. To measure the benefit and cost of 𝜎OS, we compare the
𝜎OS-MapReduce (𝜎OS-MR) implementation to Corral [10], a MapReduce framework
which runs on AWS Lambda, and the Key-Value service (𝜎OS-KV) implementation
to Redis, a popular in-memory Key-Value service written in C.

𝜎OS-MR vs. Corral. Much like 𝜎OS, serverless computing platforms such as AWS
Lambda promise low-latency burst parallelism and automatic application scaling.
However, Lambdas cannot reliably hold state across invocations, and must checkpoint
intermediate state to durable storage services like Amazon S3. Moreover, Lambdas
cannot reliably wait for other lambdas, as they have a strict timeout after which they
are forcefully terminated. Through the realm abstraction, 𝜎OS allows procs to access
local storage, and the 𝜎P protocol allows a realm’s long-lived procs to communicate
and wait for each other.

In order to make the comparison fair, we provision Corral’s lambdas with 1760MB
of memory, which gives them the equivalent of 1 vCPU. We use the wiki-2G dataset,
as larger datasets have very large intermediate files which cause both 𝜎OS-MR and
Corral’s reducers to run out of memory.

Table 6.1 details 𝜎OS-MR and Corral’s end-to-end runtime on these datasets.
When pre-warmed, 𝜎OS-MR starts in a realm which already contains all the VMs in
the VPC. When running from a cold start, 𝜎OS-MR starts in a realm which contains

40

Dataset Dataset Size
(GB)

𝜎OS
Execution
Time (sec),
Cold Start

𝜎OS
Execution
Time (sec),
Pre-warmed

Corral
Execution
Time (sec)

wiki-wc-2G 2 75.86 69.89 68.75

Table 6.1: End-to-end execution time of MR-wordcount built on 𝜎OS and on Corral.
𝜎OS’s cold-start execution time includes time spent scaling up the realm from half a
VM (one core) to 8 VMs (16 cores), whereas 𝜎OS’s pre-warmed execution time does
not include the time spent scaling up the realm.

2 4 6 8 10 12 14 16
Number of Clerks

0

10000

20000

30000

40000

50000

60000

Ag
gr

eg
at

e
Th

ro
ug

hp
ut

 (o
ps

/s
ec

)

Single Key-Value Server Throughput
sigmaOS
redis

Figure 6-4: Aggregate throughput of KV and Redis servicing Get and Set requests for
90 seconds from varying numbers of clerks. Both KV and Redis are pinned to a single
core.

only half of a VM (1 core), and the execution time includes the time spent waiting
for 𝜎mgr to notice the growing proc queue and scale up the realm several times.
𝜎OS and Corral achieve similar performance when running on the wiki-wc-2G dataset.
𝜎OS’s mapper lambdas achieve up to 28 MB/s streaming throughput, whereas Corral’s
mappers achieve up to 31.49 MB/s streaming throughput.

41

𝜎OS-KV vs. Redis. Applications built direclty on Linux benefit from the ability to
tune system performance via the Linux syscall interface, while 𝜎OS limits applications
to the 𝜎OS API. This section seeks to determine the cost of using 𝜎OS abstractions
to build a KV service, in which shards are implemented as directories, keys as files,
and moving shards is implemented by copying directories.

To this end, we compare the performance of the 𝜎OS-KV service to Redis a highly-
optimized, popular in-memory KV service written in C. One of Redis’ features-of-merit
is its ability to gracefully scale its aggregate throughput as its load increases. Since
Redis applies operations on a single thread, whereas 𝜎OS-KV can apply multiple
operations in parallel, we make the comparison fair by pinning Redis and 𝜎OS-KV to
a single dedicated core for the purpose of this comparison.

Figure 6-4 shows how 𝜎OS-KV’s and Redis’ throughput scales under increasing
number of clients. 𝜎OS-KV scales less gracefully than Redis, reaching 44% of the
throughput achieved by Redis when servicing 16 clerks. This is partially due to the
𝜎P. While clerks accessing 𝜎OS-KV are able to perform a Set or Get in a single
RPC, a single 𝜎OS-KV Get or Set RPC does more work than a single Redis RPC. A
𝜎OS-KV Get or Set involves a server-side directory Walk, Open, Read or Write, and
a Close. Moreover, 𝜎OS-KV incurs additional overhead from the Go runtime and
garbage collection which Redis elides by being implemented in C.

