
Optimizing RAM-latency Dominated Applications

Yandong Mao Cody Cutler Robert Morris
MIT CSAIL

Abstract
Many apparently CPU-limited programs are actually bot-
tlenecked by RAM fetch latency, often because they fol-
low pointer chains in working sets that are much bigger
than the CPU’s on-chip cache. For example, garbage
collectors that identify live objects by tracing inter-object
pointers can spend much of their time stalling due to
RAM fetches.

We observe that for such workloads, programmers
should view RAM much as they view disk. The two
situations share not just high access latency, but also a
common set of approaches to coping with that latency.
Relatively general-purpose techniques such as batching,
sorting, and “I/O” concurrency work to hide RAM la-
tency much as they do for disk.

This paper studies several RAM-latency dominated
programs and shows how we apply general-purpose ap-
proaches to hide RAM latency. The evaluation shows
that these optimizations improve performance by a fac-
tor up to 1.4×. Counter-intuitively, even though these
programs are not limited by CPU cycles, we found that
adding more cores can yield better performance.

1 Introduction
This paper focuses on the performance of applications
that follow pointer chains in data structures that are much
bigger than the on-chip cache. These programs tend to be
bottlenecked by RAM latency because their RAM refer-
ences do not obey any predictable pattern. For example,
if objects within a data structure are allocated with a
general-purpose allocator, it is unlikely that algorithms

traversing the data will visit objects in sequential address
order; this defeats hardware RAM prefetching. Software
prefetching is also hard to use here, since addresses aren’t
known in advance: they are only learned as the program
traverses the data structure. A RAM fetch on a mod-
ern processor requires hundreds of cycles, limiting the
performance to a few million pointer dereferences per
second. We call this class of programs “RAM-latency
dominated.” This paper presents a study of two RAM-
latency dominated applications: a Java garbage collector
and an in-memory key-value store.

In order to reduce the RAM-latency bottleneck for
these applications, we present two general-purpose tech-
niques. First, if the program traverses the pointer graph
in a known pattern, one can re-arrange the nodes in mem-
ory so that so that the pattern induces sequential access
to RAM; sequential access yields higher RAM perfor-
mance than random. Second, if the program has many
independent tasks that involve following pointer chains,
it can interleave them, exploiting the pipelining and bank-
ing available in the memory system in order to complete
multiple fetches per RAM latency. The interleaving can
be implemented by merging the tasks’ instructions into a
single stream, or by running different tasks on different
cores or hyper-threads.

The paper describes implementations of these tech-
niques for a Java garbage collector and an in-memory
key-value store. It presents measurements on an Intel
Xeon X5690 processor (six physical cores, each with two
hyper-threads; three independent RAM channels, each
with two DIMMs). On this hardware, the techniques
improve performance by a factor of 1.3× to 1.4×.

2 Hardware Background

The techniques introduced in this paper exploit concur-
rency, pipelining, and buffering in the CPU/RAM inter-
face. This section explains these features.

First, CPUs have a number of ways to start fetching
data from memory before it is needed, thus avoiding

1

stalls. If the compiler generates a load instruction well
before the instruction that uses the result (or the hard-
ware speculatively executes the load early), the load may
complete before the result is needed. The hardware also
prefetches cache lines if it spots a sequential or strided
access pattern [4, 9]. Finally, the software can issue
prefetch instructions if it knows addresses in advance
of need; software prefetch can be useful if addresses
are not sequential but are predictable. Section 3 shows
an example in which sequential access achieves higher
performance than random access. Section 4 shows an ex-
ample that prefetches data for different tasks in parallel.

Second, the RAM system can perform parallel opera-
tions. A system typically has multiple independent RAM
channels; each processor chip often has a few separate
channels, and a multi-chip system has a few per chip.
Different channels can perform memory operations in
parallel [8]. If the program can issue concurrent fetches
to different parts of memory (for example, by prefetch-
ing data for different tasks in parallel), it can exploit the
RAM system’s parallelism.

The last relevant hardware feature is the row buffer
within each RAM chip. Accessing a RAM row causes
the entire row to be stored in the RAM chips’ row buffers.
An entire row is typically 4096 bytes, much larger than
a CPU cache line. Successive accesses to the same row
are satisfied from the row buffer, and are two to five
times faster than accessing a different row [8]. The row
buffer is one reason that sequential access is faster than
random access; simple benchmarks on our hardware
show that sequential access provides 3.5× the throughput
of random access on a single core. Section 3 exploits this
effect.

3 Linearizing memory accesses

In this section, we explore the feasibility and poten-
tial benefits of converting unpredictable, non-sequential
memory accesses to sequential accesses in garbage col-
lectors.

Garbage collectors are responsible for finding and re-
claiming unused memory. The live data is discovered by
“tracing”, the process of following all pointers starting at
the roots (CPU registers, global variables, etc.) and every
pointer in every object discovered. All objects not visited
are unreachable and are therefore free memory. Because
the live data (which can be thought of as a graph) is cre-
ated and arbitrarily manipulated by the application, the
addresses of the live objects have no correspondence to
their position in the live data graph. Furthermore, tracing

only discovers an object’s address immediately before
the object’s content is needed. Since tracing visits mem-
ory addresses in a way that is neither predictable nor
sequential, prefetching cannot be used. If the live data
doesn’t fit in the CPU cache, tracing will incur a RAM
latency for each object visited.

Tracing can be made faster if the objects can be laid
out in memory in the same order that tracing visits them.
This will cause tracing to fetch memory in roughly se-
quential order, causing the hardware prefetcher and RAM
row buffers to yield the highest throughput. As it turns
out, “copying” collectors move objects to just the needed
order. A copying collector copies each live object when
it is first encountered while tracing, resulting in objects
laid out in tracing order. However, other collectors pre-
serve object order and thus do not produce sequentially
traceable heaps. In the rest of this section, we first mea-
sure the benefits of linearizing the live data in another
type of garbage collector. Then we discuss a potential
linearizing method which exploits the existing free space;
the method doesn’t require doubling memory space as
the copying collector does.

We examine the impact of arranging the live data into
tracing order on tracing times with HotSpot1, a Java vir-
tual machine, in OpenJDK7u6 [3] and HSQLDB 2.2.9
[1], a high performance relational database engine writ-
ten in Java. Using HotSpot and its compacting collec-
tor only (the “parallel compacting collector”), we run
the HSQLDB performance test – a Java program which
stresses HSQLDB with many update and query opera-
tions. The live data generated by the performance test
is approximately 1.8 GB and we configure the garbage
collector to use six threads. Throughout the execution
of the performance test, the collector is called several
times and time spent tracing is recorded. Next, we run
the HSQLDB performance test using a modified version
of the compacting collector which occasionally copies all
live data into tracing order in the same way as a copying
collector. We record the time spent tracing and observe
that copying the objects into tracing order yields a 1.3×
speed improvement in tracing time.

Although our experimental compacting collector uses
copying collection to arrange the live data in tracing or-
der, a different method may be needed in practice. For
instance, a compacting collector could take advantage of
free space between live objects (before actually compact-
ing) by filling it with subsequent live objects according
to tracing order. The more unpredictable accesses re-
placed by sequential accesses, the faster tracing will be,

1revision 3484:7566374c3c89 from Aug 13, 2012

2

resulting in reduced overall time spent in the garbage
collector.

4 Alternating RAM fetch and com-
putation

If an application traverses many different paths through
a data structure, it will not be possible to lay out the data
in memory so that it is always accessed sequentially. For
example, looking up different keys in a tree will follow
different paths. No layout of the tree can linearize the
memory accesses of all tree lookups.

We can borrow an idea from the way I/O systems cope
with latency. If many concurrent independent requests
are outstanding, we can issue them in a batch, and pay
just one latency in order to fetch multiple results. This
doesn’t reduce per-request latency, but it might increase
overall throughput. This section describes how we ap-
ply this approach to coping with RAM latency during
lookups in the Masstree key-value store.

Masstree [6] is a high performance key-value store for
multi-core. Each core has a dedicated thread process-
ing get/put/scan requests. Masstree stores all key-value
pairs in a single in-memory B+tree variant shared by
all cores. Masstree scales well on multi-core proces-
sors through optimistic concurrency control. We discuss
concurrency on multiple cores in the next section, and
consider Masstree on a single core in this section.

Despite careful design to reduce RAM references, the
performance of Masstree is still limited by RAM latency.
Masstree avoids RAM references by storing key frag-
ments and children pointers within the tree nodes. This is
possible by using a trie of B+trees such that each B+tree
is responsible for eight bytes of the key. This design re-
duces RAM dereferences for key comparisons. However,
RAM latency still dominates Masstree’s performance.
Each key lookup follows a random path from the root
to a leaf, incurring a RAM fetch latency at each level of
the tree. This limits the per-core performance to about a
million requests per second.