6.4 Microbenchmarks

In order to understand the performance of 𝜎OS further, we break down the performance
of a few critical 𝜎OS components, namely the cost of spawning procs and reading
and writing data to and from 𝜎OS services, and compare them to corresponding
operations on other platforms.

Spawning procs. 𝜎OS supports burst-parallelism and low startup latency in order to
rapidly scale tenants’ applications. We evaluate how well 𝜎OS performs by comparing
it to two other cloud computing platforms, Kubernetes and AWS Lambda.

The burst-parallelism experiment starts procs that spin in a tight loop, and
measure how long it takes for each platform to spawn, initialize, and run spinning
procs.

We run 𝜎OS and Kubernetes on a 10-machine Cloudlab cluster containing 720
cores total. We start one 𝜎OS realm with half of one machine assigned to the
realm, and then burst-spawn 720 LC spinning procs. For Kubernetes, we start a
Kubernetes node on each machine, and deploy 720 pods consisting of a dockerized
version of the spinning proc. For Lambda, we invoke 720 Lambda functions running
the containerized spinning proc. We run the experiment on each platform with
and without pre-warming. Pre-warming on 𝜎OS involves pre-downloading the proc
binaries, whereas pre-warming for Kubernetes and Lambda involved pre-pulling docker
images and pre-executing Lambdas respectively.

Table 6.2 shows how much time 𝜎OS, Kubernetes, and AWS Lambda take to
burst-spawn 720 spinning procs, with and without pre-warming. 𝜎OS’s startup time

42

Platform Latency (sec), No
Pre-warming

Latency (sec),
Pre-warming

Latency (sec),
Realm Pre-growth

𝜎OS 22.07 6.65 2.03
Lambda 2.26 1.79 -

Kubernetes 104 80 -

Table 6.2: Time required to burst-spawn 720 spinning procs which each consume a
single core, with and without prewarming (pre-downloading resources needed to run a
proc, such as binaries and docker images), on 𝜎OS, Kubernetes, and Lambda. In the
first two columns, 𝜎OS starts with half a machine (32 cores) assigned to the realm,
and its burst-spawn latency includes the time required for 𝜎mgr to detect contention
and grow the realm to 720 cores. In 𝜎OS Latency with Realm Pre-growth, the time
taken to scale the realm to 32 cores is omitted.

in the first two columns includes the time spent waiting for 𝜎mgr to notice the increase
in the realm’s load and grow the realm several times until it encompasses all 720 cores
in the cluster, as well as the time spent initializing a new node and 𝜎OS kernel on
each machine. 𝜎OS’s startup time in the Realm Pre-growth column does not include
the time taken to scale up the realm. 𝜎OS burst-spawns the spinning procs 7.26×
faster than Kubernetes without pre-warming and 14.5× faster than Kubernetes with
pre-warming.

The majority of the time is spent waiting for the spinning procs’ pods to be
scheduled on a Kubernetes node. After a pod is scheduled, it takes 12.71 seconds on
average for the pod to begin the container initialization process. Kubernetes starts a
new container for each spinning proc, and traces show that initializing a new container
and its namespaces takes less than one second on average.

When running with the realm pre-grown, 𝜎OS burst-spawns procs .24 seconds
slower than AWS Lambda. On average, 𝜎OS takes 19 milliseconds to spawn and wait
for a proc to start, with a standard deviation of 7 milliseconds, and Lambda takes 124
milliseconds on average, with a standard deviation of 163 milliseconds. We conclude
that 𝜎OS provides burst parallelism comparable to existing cloud computing platforms.
Although 𝜎OS takes longer to scale up realms, 𝜎OS offers much less variable spawn
times and much lower average spawn times than Lambda.

Reading and writing data. Another critical 𝜎OS operation is reading and writing
data to and from 𝜎OS kernel services. We measure client-side throughput while
reading and writing files to and from a variety of 𝜎OS services. Table 6.3 presents
the throughput of 𝜎OS services running on an AWS VPC.

43

𝜎OS Service Synchronous
2MB Read
Throughput
(MB/sec)

Asynchronous
2MB Read
Throughput
(MB/sec)

Synchronous
2MB Write
Throughput
(MB/sec)

Asynchronous
2MB Write
Throughput
(MB/sec)

S3 0.24 48.26 18.35 47.93
UX (local) 29.07 314.91 28.64 339.10

UX (remote) 8.86 226.17 8.30 228.05
MemFS
(local)

31.00 453.72 26.48 189.97

MemFS
(remote)

10.18 288.64 11.22 138.45

Table 6.3: Perfrormance of 𝜎OS kernel services when reading and writing files 2MB
files synchronously and asynchronously on an AWS VPC. Local benchmarks colocate
the client and service, whereas remote benchmarks place the client on one machine
and the service on another.

44

Chapter 7

Related work

The shift from in-house computing to cloud computing has led to rapid innovation in
academia and industry, and 𝜎OS builds on a large body of related work. 𝜎OS’s distin-
guishing feature is its elastic realms, which shift the burden of resource provisioning
from the tenant to the provider.

Lambdas and serverless applications Computing with lambdas has become
popular, because users don’t have to provision servers and can scale their applications
easily with demand. Major cloud providers support it [1, 9, 23, 33] and there are also
open-source platforms [3] available. Although lambdas are intended for event-triggered
applications (e.g., file transcoding, WSGI web apps, etc.), developers have used
lambdas in creative ways for other applications. Some examples include: ExCamera
uses lambdas to process video using burst parallelism [21]; gg uses lambdas to parallelize
desktop applications such as make [20]. Starling uses lambdas to speedup database
query processing [39]; PyWren [27] and Locus [41], an extension to PyWren, use
lambdas for data analytics.

Many of these systems have creative methods to work around lambdas’ short-
comings. For example, ExCamera uses a proxy virtual machine to arrange for com-
munication between lambdas. Several (e.g., gg, Starling, Locus) applications have
creative ways of shuffling data between lambdas efficiently. Researchers also proposed
new serverless frameworks that remove limitations. For example, Kappa helps split
applications into lambdas and can checkpoint long-running lambdas [56]. Beldi [55] en-
ables developers to write composable, fault-tolerant servereless workflows by ensuring
exactly-once semantics with a transactional API. Faasm supports stateful lambdas by
sharing memory and a distributed object store [50] between lambdas. Rather than try
to circumvent lambdas’ shortcomings, 𝜎OS takes a clean-slate approach. 𝜎OS makes
proc coordination and state management a first-class concern, and addresses both by
providing procs with the realm namespace and the Unix-like proc API. This enables
𝜎OS to support applications with group and point-to-point communication patterns
as well as stateful applications that must coordinate in the presence of failures, while
preserving the elasticity resource provisioning transparency of lambdas.

Actor frameworks [5, 9, 34] are similar to lambdas in that they encourage developers
to structure applications as a series of short functions which store long-lived state

45

in a persistent storage service. Unlike lambdas, actor frameworks make applications’
objects first-class citizens, and expose RPCs as “methods” or function calls on an
instance of a class in the application. 𝜎OS gives applications more flexibility in
managing their state: procs can be stateful and long-lived. 𝜎OS’s Unix-like process
API allows developers to express a wider set of applications natively and conveniently.

Elasticity 𝜎OS uses techniques from cluster management frameworks such as AWS
Elastic Beanstalk [45], AWS Fargate [46] Kubernetes [4, 24], and Docker swarms [15]
to determine when to scale a tenant’s cluster and load-balance applications.

Moreover, these frameworks limit application elasticity. In Kubernetes, for example,
developers deploy applications as a collection of containers called a pod, and pre-declare
resource requests and limits for each pod at application launch time. Kubernetes
cannot vertically scale application pods or change their resource limits while they
are running. In order to resize pods, Kubernetes evicts and restarts them, which
wastes any state which the application’s pods may have built up. Kubernetes can
scale applications horizontally by starting new instances of existing pods, but pods
cannot share resources such as storage volumes, leading to stranded resources.