To get higher throughput, we modify Masstree to inter-
leave multiple lookups on each core (we assume requests
arrive in batches, which is reasonable in practical sys-
tems [7]). We call this version Interleaved Masstree.
Figure 1 shows the lookup pseudocode. For each request
at each tree level, Interleaved Masstree identifies the rel-
evant child (line 16) and then prefetches the child (line
17). It only proceeds to the next level in the tree after
prefetching for each of the requests. In this way, the CPU
processing to identify the next child for the requests is

1 class lookup_state:
2 Key k // the key to lookup
3 Node n // current node. Initially the tree root
4 bool ok // if the lookup is completed. Initially false
5

6 void multi_lookup(lookup_state[] requests):
7 int completed = 0
8 while completed < len(requests):
9 completed = 0

10 for req in requests:
11 if req.ok:
12 completed += 1
13 else:
14 if req.n.is_leaf():
15 req.ok = true
16 req.n = req.n.find_containing_child(k)
17 prefetch(req.n)

Figure 1: Interleaved key lookups of Interleaved
Masstree

overlapped with the prefetching of those children. In
addition, the children are prefetched nearly concurrently,
so that little more than a single RAM latency is required
to fetch an entire batch’s worth of children. With a large
enough batch, the cycles spent processing each child
may cover the entire RAM latency, thus entirely hid-
ing the RAM latency. This technique allows Interleaved
Masstree to descend one level of multiple lookups in
each RAM latency, whereas non-interleaved Masstree
descends a level for only one lookup in each RAM la-
tency. The idea is similar to one used by PALM [5]. For
our workloads, we find that batching at least four requests
achieves the best performance. On a read only workload,
this technique improves the single-core throughput by a
factor of 1.3×.

5 Parallelization
It turns out that, even for applications that are limited
by random-access RAM latency and not by CPU cycles,
running applications in parallel on multiple cores can
help performance. The reason is that the multiple cores
can keep multiple RAM operations in flight in parallel,
and thus can keep the RAM busy.

Parallelization has much the same effect as the in-
terleaving technique described in Section 4. Both im-
prove performance by doing more work per RAM la-
tency. The difference is that parallelization use multiple
cores in order to issue many concurrent or interleaved
RAM requests, while the interleaving technique achieves
the same goal on a single core.

To demonstrate the benefits of parallelization, we mea-
sured the performance of Masstree on multiple cores.

3

Figure 2 shows the throughput of Masstree on a read-
only workload with small keys and values. Each key
or value is one to 10 bytes long. As the result shows,
with the number of cores increases, the performance of
Masstree increases. The reason is that, with more cores,
the CPUs could issue more RAM loads per second as
suggested by the “Total RAM loads” line.

 0

 2

 4

 6

 8

 10

 12

 14

 2 4 6 8 10 12
 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

T
h
ro

u
g
p
u
t

(g
et

s/
se

c,
 m

il
li

o
n
s)

T
o
ta

l
R

A
M

 l
o
ad

s
(m

il
li

o
n
s/

se
c)

Number of cores

Throughput
Total RAM loads

Figure 2: Throughput of Masstree and RAM loads on a
read only workload

 0

 2

 4

 6

 8

 10

 12

 14

 2 4 6 8 10 12
 0

 20

 40

 60

 80

 100

T
h
ro

u
g
p
u
t

(g
et

s/
se

c,
 m

il
li

o
n
s)

T
h
ro

u
g
p
u
t

im
p
ro

v
em

en
t

(%
)

Number of cores

Throughput
Throughput improvement

Figure 3: Throughput of Interleaved Masstree and im-
provement over Masstree on a read only workload

Our experience suggests that parallelization and cache-
consciousness techniques could be complementary to
each other. Figure 3 shows the throughput of Interleaved
Masstree on multi-core on the same workload described
above. As the number of cores increases, the perfor-
mance of Interleaved Masstree increases since the RAM
controller is busier with more cores. Interleaved Masstree
outperforms Masstree consistently by 12-30%. However,
the performance improvement decreases as the number

of cores increases. The reason is that, with enough cores,
parallelization alone can saturate the RAM system, so
there are no idle RAM resources for Interleaved Masstree
to exploit.

6 Discussion

We don’t claim that the three techniques above can be
applied to any RAM-dominated program. In fact, for
RAM-latency dominated programs that are not paralleliz-
able and difficult to pipeline, the RAM-latency bottleneck
can be hard or impossible to hide or avoid, limiting the
overall throughput. For example, suppose a program
performs a single random walk over a graph for a fixed
number of steps, and returns the weight of the edges
it travels along. It doesn’t seem that any of the three
techniques is applicable to such a program. Neverthe-
less, these techniques work well for programs that with
the right properties. For example, the interleaving tech-
nique applies to programs that serve many independent
requests. For such programs, we can batch multiple re-
quests and interleave the memory accesses, preventing
the DRAM latency from limiting the overall throughput.