These frameworks force developers to choose between overprovisioning their ap-
plications’ pods, and selecting tighter resource limits at the risk of overloading the
application during spikes in load. 𝜎OS relieves developers of this burden; the realm
abstraction makes it easy for 𝜎OS to resize applications vertically and horizontally.
𝜎OS asks tenants to declare the resources their procs will require at peak load, and
then transparently reallocates resources to other tenants when load drops. Realms
allow 𝜎OS to monitor variety of indications of application load such as queue length,
CPU utilization, and application-defined load metrics, and respond by transparently
shifting the boundaries between physical machines.

Harvest VMs [2] are evictable and resizable VMs which Azure runs on physical
machines with unallocated resources. Tenants lease Harvest VMs at discounted rates,
as they are not guaranteed a fixed resource allocation; Harvest VMs grow and shrink
as set of unallocated resources changes. Reserachers have proposed using Harvest
VMs as a compute substrate for serverless computing platforms [57].

𝜎OS draws inspiration from Harvest VMs and applies some of their ideas to the
design of procd, which manages a resizable set of cores on each of a tenant’s nodes.
Unlike Harvest VMs, 𝜎OS is able to introspect into application load because all procs
in 𝜎OS communicate through the realm. 𝜎OS exploits this visibility to allocate free
resources to tenants’ nodes based on need, not just resource availability.

Single system image 𝜎OS adopts the single-system vision for each tenant’s realm.
Having one unified namespace for all of a tenant’s resources is a key feature which
enables 𝜎OS to easily grow and shrink realms while still allowing procs to inter-
act. Distributed systems such as Amoeba [52], Cambridge distributed computing
system [35], Clouds [13], Plan9 [40], Sprite [36], and V [8], were pioneers of this vision.
However, these systems targeted a different computing environment and applications
than 𝜎OS. They were built to time-share a cluster of computers among a group of
users, focusing on developing code and writing papers. In this setting fault tolerance
was less important, whereas 𝜎OS targets datacenters and highly-available services

46

for which automatic recovery from failures is important. 𝜎OS follows the Plan9
approach of “everything is a file” but extends Plan9’s 9P protocol [25] with support for
ephemeral files, fences, and watches to handle failures and allow procs to coordinate
in the presence of crashes.

New designs and APIs for cloud computing Schwarzkopf et al. argued for
revisiting distributed operating systems for warehouse-scale data centers [44]. 𝜎OS falls
in this line of research, with the goal of simplifying development of elastic applications,
and managing multiple tenants’ resource allocations in order to attain high resource
utilization.

LegoOS [48] is a new OS design for datacenters built with disaggregated hardware
resources so that, for example, one machine can take advantage of unused memory
on another machine. AIFM [43] supports memory disaggregation at the application
runtime level using remotable pointers. Both of these techniques simplify application
resource provisioning by allowing applications to scale far beyond the boundaries of a
single machine, and use remote resources transparently. 𝜎OS also enables transparent
access to remote resources through the realm abstraction, which allows the provider
to provision these resources transparently and on-demand.

A Berkeley view on serverless computing identifies several shortcoming of today’s
serverless computing platforms, including sharing, coordination, and communication
between lambdas [28]. 𝜎OS is a partial answer to some of the identified shortcomings.

Lee and Ousterhout proposed granular computing in which applications are com-
posed of many short-lived tasks that compute on the order of 10-100 𝜇s [30]. This
simplifies bin-packing for providers, as task boundaries serve as frequent opportunities
to re-balance load across their infrastructure. 𝜎OS focuses on supporting and compos-
ing both long- and short-running millisecond-scale applications. Providers are able to
shift tenants’ resource allocations transparently in 𝜎OS because the realm abstraction
allows procs to communicate with each other and access the realm’s resoruces even as
resource allocations change.

Cafarella et al. argue for a database OS in which all operating system state
is represented uniformly as database tables on which stateless tasks operate using
queries [6]. 𝜎OS instead focuses on multi-tenant elasticity. 𝜎OS takes a file-oriented
approach and allows state to be stored in a decentralized way, and exposes access to
the decentralized state via the realm’s namespace.