Applying the interleaving technique can be difficult.
One way to reduce the effort is to automate the interleav-
ing. Compilers do this for loops in some circumstances,
but typically not for complex situations involving point-
ers. Automatic interleaving may be difficult or impossi-
ble since it requires detecting accesses to shared data and
resolving conflicting accesses. Conflict resolution may
be impossible without the help of the programmer.

On the other hand, interleaving certain operations on
certain data structures is possible. It might be interest-
ing to identify applications that are RAM-latency bottle-
necked, what operations and data structures need to be
interleaved, and how much that helps performance. One
potential application is Memcached [2], which provides
a multi-get API at the client side. With the multi-get
API, the client batches multiple get requests, and sends
them to the server at once. This opens an opportunity
for the server to interleave the processing of multiple
gets in the same batch. Some preliminary measurements
show that, for a Memcached-like hash table which uses
linked-list-based chaining, interleaving multi-get can im-
prove the single-core throughput by more than 30% on a
read-only workload. We intend to further investigate the
feasibility and measure the benefit of this modification
to Memcached.

One difficulty that arises when optimizing these appli-
cations is the lack of tools. We use Linux perf to find

4

hot spots and manually inspect the code to see if a RAM
fetch bottleneck seems likely. This can be misleading
since it can be hard to tell if the hot spot is busy doing
computation or stalling on RAM fetches. A better tool
that identifies RAM stalls spent in each instruction could
help find such bottlenecks faster and more accurately.

7 Conclusion
This paper identifies a class of applications that suffers
from RAM latency bottlenecks. We describe three tech-
niques to address these bottlenecks. We implement and
evaluate these techniques on several applications, and ob-
serve a significant performance improvement. We hope
this work will inspire people to optimize their applica-
tions in a similar way.

References
[1] HyperSQL HSQLDB - 100% Java Database. http:
//hsqldb.org/.

[2] memcached - a distributed memory object caching
system. http://memcached.org/.

[3] OpenJDK. http://openjdk.java.net/.
[4] Intel 64 and IA-32 Architectures Optimization Ref-

erence Manual, section 2.1.5.4. 2012.
[5] S. Jason, J. Chhugani, C. Kim, N. Satish, and

P. Dubey. PALM: Parallel architecture-friendly latch-
free modifications to b+trees on many-core proces-
sors. Proceedings of the VLDB Endowment, 4(11),
2011.

[6] Y. Mao, E. Kohler, and R. T. Morris. Cache Cratfi-
ness for Fast Multicore Key-Value Storage. In Pro-
ceedings of the ACM Eurosys Conference (Eurosys
2012), Zurich, Switzerland, April 2012.

[7] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski,
H. Lee, H. C. Li, R. McElroy, M. Paleczny, D. Peek,
P. Saab, D. Stafford, T. Tung, and V. Venkataramani.
Scaling memcache at facebook. In Proceedings of
the 10th USENIX Symposium on Networked Systems
Design and Implementation (NSDI), 2013.

[8] H. Park, S. Baek, J. Choi, D. Lee, and S. H. Noh.
Regularities considered harmful: forcing random-
ness to memory accesses to reduce row buffer con-
flicts for multi-core, multi-bank systems. In Proceed-
ings of the eighteenth international conference on
Architectural support for programming languages
and operating systems, ASPLOS ’13, New York, NY,
USA, 2013.

[9] M. Wall. Multi-core is here! But How Do You
Resovle Data Bottlenecks in Native Code, 2007.
http://developer.amd.com/wordpress/

media/2012/10/TLA408_Multi_Core_Mike_

Wall.pdf.

5

http://hsqldb.org/
http://hsqldb.org/
http://memcached.org/
http://openjdk.java.net/
http://developer.amd.com/wordpress/media/2012/10/TLA408_Multi_Core_Mike_Wall.pdf
http://developer.amd.com/wordpress/media/2012/10/TLA408_Multi_Core_Mike_Wall.pdf
http://developer.amd.com/wordpress/media/2012/10/TLA408_Multi_Core_Mike_Wall.pdf

	Introduction
	Hardware Background
	Linearizing memory accesses
	Alternating RAM fetch and computation
	Parallelization
	Discussion
	Conclusion