Pemberton et al. argue for new API for cloud computing [38] that is RESTless.
𝜎OS is a proposal for such a new RESTless API.

Isolation The 𝜎OS API, 𝜎P, which procs use to communicate with system services
is narrow, and simplifies security policy enforcement in 𝜎OS realms. Applications
within a single realm can enforce mandatory access control policies using standard
filesystem-like permissions to restrict access, and self-certifying pathnames and sessions
serve as the basis for authentication in 𝜎OS. Since procs communicate excluslively
via 𝜎P, 𝜎OS is able to use sandboxing via seccomp filters [17] to provide isolation
between procs. Kubernetes, Borg, and Omega provide container-based isolation.

47

Scheduling 𝜎OS’s hybrid push-pull-style decentralized scheduling within a realm is
inspired by Sparrow [37]. Similarly to Borg [54] and Caladan [22], the 𝜎OS scheduler
allows users to mark jobs as Latency Critical (LC) or Best Effort (BE). 𝜎OS use
techniques from Borg, such as overcommitment and eviction, to drive up cluster-wide
utilization during lulls in load while prioritizing LC tasks during load spikes. Caladan
ensures strict performance isolation between LC and BE tasks and adjusts intra-server
resource allocations in order to minimize interference.

RackSched [58] is a microsecond-scale scheduler which preserves low latency and
high throughput for both high- and low-dispersion workloads. RackSched gives the
abstraction of a rack-scale computer by using a two-level scheduling scheme, in which a
programmable Top-of-Rack (ToR) switch routes request in order to achieve inter-server
load balancing and intra-server schedulers ensure high resource utilization and avoid
head-of-line blocking. 𝜎OS also seeks to give a tenant the abstraction of a logical,
rack-scale computer within a realm. However, 𝜎OS focuses on millisecond-scale tasks,
and takes a decentralized approach to scheduling.

48

Chapter 8

Conclusion

The past decade has been marked by a series of major shifts in how developers write
and deploy applications: in-house computing has slowly given way to cloud com-
puting; manual application deployment has been supplanted by cluster management
frameworks; and manual resource provisioning is being replaced by new programming
models, like serverless, which offload the burden of scaling and resource provisioning
to the cloud provider.

𝜎OS seeks to drive this last shift by providing a better interface and set of abstrac-
tions for tenants and cloud providers to collaboratively deploy and run applications.
𝜎OS shifts the burden of resource provisioning from developers to cloud providers
using realms. The realm abstraction allows developers to write and run applications
with a Unix-like API without worrying about how and where they run, or how to
predict their resource usage. The realm abstraction also gives cloud providers the
ability to introspect into applications’ load when making global resource allocation
decisions, and use this information to drive up resource utilization while preserving
application performance.

Through the design, implementation, and evaluation of 𝜎OS, this thesis takes a
step towards making data centers more efficient, and making cloud applications easier
to write.

49

50

Bibliography

[1] Amazon. Aws lambda. https://aws.amazon.com/lambda/.
[2] P. Ambati, I. Goiri, F. Frujeri, A. Gun, K. Wang, B. Dolan, B. Corell, S. Pa-

supuleti, T. Moscibroda, S. Elnikety, M. Fontoura, and R. Bianchini. Providing
SLOs for Resource-Harvesting VMs in cloud platforms. In 14th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI 20), pages
735–751. USENIX Association, Nov. 2020.

[3] Apache OpenWhisk. Open source serverless cloud platform. https://openwhisk.
apache.org/.

[4] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes. Borg, omega,
and kubernetes. ACM Queue, 14(1), 2016.

[5] S. Bykov, A. Geller, G. Kliot, J. R. Larus, R. Pandya, and J. Thelin. Orleans:
Cloud computing for everyone. In Proceedings of the 2nd ACM Symposium
on Cloud Computing, SOCC ’11, New York, NY, USA, 2011. Association for
Computing Machinery.

[6] M. J. Cafarella, D. J. DeWitt, V. Gadepally, J. Kepner, C. Kozyrakis, T. Kraska,
M. Stonebraker, and M. Zaharia. A polystore based database operating system
(DBOS). In Heterogeneous Data Management, Polystores, and Analytics for
Healthcare - VLDB Workshops, Poly 2020 and DMAH 2020, Virtual Event,
August 31 and September 4, 2020, Revised Selected Papers, volume 12633 of
Lecture Notes in Computer Science, pages 3–24. Springer, 2020.

[7] Y. Cheng, Z. Chai, and A. Anwar. Characterizing co-located datacenter workloads:
An alibaba case study. In Proceedings of the 9th Asia-Pacific Workshop on Systems,
APSys ’18, New York, NY, USA, 2018. Association for Computing Machinery.

[8] D. R. Cheriton. The V distributed system. Communications of the ACM,
31(3):314–333, Mar. 1988.

[9] Cloudflare. Cloudflare workers. https://workers.cloudflare.com/.
[10] Corral. Ben congdon. https://github.com/bcongdon/corral.
[11] R. Cox, R. Griesemer, R. Pike, I. L. Taylor, and K. Thompson. The go program-

ming language and environment. Commun. ACM, 65(5):70–78, apr 2022.
[12] R. Danilak. Why energy is a big and rapidly growing problem for data centers,

2017.
[13] P. Dasgupta, R. J. LeBlanc, M. Ahamad, and U. Ramachandran. The clouds

distributed operating system. Computer, 24(11):34–44, Nov. 1991.
[14] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large

clusters. Communications of the ACM, 51(1):107–113, Jan. 2008.

51

https://aws.amazon.com/lambda/
https://openwhisk.apache.org/
https://openwhisk.apache.org/
https://workers.cloudflare.com/
https://github.com/bcongdon/corral

[15] Docker. Docker swarms. https://docs.docker.com/engine/swarm/.
[16] D. Duplyakin, R. Ricci, A. Maricq, G. Wong, J. Duerig, E. Eide, L. Stoller,

M. Hibler, D. Johnson, K. Webb, A. Akella, K. Wang, G. Ricart, L. Landweber,
C. Elliott, M. Zink, E. Cecchet, S. Kar, and P. Mishra. The design and operation
of CloudLab. In Proceedings of the USENIX Annual Technical Conference (ATC),
pages 1–14, July 2019.

[17] J. Edge. A seccomp overview. https://lwn.net/Articles/656307/, Sept. 2015.
[18] etcd.io. Etcd raft. https://github.com/etcd-io/etcd/.
[19] X. Feng, J. Shen, and Y. Fan. Rest: An alternative to rpc for web services

architecture. In 2009 First International Conference on Future Information
Networks, pages 7–10, 2009.

[20] S. Fouladi, F. Romero, D. Iter, Q. Li, S. Chatterjee, C. Kozyrakis, M. Zaharia, and
K. Winstein. From laptop to lambda: Outsourcing everyday jobs to thousands of
transient functional containers. In Proceedings of the 2019 USENIX Conference
on Usenix Annual Technical Conference, USENIX ATC ’19, page 475–488, USA,
2019. USENIX Association.

[21] S. Fouladi, R. S. Wahby, B. Shacklett, K. V. Balasubramaniam, W. Zeng,
R. Bhalerao, A. Sivaraman, G. Porter, and K. Winstein. Encoding, fast and slow:
Low-latency video processing using thousands of tiny threads. In 14th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 17), pages
363–376, Boston, MA, Mar. 2017. USENIX Association.

[22] J. Fried, Z. Ruan, A. Ousterhout, and A. Belay. Caladan: Mitigating interference
at microsecond timescales. In 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 20), pages 281–297. USENIX Association,
Nov. 2020.

[23] Google. Cloud functions. https://cloud.google.com/functions.
[24] Google. Kubernetes. http://kubernetes.io/.
[25] E. V. Hensbergen. Grave robbers from outer space: Using 9p2000 under Linux.

In USENIX 2005 Annual Technical Conference, FREENIX Track, page 83–94,
2005.

[26] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. Zookeeper: Wait-free coordi-
nation for internet-scale systems. In Proceedings of the 2010 USENIX Conference
on USENIX Annual Technical Conference, USENIXATC’10, page 11, USA, 2010.
USENIX Association.

[27] E. Jonas, Q. Pu, S. Venkataraman, I. Stoica, and B. Recht. Occupy the cloud:
Distributed computing for the 99In Proceedings of the 2017 Symposium on Cloud
Computing, SoCC ’17, page 445–451, New York, NY, USA, 2017. Association for
Computing Machinery.

[28] E. Jonas, J. Schleier-Smith, V. Sreekanti, C.-C. Tsai, A. Khandelwal, Q. Pu,
V. Shankar, J. Carreira, K. Krauth, N. Yadwadkar, J. E. Gonzalez, R. A. Popa,
I. Stoica, and D. A. Patterson. Cloud programming simplified: A berkeley view
on serverless computing, 2019.

[29] M. Krohn. Building secure high-performance web services with OKWS. In
Proceedings of the 2004 USENIX Annual Technical Conference, pages 185–198,
Boston, MA, June–July 2004.

52

https://docs.docker.com/engine/swarm/
https://lwn.net/Articles/656307/
https://github.com/etcd-io/etcd/
https://cloud.google.com/functions
 http://kubernetes.io/

[30] C. Lee and J. Ousterhout. Granular computing. In Proceedings of the Workshop
on Hot Topics in Operating Systems, HotOS ’19, page 149–154, New York, NY,
USA, 2019. Association for Computing Machinery.

[31] C. Lu, K. Ye, G. Xu, C.-Z. Xu, and T. Bai. Imbalance in the cloud: An analysis
on alibaba cluster trace. In 2017 IEEE International Conference on Big Data
(Big Data), pages 2884–2892, 2017.

[32] D. Mazières. Self-certifying File System. PhD thesis, Massachusetts Institute of
Technology, May 2000.

[33] Microsoft. Azure functions. https://azure.microsoft.com/en-us/blog/
introducing-azure-functions/.

[34] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang, M. Elibol,
Z. Yang, W. Paul, M. I. Jordan, and I. Stoica. Ray: A distributed framework for
emerging AI applications. In 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 18), pages 561–577, Carlsbad, CA, Oct. 2018.
USENIX Association.

[35] R. M. Needham and A. J. Herbert. The Cambridge Distributed Computing System.
Addison Wesley, 1983.

[36] J. K. Ousterhout, A. R. Cherenson, F. Douglis, M. N. Nelson, and B. B. Welch.
The sprite network operating system. Computer, 21(2):23–36, Feb. 1988.

[37] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica. Sparrow: Distributed, low
latency scheduling. In Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles, SOSP ’13, page 69–84, New York, NY, USA, 2013.
Association for Computing Machinery.

[38] N. Pemberton, J. Schleier-Smith, and J. E. Gonzalez. The restless cloud. In
Proceedings of the Workshop on Hot Topics in Operating Systems, HotOS ’21,
page 49–57, 2021.

[39] M. Perron, R. Castro Fernandez, D. DeWitt, and S. Madden. Starling: A scalable
query engine on cloud functions. In Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’20, page 131–141,
New York, NY, USA, 2020. Association for Computing Machinery.

[40] R. Pike, D. Presotto, S. Dorward, B. Flandrena, K. Thompson, H. Trickey, and
P. Winterbottom. Plan 9 from Bell Labs. Computing Systems, 8(3):221–254,
Summer 1995.

[41] Q. Pu, S. Venkataraman, and I. Stoica. Shuffling, fast and slow: Scalable analytics
on serverless infrastructure. In 16th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 19), pages 193–206, Boston, MA, Feb. 2019.
USENIX Association.

[42] D. M. Ritchie and K. Thompson. The UNIX time-sharing system. Communica-
tions of the ACM, 17(7):365–375, July 1974.

[43] Z. Ruan, M. Schwarzkopf, M. K. Aguilera, and A. Belay. AIFM: High-Performance,
Application-Integrated far memory. In 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20), pages 315–332. USENIX Associ-
ation, Nov. 2020.

[44] M. Schwarzkopf, M. P. Grosvenor, and S. Hand. New wine in old skins: The
case for distributed operating systems in the data center. In Proceedings of the

53

https://azure.microsoft.com/en-us/blog/introducing-azure-functions/
https://azure.microsoft.com/en-us/blog/introducing-azure-functions/

4th Asia-Pacific Workshop on Systems, APSys ’13, New York, NY, USA, 2013.
Association for Computing Machinery.

[45] A. W. Services. Aws elastic beanstalk. https://aws.amazon.com/
elasticbeanstalk/.

[46] A. W. Services. Aws fargate. https://aws.amazon.com/fargate/.
[47] C. Severance. Roy t. fielding: Understanding the rest style. Computer, 48(06):7–9,

jun 2015.
[48] Y. Shan, Y. Huang, Y. Chen, and Y. Zhang. Legoos: A disseminated, distributed

os for hardware resource disaggregation. In Proceedings of the 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI), page
69–87, Carlsbad, CA, Oct. 2018.

[49] A. Shebabi, S. Smith, D. Sartor, R.Brown, M. Herrlin, J. Koomey, E. Masanet,
N. Horner, I. Azevedo, and W. Lintner. United united states data center energy
usage report, 2016.

[50] S. Shillaker and P. Pietzuch. Faasm: Lightweight isolation for efficient stateful
serverless computing. In 2020 USENIX Annual Technical Conference (USENIX
ATC 20), pages 419–433. USENIX Association, July 2020.

[51] N. S onnischsen. Global data centers energy demand by type 2015-2021, 2021.
[52] A. S. Tanenbaum, R. van Renesse, H. van Staveren, G. J. Sharp, and S. J.

Mullender. Experiences with the Amoeba distributed operating system. Commun.
ACM, 33(12):46–63, Dec. 1990.

[53] M. Tirmazi, A. Barker, N. Deng, M. E. Haque, Z. G. Qin, S. Hand, M. Harchol-
Balter, and J. Wilkes. Borg: The next generation. In Proceedings of the Fifteenth
European Conference on Computer Systems, EuroSys ’20, New York, NY, USA,
2020. Association for Computing Machinery.

[54] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and J. Wilkes.
Large-scale cluster management at Google with Borg. In Proceedings of the 10th
ACM EuroSys Conference, pages 18:1–18:17, Bordeaux, France, Apr. 2015.

[55] H. Zhang, A. Cardoza, P. B. Chen, S. Angel, and V. Liu. Fault-tolerant and
transactional stateful serverless workflows. In 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 20), pages 1187–1204.
USENIX Association, Nov. 2020.

[56] W. Zhang, V. Fang, A. Panda, and S. Shenker. Kappa: A programming framework
for serverless computing. In Proceedings of the 11th ACM Symposium on Cloud
Computing, SoCC ’20, page 328–343, New York, NY, USA, 2020. Association for
Computing Machinery.

[57] Y. Zhang, I. n. Goiri, G. I. Chaudhry, R. Fonseca, S. Elnikety, C. Delimitrou, and
R. Bianchini. Faster and cheaper serverless computing on harvested resources.
In Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems
Principles, SOSP ’21, page 724–739, New York, NY, USA, 2021. Association for
Computing Machinery.

[58] H. Zhu, K. Kaffes, Z. Chen, Z. Liu, C. Kozyrakis, I. Stoica, and X. Jin. RackSched:
A Microsecond-Scale scheduler for Rack-Scale computers. In 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 20), pages
1225–1240. USENIX Association, Nov. 2020.

54

https://aws.amazon.com/elasticbeanstalk/
https://aws.amazon.com/elasticbeanstalk/
https://aws.amazon.com/fargate/

	Introduction
	Motivation and goals
	OS design
	System overview
	Single-system image realms
	OSprocs
	Scheduling procs in a realm
	Growing and shrinking realms
	Coping with failures

	OS implementation
	The OS API
	OS protocol
	Automounting
	Lines of code
	Deployments

	OS applications
	MapReduce
	key/value service
	Web server

	Evaluation
	Elasticity within a single realm
	Growing and shrinking multiple realms
	Performance of OS applications
	Microbenchmarks

	Related work
	Conclusion

